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Appendix A Experiments

We set up a cloud environment and use the RUBiS benchmark to evaluate our self-adaptive resource allocation. First, we

validate whether our approach is feasible to allocate resources for cloud-based software services dynamically. Second, we

compare the accuracy of the progressive QoS prediction model with the original one. Third, we compare the performance

of our approach with the traditional and rule-driven ones. Last, we evaluate the overhead of our approach.

Appendix A.1 Experimental Setup

The RUBiS benchmark is an auction site prototype modeled after eBay.com [1]. It provides a client which simulates user

behavior for various workload patterns. And the number of clients indicates the amount of workload. We simulate an actual

workload which has two types of user behaviors, and the average workload and workload pattern change respectively for

each time interval of an hour, as shown in Figure A1.

There are three types of virtual machines in this experiment, as shown in Table A1. The numbers of virtual machines

of each type are represented as vms, vmm and vml, respectively. Therefore, the allocated resources can be represented as

VMA=(vms,vmm,vml).

Table A1 Three types of virtual machines.

Property Small Medium Large

CPU 1core 1 core 1 core

Memory 1G 2G 4G

CostL 1.761 RMB 1.885 RMB 2.084 RMB

CostD 0.440 RMB 0.471 RMB 0.521 RMB

The quality of service refers to the response time (RT ) in this experiment, and its value is calculated by a Sigmoid

function, as shown in Figure A2.

The fitness function represents the resource-allocation target given by cloud engineers. Better resource-allocation plan

shall get a smaller value of fitness function. The weightages (r1 and r2), which are pre-defined by cloud engineers, reflect

their different preferences on QoS and resource cost. For instance, a higher r1 represents a more sensitive preference on QoS,

so more virtual machines are needed in order to guarantee the QoS under the same workload; while a higher r2 represents

a more sensitive preference on resource cost, so less virtual machines are needed in order to reduce the resource cost. In

practice, the most common fitness function is to balance the QoS and resource cost, which is also challenging to achieve

* Corresponding author (email: hg@pku.edu.cn)



Chen X, et al. Sci China Inf Sci 2

0 1 2 3 4 5 6 7 8
Time interval

2000

2500

3000

3500

4000

4500

5000

5500
N

um
be

r 
of

 c
li

en
ts

0%

50%

100%

150%

200%

250%

300%

350%

P
er

ce
nt

ag
e 

of
 e

ac
h 

be
ha

vi
ou

r

Average workload
Behaviour A:only browse
Behaviour B:bids, rating etc.

Figure A1 Average workload and workload pattern for each

time intervals.
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Figure A2 Service level agreement.

due to the complex relationship between the resource and the QoS of cloud services. Therefore, in our experiment, we set

r1 = 320 and r2 = 10 based on our experience in order to balance the QoS and resource cost, as shown in Formula A1.

Fitness = 320 ∗
1

Q
+ 10 ∗ Cost , (A1)

The parameter calculation in self-tuning control, is aimed to set a new coefficient vector W̃ , and the weightages (0 < η

< 1), which is set by cloud engineers, reflects confidence levels on the original coefficient vector W and the local optimal

coefficient vector Ŵ . A higher η represents a higher confidence on the original coefficient vector W, so parameters of the

new coefficient vector W̃ is closer to the original coefficient vector W. In our experiment, we set the weightages (η = 0.9)

based on experience, considering the volume of historical data is much larger than runtime data under the current workload.

The relevant parameters of genetic algorithm are set as follows. The size of initial population is 100, and the maximum

number of iterations is 1000. Besides, the algorithm will end if the optimal value is not updated for 20 consecutive iterations.

For each loop, we adjust only a certain proportion of resources based on the difference between the allocated resources

and the objective plan. The adjustment proportion (P) is pre-defined by cloud engineers and reflects their preferences

on efficiency and overhead of resource allocation. A lower P represents a more sensitive preference on efficiency, which

will lead to a higher number of feedback iterations; in this situation, it takes more adjusting time to find out a better

resource-allocation plan. In our experiment, we set the adjustment proportion (P = 25%) based on experience, in order to

balance the efficiency and overhead of resource allocation.

