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Dear editor,
Fault-tolerant control is to let a system operate in
a steady manner despite the fact that faults ex-
ist therein. There have been several results on 1D
systems that consider only the time index [1–4].
Moreover, research on 2D systems has emerged,
especially for batch processes that can be viewed
as 2D systems [5–7]. However, current robust de-
sign cannot deal with the state deviation, which
may impact the system performance.

To solve this problem, model predictive fault-
tolerant control (MPFTC) can be adopted; how-
ever, most results are confined to 1D systems [8].
However, it is observed that a 2D system de-
sign that combines feedback control with iterative
learning control (FILC) can have better perfor-
mance than 1D design [9]. This study will propose
such 2D design for batch processes under actuator
faults.

Problem description and model development.
Concerning an actuator gain fault, the batch sys-
tem can be described as follows:
{

x(t+1, k)=Ā(t, k)x(t, k)+B2αu(t, k)+w(t, k),

y(t, k)=C2x(t, k),
(1)

where the matrices and variables can be referred
to as done in [7], and note that this study only
adopts one subsystem.

The control objective is to design a predictive
fault-tolerant control law that enables the output
to track a given expected trajectory yr as much

as possible irrespective of whether the system has
faults. To achieve this goal, iterative learning con-
trol law, output tracking error, and variables along
the batch index are introduced.

u(t, k) = u(t, k − 1) + r(t, k), (2)

u(0, k) = 0, t = 0, 1, 2, . . . , T,

e(t, k) = yr − y(t, k), (3)

f(t, k) = fk(t), δk(f(t, k)) = fk(t)− fk−1(t). (4)

Design the update law as follows:

r(t, k) = K

[

δk(x(t, k))

e(t+ 1, k − 1)

]

, (5)

whereK represents the undetermined gain matrix.
System (1) is then transformed into a 2D

Roesser model, and the model is
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x̄′(t, k)=(Ā1(t, k)+BαK)x̄(t, k)+C1w̄(t, k),

ȳ(t, k)=

[

e(t, k − 1)

e(t, k)

]

= C̄x̄(t, k),

z(t, k) = e(t+ 1, k − 1) = C3x̄(t, k),

(6)

where

x̄(t, k) =

[

δk(x(t, k))

e(t+ 1, k − 1)

]

,

x̄′(t, k) =

[

xh(t+ 1, k)

xv(t+ 1, k)

]

=

[

δk(x(t+ 1), k)

e(t+ 1, k)

]

,
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Ā1(t, k) =

[

Ā(t, k) 0

−C2Ā(t, k) I

]

, B =

[

B2

−C2B2

]

,

C1 =

[

I

−C2

]

, C̄ =

[

−C2 I

0 I

]

, C3 = [0 I].

Assume γ−1‖w(t, k)‖2 6 γ‖Z(t, k)‖2. Robust
predictive control aims at designing a predictive
controller that makes the system (6) stable and
satisfy the following robust performance index at
every moment:

min
r(t+i|t,k),i>0,

max
Ā1(t+i,k)∈Ω,i>0

J∞(t, k)

J∞(t, k) :

=

∞
∑

i=0

[

x̄(t+ i|t, k)

r(t + i|t, k)

]T[

Q 0

0 R

][

x̄(t+ i|t, k)

r(t + i|t, k)

]

(7)

s.t. |r(t+ i|t, k)| 6 ∆ū,

|ȳ(t+ i|t, k)| 6 ȳ,

where Q (Q > 0) and R (R > 0) are the weight-
ing matrices having proper dimensions, Ω is an
uncertain set, r(t + i|t, k) and x̄(t + i|t, k) repre-
sent the predicted update law and the predicted
state for the moment t + i at the moment i,
and r(t, k) = r(t|t, k), respectively. To meet the
quadratic goal, the predicted update law is chosen
as follows:

r(t+i|t, k)=K(t, k)x̄(t+i|t, k), i = 0, . . . ,∞. (8)

Then, the closed-loop predictive model of (6) is
represented as follows:
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x̄′(t+i|t, k)=(Ā1(t+i, k)+BαK)x̄(t+i|t, k)

+ C1w̄(t+ i, k),

ȳ(t+ i|t, k) =

[

e(t+ i|t, k − 1)

e(t+ i|t, k)

]

= C̄x̄(t+ i|t, k),

Z(t+ i|t, k) = e(t+ i+ 1|t+ 1, k − 1)

= C3x̄(t+ i|t, k).

