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Dear editor,
Discourse relation detection involves recognizing
the relationships between pairs of discourse frag-
ments (e.g., clauses or sentences). As compared
with explicit detection, implicit discourse relation
detection is much more challenging, owing to con-
nective words, such as “so” or “because”, being ab-
sent. In such cases, the relationships between the
fragments pairs cannot be via simple frequency-
based mapping; instead, the relationships must be
inferred from potential semantic and logical con-
nections between the two arguments.

Many methods have been proposed to solve the
implicit discourse relation detection task [1–5].
Some of these studies require heavy data pre-
processing and specific hand-crafted features, such
as linguistically informed [1] or part-of-speech
(POS) [2]. Liu et al. [3] proposed a multi-task
learning system that combines similar tasks by
learning both shared and unique representations.
Zhang et al. [4] proposed a generative model that
generates both the discourse and the relation-
ship between the two arguments. Qin et al. [5]
used context-aware character-enhanced embed-
dings as input to a convolutional neural network
(CNN); however, they captured semantic interac-
tions at sentence level. In addition, most previous
studies [1–4] have regarded words as the smallest
units for feature extraction and ignored charac-

ter level features, including morphological ones,
even though, character-level features can handle
the rare word problem.

In this study, similar to majority of the previ-
ous study related to character-level features, we
utilize a stacked CNN to capture the character-
level features, then combine these features with
ordinary word embeddings, concatenated word-
embeddings. Unlike Qin et al. [5], we capture
the semantic interactions between arguments us-
ing word pairs. Specifically, we propose to use a
gated relevance network (GRN) that combines a
bilinear model and single layer network with a gate
to compute the arguments’ relevance scores from
the word pairs.

Character-level embeddings. In our proposed ap-
proach, character-level embeddings are captured
by a stacked CNN. The aim of using character-
level embeddings is to handle the rare word prob-
lem, as these embeddings can capture rich mor-
phological information, such as prefixes, suffixes,
genders, and tenses.

Consider the word k ∈ V , where k comprises
the character sequence C = [c1, c2, . . . , cn], V is a
fixed-size word, and n is the word length. In ad-
dition, let ci ∈ R

dc be the character vector for the
i-th character in the word, where dc is the dimen-
sionality of the character vector. we apply a con-
volution operation between the character matrix C
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and a filter H ∈ R
dc∗w of width w. Following the

convolution we use the nonlinear function relu to
capture the character feature map fk ∈ R

n−w+1.
The i-th element of fk is as follows:

fk[i] = [. . . ; relu(Hi×Ck[i : i+w−1]+b); . . .]. (1)

Next, we apply max-pooling to retain only the
highest value yk of the given filter:

yk = max(fk[i]). (2)

In this study, the character embeddings were
pre-trained on the Penn Treebank (PTB) and
Penn Discourse Treebank (PDTB) using the
method proposed by Kim [6]. The alphabet used
in this study contains the following 69 characters:

abcdefghijklmnopqrstuvwxyz0123456789
-,;.!?:’”/ @#$%&*+−= 〈〉()[]{}| ∼ ∧ 8

The character-level word embeddings produced
by the CNN are independent of each other and lack
any contextual information; hence, a single-layer
bidirectional long short-term memory (LSTM) [7]
is used to capture the contextual information. As-
sume that the contextual representation from left
to right is h

f
t , and from right to left is hb

t . Then
we concatenate them to get rich contextual repre-
sentation ht = [hf

t , h
b
t ].

Concatenated word embedding using a bidirec-

tional LSTM. To obtain both contextual and mor-
phological information, we concatenate the ordi-
nary word embedding with the above character-
based word embedding, then utilize a bidirec-
tional LSTM again. Specifically, we feed the con-
catenated word embeddings into a bidirectional
LSTM.

Gated relevance network. In order to get the
semantic interaction information between the two
arguments, we use a GRN, which combines a bi-
linear model [8] and single layer network using a
gate mechanism. The GRN computes interaction
values for word pairs from different arguments.

Let xhi
and yhj

be the representations of words
from the two arguments, X and Y , respectively.

Bilinear model can capture the linear interac-
tions between these two vectors, but cannot han-
dle nonlinear interactions. The bilinear model is
defined as follows:

s(xhi
, yhj

) = xT
hi
Myhj

, (3)

where M ∈ R
dh×dh is a parameter matrix and dh

is the dimension of word representation after bidi-
rectional LSTM.

The single layer network could capture nonlin-
ear interaction, but the interaction between the
vectors is weak. The single layer network is de-
fined as follows:

s(xhi
, yhj

) = uTf

(

V

[

xhi

yhj

]

+ b

)

, (4)

where V ∈ R
k×2dh , b ∈ R

k, and u ∈ R
k, and f is

a nonlinear function that is applied element-wise.
Clearly, both models have their own advantages,

and combining can enable us to inherit the benefits
of both. In particular, we utilize a gate mechanism
to incorporate both models, thereby enabling our
model to capture semantic interactions more ro-
bustly by adaptively taking a linear or nonlinear
approach as appropriate. The gate g is defined as

g = σ

(

Wg

[

xhi

yhj

]

+ bg

)

, (5)

where σ is the sigmoid function, and Wg ∈ R
r×2dh

and b ∈ R
r are parameter and bias, respectively.