We use two QoS prediction models in this experiment. In order to describe the accuracy of QoS prediction model, we

define the relative error value R = |QoSpredicted / QoSactual - 1|, and introduce the admissible relative error E, and the

confidence level L, as shown in Formula A2. The admissible relative error in this experiment is set to 0.3, and the confidence

levels of two models are respectively 75% and 85%.

L = Lr( |QoSpredicted /QoSactual − 1 | 6 E ) . (A2)

For comparison, we apply our approach, the traditional one based on QoS prediction model, and the rule-driven one

to support self-adaptive resource allocation for comparison. The traditional one directly uses the genetic algorithm to

search for an appropriate resource-allocation plan based on the QoS prediction model. The rule-driven one follows the rules

described in Table A2.

Table A2 Rules for resource allocation.

Conditions Operations

RT >1.4s vml += 1

1.2s <RT 6 1.4s vmm += 1

1.0s <RT 6 1.2s Remain

0.8s <RT 6 1.0s vmm - = 1

RT 6 0.8s vml - = 1
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Appendix A.2 Validation of Self-Adaptive Resource Allocation

Table A3 shows the resource-allocation plans for each intervals when using three approaches. We can see that, there are

many factors which impact the resource-allocation plans of our approach. First, the average workload and workload pattern

impact the resource-allocation plans significantly. For instance, there are striking differences between allocated resources of

each intervals. Second, allocated resources of the previous interval can impact the resource-allocation plans. For instance,

the average workloads and workload patterns of 1st and 6th intervals are the same, while there are differences between

allocated resources of the two ones. Third, QoS prediction models also impact the resource-allocation plans. For instance,

there are differences between allocated resources of same intervals when respectively using two QoS prediction models.

Table A3 Resource-allocation plans for each intervals ( vms , vmm , vml ).

QoS Prediction

Models

Self-Adaptive

Approaches

1st Time

Interval

2nd Time

Interval

3rd Time

Interval

4th Time

Interval

5th Time

Interval

6th Time

Interval

7th Time

Interval

The One with

the Confidence

Level of 85%

Our

Approach
0,2,5 0,4,5 0,5,5 0,0,5 0,1,7 0,1,7 0,0,6

Traditional

Approach
0,2,6 0,3,6 0,4,6 0,0,6 0,0,8 0,0,8 0,1,6

Rule-driven

Approach
0,1,7 0,2,7 0,3,7 0,1,6 0,1,8 0,2,7 0,2,6

The One with

the Confidence

Level of 75%

Our

Approach
0,3,5 0,3,6 0,4,6 0,2,5 0,2,7 0,1,7 0,1,5

Traditional

Approach
0,2,7 0,3,7 0,4,7 0,1,6 0,2,8 0,1,8 0,1,7

Rule-driven

Approach
0,1,7 0,2,7 0,3,7 0,1,6 0,1,8 0,2,7 0,2,6

Appendix A.3 Accuracy Improvement of QoS Prediction Model

We evaluate the accuracy improvement of QoS prediction model made by our approach based on comparison of prediction

error between the original and progressive ones. We calculate each relative error values when using the QoS prediction

model, as shown in Figure A3. We can observe that self-tuning control method can significantly improve the accuracy of

QoS prediction model.
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(A) Using the less accurate one.
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Figure A3 Relative error values when using different QoS prediction models.

First, it is a progressive course to improve the local accuracy of QoS prediction model, and the relative error values

of model are reduced when the number of feedback iterations increases. For instance, the average relative error value of
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the more accurate one is 0.23, when the number of feedback iterations is 0; in contrast, the average relative error value is

reduced to 0.08, when the number of feedback iterations is 3.

Second, two QoS prediction models can both benefit from our approach, but with the less accurate one, the impact is

more pronounced. For instance, the relative error values of the less accurate one is reduced by 24% on average, while the

relative error values of the more accurate one is reduced by 20% on average.