(9)

Main results.

Theorem 1. For any scalars ǫ > 0, θ > 0, ma-
trices Mj and H , Y , and a non-singular matrix
G with proper dimensions, if the following matrix

inequalities hold:
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T11 0 T13 T14 T15 T16 T17 T18

∗ T22 T23 0 0 0 0 0

∗ ∗ T33 0 0 0 0 0

∗ ∗ ∗ T44 0 0 0 0

∗ ∗ ∗ ∗ −ǫI 0 0 0

∗ ∗ ∗ ∗ ∗ −ǫI 0 0

∗ ∗ ∗ ∗ ∗ ∗ −θI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −θI
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
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

< 0, (10)

[

−1 x̄(t|t, k)

∗ −Mj

]

6 0, (11)

[

−∆ū2I Y

∗ −(G+GT −Mj)

]

6 0, (12)

[

−ȳ2(G+GT −Mj) GC̄T

∗ −I

]

6 0, (13)

the closed-loop 2D system (9) is asymptotically
stable, where T11 = −(G + GT − Mj), T13 =
GAT

1 + Y TβBT, T14 = GCT
3 , T15 = GĒT, T16 =

Y Tβ, T17 = Y TR
1
2 , T18 = GQ

1
2 , T22 = −(H +

HT − γ−1
j I) , T23 = HCT

1 , T33 = −Mj + ǫD̄D̄T +

ǫBβ2
0B

T, T44 = −γ−1
j I, and the robust state feed-

back control law is K = Y G−1.
Simulation. The pressure in an injection mold-

ing process is taken as an example [7]
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x(t+1, k)=

([

1.317 1

−0.3259 0

]

+∆A(t, k)

)

x(t, k)

+

[

171.8

−156.8

]

αu(t, k) + w(t, k),

y(t, k) = [1 0]x(t, k).

(14)

Here, ∆A(t, k)[ 0.05δ(t, k) 0

0.05δ(t, k) 0
], δ(t, k) represents a

random variable of [0, 1], α = 0.8+ 0.2 sin(t). The
system output ȳ(t + i|t, k) and the update law
r(t + i|t, k) constraints are |ȳ(t + i|t, k)| 6 160,
|r(t + i|t, k)| 6 0.12.

By tuning R values and based on Theorem 1,
we get the initial controller gain K = [−0.0071
−0.0051 0.0032]. The following index DT =
√

∑n
t=0 |e(t, k)| is adopted for comparison with

the traditional control method (TC-MPC), which
is u(k) = ∆u(k) + u(k − 1) = u(k − 1) +

K[ x(k) − x(k − 1)

yr − y(k)
].

Figure 1 shows the different curves for different
situations. In Figure 1(a), it is shown that ex-
cept for the initial batches and the batches after
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Figure 1 (Color online) Comparative results between the TC-MPC method and the FILC-MPC method. (a) Tracking
performance; (b) system output; (c) control input; (d) update law.

the faults (the 31th batch), the proposed method
demonstrates improved tracking performance. In
Figure 1(b), it is observed that the output of
the FILC-MPC method gradually approaches the
set-point in a steady manner while that of the
TC-MPC method fluctuates around the set-point
though TC-MPC demonstrates a faster response
in the initial batch and the batch with faults. In
Figure 1(c), the control quantity is illustrated and
it is revealed that the FILC-MPC method shows
a smooth control input together with the steady
operation. In Figure 1(d), it is found that the
proposed method shows smaller fluctuation com-
pared with TC-MPC. In conclusion, the FILC-
MPC method provides improved performance.

Conclusion. Combining iterative learning and
predictive control, fault-tolerant control of batch
processes under uncertainties is studied. First, a
constrained predictive fault-tolerant control law is
designed based on 2D system theory and condi-
tions in terms of robust performance index that
meet the maximum and minimum requirements
are given. Subsequently, sufficient conditions for
system stability under faults are given in the form
of LMI and the control law is designed to yield
improved control performance. Finally, simulation
results demonstrate that the proposed method can
quickly force the system to converge and approach
the expected trajectory.
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