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Dear editor,

In general, an instance of the Boolean satisfiabil-
ity (SAT) problem is defined by a set of Boolean
variables V. = {v1,...,on}, a set of clauses
C = {c1,ca,...,cp}, and a Boolean formula @ :
{0,1}" — {0,1}. The formula ® is in a conjunc-
tive normal form (CNF) if it is a conjunction of
clauses. Each clause, in turn, is a disjunction of
literals, and a literal is a variable or its negation.
The task is to determine whether there exists an
assignment of values to the variables under which
® evaluates to true. Such an assignment, if it ex-
ists, is known as a satisfying assignment for &,
and ® is called satisfiable. Otherwise, ® is said
to be unsatisfiable. Because we have two choices
for each of the n Boolean variables, the size of
the search space S becomes |S| = 2V, i.e., the
size of the search space grows exponentially with
the number of variables. Most SAT solvers use
a CNF representation of the formula ®. For ex-
ample, PV @ is a clause containing two literals,
namely P and @. The clause PV @ is satisfied
if either P or @ is true. The formula ® with
N variables and M clauses creates a landscape in
the space Boolean formula {0, 1}V x {0,1,..., M}.
The 2"V truth assignments correspond to the points
{0,1}", and the height of each point is a number
between 0 and M corresponding to the number
of clauses in ® that are violated. MAX-SAT is
the optimized variant of SAT, where the task is to
determine whether there exists an assignment of
truth values of the variables that satisfies the min-
imum number k of unsatisfied clauses. The quality
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of the solution is evaluated in terms of the num-
ber of unsatisfied clauses or the total weight of
the unsatisfied clauses in the case where weights
are associated with clauses using an evaluation
function f(A4) to be minimized; this function is
defined as

M
FA) = we, [{c|-sat(A, i) Ae; € @}, (1)

i=1

where A is an assignment, —sat(A4, ¢;) denotes that
the clause ¢; is unsatisfied, and w,, represents the
weight associated with ¢;. For unweighted problem
instances, w,. is equal to 1 for all clauses.

The algorithm. The popular Kernighan-Lin
(KL) [1] algorithm, which belongs to the variable
depth search class, is adapted and used to solve
MAX-SAT problems. Its advantage compared to
simple local search methods is that it allows moves
that worsen the quality of the solution as long as
the overall result is an improvement. KL still re-
mains the most successful approaches used for the
graph partitioning problem.

The KL method proposed in this study is based
on a two-phase strategy. The first phase applies
KL until a local optimum solution is reached,
whereas the second phase performs a kick to al-
low KL to proceed with the search each time it is
stuck at a local optimum solution. KL starts by
labeling all variables as tabu-inactive (false). KL
goes through several phases. During each phase,
a k-change is built sequentially by modifying the
truth value of one variable at a time by performing
a flip. A flip consists of changing the truth value
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of a variable v; from val to 1 — val. KL identifies
the variable having the highest score. The high-
est score of a variable v; is the one that results
in a maximal decrease or minimal increase in the
number of unsatisfied clauses if v; is flipped. If
there are several variables with the same maximal
score, one of them is randomly selected according
to a uniform distribution. Let v; be the variable
to be flipped. The score of v; is the difference
between the number of unsatisfied clauses before
performing the flip minus the number of unsat-
isfied clauses after the flip is performed. There-
fore, a positive number indicates a decrease in the
number of unsatisfied clauses, whereas a negative
number corresponds to an increase in the number
of false clauses. If a variable has already been cho-
sen, it can no longer be considered and it is labeled
as tabu active (true). One phase of the algorithm
terminates when all variables are set to tabu ac-
tive (true). The algorithm identifies the subset of
variables having the highest cumulative score. The
cumulative score is the sum of each of the scores
made by altering the value of one variable. If such
a subset exists, the solution is updated by sub-
stituting all the variables in the subset with their
new truth values. The variables not belonging to
the subset will retain their old values. The best
assignment is updated whenever the current as-
signment has a better cost. The assignment with
the lowest cost found during the current phase is
used as the starting solution for the next phase.
However, if such a subset fails to exist, the algo-
rithm proceeds with the second phase referred to
as the kick phase. The kick phase chooses between
performing a random flip or a kick depending on
whether the result of the division (random() mod
2) is an even or odd number. A random flip con-
sists of choosing a random variable and changing
its truth value. A kick is based on a large r, where
an r flip is a random number drawn between 1
and N.

Ezperimental results. Table 1 compares KL to
the iterated robust tabu search algorithm [2] using
UBCSAT (version 1.1) [3], an implementation and
experimentation environment for stochastic local
search algorithms for SAT and MAX-SAT solvers.
The number of runs was set to 20 for both algo-
rithms.

For each algorithm, the average solution qual-
ity (Q) and average time (7') are shown. The
first 14 benchmark instances are real problems
that arise in difficult integer factorization prob-
lems translated into the MAX-SAT format.

One observes that IRoTS cannot find the best
solution for all the difp instances.

KL has a better value compared to IRoTS for
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Table 1 Performance comparisons

Inst KL IRoTS

Q T Q T
difp-19-0 7 89.5 21 66.5
difp-19-1 5 60.1 19 47.8
difp19-3 7 105.1 23 68.1
difp-19-99 16 112.8 26 52.7
difp20-0 7 109.5 18 41.1
difp20-1 8 103.1 26 73.2
Real difp20-2 20 98.1 26 62.1
difp20-3 6 117.3 34 60.3
difp20-99 18 114.7 26 52.8
difp-21-0 8 102.7 31 48.2
difp21-1 9 85.1 34 42.7
difp21-2 20 117 33 78.3
difp21-3 22 119.4 34 69.3
difp21-99 8 79.2 33 60.3
v100c1200 865 2.31 865  0.13
v100c1300 933 6.76 933  0.16
v100c1400 1018 6.31 1018 0.15
v100c1500 1186  3.36 1186 0.19
Unweighted  v120c1400 959 4.06 959  0.16
v120c1500 1119 7.25 1119 0.14
v120c1600 1150 0.85 1150 0.16
v140c1500 1073  0.86 1073 0.17
v140c1600 1143 12.14 1143 0.17
v70c700 110 1.60 110  0.16
Weighted v70c800 132 2.54 132 0.16
v70c900 157 2.76 157 0.15
v70c1000 214 6.51 214 0.18

all difp instances. The difference in quality ranges
between 24% and 83%. The quality superiority of
KL comes at the expense of a higher running time
(approximately 2-3 times slower). The second
benchmark instance set is of unweighted MAX-
SAT problems. KL delivers solutions of equal qual-
ity compared to IRoTS at the expense of a higher
running time (up to 8 times slower). The same ob-
servation applies to the final weighted instances.

Note that the majority of the running time for
KL is spent finding the appropriate kick to lead KL
to a better local optimum, which explains the vari-
ability in the running time between the instances.

Conclusion. Herein, an algorithm based on the
Kernighan-Lin heuristic for MAX-SAT was intro-
duced. This algorithm is based on a two-stage
strategy. Each time KL reaches a local optimum
configuration, the algorithm chooses between per-
forming a simple random move or a kick. Experi-
mental comparisons demonstrated the superiority
of KL compared to IRoTS for real problems.

KL manages to produce similar results com-
pared to IR0TS for both unweighted and weighted
test cases.

Currently, a faster implementation of KL using
a multilevel scheme is being developed to improve
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