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Appendix A The process of solving the first objective function

The quadratic objective function in Eq. (3) can be written as
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Then
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Appendix B The process of solving the second objective function
Optimization problems (9) and (10) can be cast into the following formulation
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The first constraint (B1) can be converted to an LMI by using the Schur complement
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Using the S-Procedure, the second constraint (B2) is equivalent to
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It can be further converted into the following LMI
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Therefore, model predictive controller can be solve via
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Appendix C Proof of Theorem 1
According to Eq. (2), we rewrite objective function in Eq. (3)
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Suppose that ;;_, is the optimizer for min-max problem at the k-th batch. Then
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Since AUILCTR AUIL >0 and the sequence {Zk 1 AUILCTRJ-AU;LC} is non-decreasing, we can conclude that the

sequence {Zk L AWILCTR]- AT 4 } converges and the following equation holds
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It implies that AU;LC — 0 as k — oo.

Appendix D Proof of Theorem 2

Lemma 1. Define the initial control profile at the ko-th batch as Ugg. For every e > 0, there exists § = 5(e) >

0 such that the optimal solution U?ﬁl in the ko + 1-th batch satisfies U}J&il € ©1 when 73041 < §, where ©1 =
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The objective function in Eq. (3) can be rewritten as
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where 6} is the maximizer of the min-max problem at the k-th batch.
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According to the results in Lemma 1, we conclude that the upper bound of HE ‘Q is smaller than

€ when k > ko by adjusting Ry. That is,
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According to Eq. (D4), we have
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Sincey/€ is sufficiently small, ||E(ﬁk) HQ totally depends on the model error HE ILC H

o Therefore, tracking error can be

bounded in a very small region depending on the upper bound of model error, namely Uy € ©, as k — oo.
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Appendix E Simulation
The algorithm presented in this letter is applied to a typical batch reactor [3], in which a first-order irreversible exothermic
reaction A k-1> B k-2> C takes place. This reaction processes are described by the dynamic equations as follows
i1 = —kiexp(—E1/T)x}
&0 = —k1exp(—E1/T)z? — kiexp(—Ea/T)z2

(E1)
(E2)

where x1 and z2 represent the reactant concentration of A and B, respectively, and T denote the reaction temperature.
The values of parameter, k1, k2, F1 and E2 are given as follows: k1 = 4.0 X 103, ko = 6.2 X 105, E; = 2.5 x 103 and
Ey = 5 x 103. In this simulation, the reactor temperature is divided into 10 equal intervals and normalized by using
Tg = (T — Tmin)/(Tmax — Tmin), in which Ty and Timax are 298(K) and 398(K), respectively. Ty is the control variable
which is bounded by 0 < Ty < 1, and z2(t) is the output variable. The control objective is minimize the end-time output
error by adjusting the control input.

The initial operating conditions are z1(0) = 1 and x2(0) = 0. The initial batch input Uy = Us and the ideal value
of end-time output is y4(¢f) = 0.61. The root mean square error(RMSE) of tracking error is used to show the tracking
performance.

The control performance of proposed integrated control strategy is compared with traditional batch to batch ILC strategy
[4]. The parameters are set as follows: Q = I, r = 0.01 and R = 0.11. The control trajectories at 1st, 5th, 10th and 15th
batches are shown in Figure El, and the corresponding output trajectories of product concentration are shown in Figure
E2. Figure E3 shows the curves of AU}, along batch-axis. The curves of final output error and RMSE are shown in Figure
E4 and Figure E5, respectively, and the final output error values can be seen from Table E1.
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Figure E1 Control trajectories at 1st, 5th, 10th, 15th batches (solid line: integrated MPC; dotted line: traditional ILC)
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Figure E2 Output trajectories at 1st, 5th, 10th, 15th batches (solid line: integrated MPC; dotted line: traditional ILC)
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Figure E3 Curves of maicAU k(i) based on two controller systems
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Figure E5 Curves of final output error value based on two controller systems
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Table E1 Final output error value based on two controller systems

Methods 1st batch 5th batch 10th batch 15th batch
Integrated ILC 2.55 x 1073 1.69 x 1073 1.49 x 1073 1.36 x 1073
Traditional ILC 3.03 x 10~3 1.79 x 10~3 1.58 x 1073 1.45 x 1073

To test the robustness of the proposed control scheme, the parameter E2 in the model is increased by 5%. The comparisons
between two control strategies are shown in Figures E6-E9 and Table E2.
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Figure E6 Control trajectories at 1st, 5th, 10th, 15th batches under parameter perturbation (solid line: integrated MPC;
dotted line: traditional ILC)
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Figure E7 Output trajectories at 1st, 5th, 10th, 15th batches under parameter perturbation (solid line: integrated MPC;
dotted line: traditional ILC)
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Figure E8 Curves of maleUk (7) based on two controller systems under parameter perturbation
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Figure E9 Curves of RMSE based on two controller systems under parameter perturbation

Table E2 Final output error value based on two controller systems under parameter perturbation

Methods 1st batch 5th batch 10th batch 15th batch
Integrated ILC —1.61 x 1072 —5.78 x 1073 —3.17 x 1073 —2.56 x 10~3
Traditional ILC —3.40 x 102 —6.9 x 1073 —4.2x 1073 —2.9x 1073

As seen from above figures and tables, the proposed control strategy has faster convergence than traditional ILC,
especially there exists parameter perturbation.
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