Appendix A.4 Performance Improvement of Self-Adaptive Resource Allocation

We evaluate the performance improvement of self-adaptive resource allocation made by our approach, based on comparison

of evaluation values of resource-allocation plans between three approaches, as shown in Figure A4. The evaluation values

are calculated according to Formula A1. We can see that the evaluation value in our approach is the smallest in each case,

which indicates that the plan is usually the best one.

Compared with the traditional approach, our approach can improve performance by 8% on average when using the less

accurate QoS prediction model. In contrast, it can only improve performance by 4% on average when using the more

accurate one. It is because that the accuracy of QoS prediction model can affect the efficiency of resource allocation. Our

approach can improve the accuracy of QoS prediction model, and the impact is more pronounced with the less accurate one,

as mentioned in Appendix A.3. Therefore, when compared with the traditional approach in efficiency of resource allocation,

the impact of our approach is also more pronounced with the less accurate QoS prediction model.

Compared with the rule-driven approach, our approach can improve performance by 4% on average when using the less

accurate QoS prediction model; and it can improve performance by 7% on average when using the more accurate one. It is

because that the rule-driven approach follows the rules described in Table A2, and it does not depend on the QoS prediction

model. However, the QoS prediction model is used in our approach, and its accuracy can affect the efficiency of resource

allocation. Therefore, when compared with the rule-driven approach, the impact of our approach is more pronounced

with the more accurate QoS prediction model. In addition, the rules are specifically developed for this system, considering

features of the SLA contract, each types of virtual machines and the fitness function, leading to high administrative overhead

and implementation difficulty.
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(A) Using the less accurate one.
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Figure A4 Performance comparison between three approaches when using different QoS prediction models.

Appendix A.5 Overhead of Proposed Approach

The cloud services are still working during the process of adjusting the resource allocation plan. Therefore, we regard the

overhead as the adjusting time that is spent on reaching the optimized resource status. The shorter the adjusting time is,

the more resource could be saved and the faster the service could reach the desired QoS. In general, the adjusting time

can be divided into two parts: decision making to find out a resource-allocation plan, and VM configuration (such as VM

initialization and deletion) to prepare the cloud resources. Since the time of VM configuration can be optimized through

various techniques such as maintaining VM pools, the overhead mainly comes from the decision making.

We calculate average time consumption of each approaches in decision making during resource allocation, as shown in

Table A4. Our approach is feedback driven so that the total decision-making process consists of several iterations. So we

compare our approach with the rule-driven approach that also needs several iterations to make the decision. We can see

that the average number of feedback iterations of our approach is 3.35, while the number of the rule-driven one is 3.40.

Therefore, our approach can find the optimized allocation plan in acceptable number of iterations. Considering the time

spent on each iteration, our approach is longer than the rule-driven one as the rules are explicitly given and smaller amount

of computation is needed to get the allocation plan. So we then compare our approach with the traditional approach that

is based on QoS prediction model. We can see that the average time spent of each decision of our approach is 7.76 seconds,

and very close to the traditional approach (7.18 seconds), but with an overhead of 0.58 seconds. The slight increase of
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execution time is due to that in our approach it not only searches for the new objective resource-allocation plan, but also

tunes the QoS prediction model. In fact, if the number of evolutions reaches the preset maximum (1000), the time spent of

our approach is 9.52 seconds on average. However, with the other stop criterion that the optimal value is not updated for

20 consecutive evolutions, the number of evolutions can be reduced to about 840 on average, and the average time spent

of our approach can be reduced to 7.76 seconds too. In addition, for each decision iteration, all the three approaches can

compute the allocation plan in several seconds, which is acceptable from the management perspective. On the whole, the

overhead of proposed approach is very small.

Table A4 Average time consumption of each approaches in decision making during resource allocation.

Self-Adaptive

Approaches

Average Time Spent of

Each Decision(Seconds)

Average Number of

Feedback Iterations

Total Time

( Seconds )

Our Approach 7.76 3.35 26.00

Traditional Approach 7.18 1.00 7.18

Rule-driven Approach 1.08 3.40 3.67
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