The GRN can now be defined as

s(xhi
, yhj

) = uT

(

g ⊙ xT
hi
M [1:r]yhj

+ (1− g)⊙ f

(

V

[

xhi

yhj

])

+ b

)

, (6)

where g is the gate, f is a nonlinear function.
M [1:r] ∈ R

r×dh×dh is a bilinear tensor, and the
bilinear process xT

hi
M [1:r]yhj

produces m ∈ R
r,

where each slice l = 1, 2, . . . , r of the tensor is used
to compute one entry of the bilinear result m. In
addition, V ∈ R

r×2dh , b ∈ R
r, and u ∈ R

r.
In summary, the GRN computes semantic inter-

action scores for each pair of word representations,
creating a matrix of semantic interaction scores for
the two arguments.

Experiment. Our experiment utilized the PDTB
2.0 dataset, and considered the following rela-
tionship categories: comparison (Comp.), con-
tingency (Cont.), expansion (Expa.), and tem-
poral (Temp.). For comparison with previous
studies [1–5], we treated these four relationships as
four separate classification sub-tasks and accord-
ingly trained four binary classifiers. In our model,
we utilized truncation or zero-padding operations
to fix the lengths of the segments and words as 50
and 20, respectively. To initialize the word em-
beddings, we utilized 300-dimensional pre-trained
embeddings using word2vec1). The character em-
bedding dimensionality dc was set to 15. The di-
mension of bidirectional LSTMs’ intermediate rep-

1) http://www.code.google.com/p/word2vec.
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resentations were 50-dimensional in the character-
level module and 100-dimensional in the concate-
nated word embedding module. In the character-
level module, we used three groups of 32 filters
with window sizes of 2, 3, and 4. We used the
AdaGrad optimizer, and set the learning rate to
0.05. The number of tensor slices was set to 2.

To provide a clearer illustration of our model’s
performance, we divided our baseline models
into three groups, namely character-level (Char.),
word-level (Word.), and concatenated modules
(Con.). Table 1 shows the results thus obtained,
together with those of previous studies [1–5]. And
the Word Bi-LSTM+GRN model was first pro-
posed by Chen et al. [9].

Table 1 Experimental results for the PDTB dataset

Comp. Cont. Expa. Temp.

Pitler et al. (2009) [1] 21.96 47.13 76.42 16.76

Rutherford and Xue. (2014) [2] 39.70 54.42 80.44 28.69

Liu and Li. (2016) [3] 36.70 54.76 – 31.32

Zhang et al. (2016) [4] 35.88 50.56 – 29.54

Qin et al. (2016) [5] 38.67 54.91 80.66 32.76

Char. CNN 32.76 49.53 76.80 22.12

Char. CNN+Bi-LSTM 33.63 50.42 77.99 22.58

Char. CNN+Bi-LSTM+GRN 34.14 51.44 78.31 23.22

Word. LSTM 35.48 52.11 77.36 27.62

Word. Bi-LSTM 37.35 52.27 78.33 29.36

Word. Bi-LSTM+GRN 40.17 54.76 80.62 31.32

Con. LSTM 36.86 52.56 78.28 28.89

Con. Bi-LSTM 38.11 53.38 79.22 31.37

Con. LSTM+GRN 38.32 53.52 78.34 29.02

Con. Bi-LSTM+GRN 41.02 54.94 80.78 31.76

Results and analysis. First, the results indicate
that our model outperforms most of the previous
models. Because the Temporal (Temp.) only con-
tains 826 examples (the numbers of samples for
training, development, and testing are 665, 93,
and 68, respectively), it is unstable to use the
data-hungry deep learning method for classifica-
tion. Therefore, the method proposed by Qin
et al. [5] outperform our method in Temporal
(Temp.) slightly.

Second, on comparing methods using the same
feature extraction method (e.g, LSTM, Bi-LSTM,
and Bi-LSTM+GRN) with different word embed-
ding techniques (e.g, character-level, word-level, or
concatenated), the models based on concatenated
word embeddings exhibited the best performance.
This was because concatenated word embeddings

have the advantages of both character- and word-
level embeddings; hence, they can not only handle
the rare word problem and include rich morpholog-
ical information, but also capture more semantic
information like word level embeddings do.

Third, on comparing methods that use the same
word embedding technique with different feature
extraction methods, models that used GRN to
compute the semantic interaction scores achieved
better performance, because GRNs capture both
linear and nonlinear interactions.

In summary, our model exhibited better perfor-
mance as compared with previous approaches and
baseline models indicate that combining a GRN
with concatenated word embedding is effective.
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