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Abstract This paper addresses the stability problem associated with a class of switched positive nonlin-

ear systems in which each vector field is homogeneous, cooperative, and irreducible. Instead of using the

Lyapunov function approach, we fully establish the invariant ray analysis method to establish several sta-

bility conditions that depend on the states, rays, and/or times. We illustrate the efficiency of our proposed

approach using the example of a chemical reaction.
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1 Introduction

Positive systems appear in many application areas, such as ecology, biology, economics, chemical engi-

neering, and network communications, where the states of interest take only nonnegative values. Studies

on positive linear systems have reported fruitful results [1].

However, only a few results are devoted to positive nonlinear systems. In [2], researchers found a

relationship between the sign and stability of a class of quasi-monotone positive nonlinear systems by using

the comparison principle. In [3], a sufficient condition was established to guarantee the non-vanishing

basin of attraction stability with respect to the positive orthant, which is meaningful when positive

systems undergo bifurcations. The classical Lyapunov method was extended to nonnegative nonlinear

systems in [4] wherein a Lyapunov-based unified framework was developed to analyze the stability and

dissipativity. In [5], the researchers analyzed a class of monotone systems defined on the positive orthant

by using the max-separable/sum-separable Lyapunov functions and the comparison principle.

The classical Perron-Frobenius theorem plays a key role in the analysis and design of positive linear

systems [1]; this theorem was subsequently extended to nonlinear systems [6, 7]. In [8, 9], a class of

nonlinear systems that satisfied homogeneous, cooperative, and irreducible properties were considered

by using an extension of the Perron-Frobenius theorem; the asymptotical behavior of the system was

also analyzed by using an “invariant ray”, which resulted from homogeneity. These results were further

enhanced in [10].

However, switched systems arise naturally in many engineering applications because of the existence of

various jumping parameters [11]. Stability and stabilization problems of switched nonlinear systems have

been investigated for many years [12–20]. Switched positive systems have also attracted attention lately;
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they have important applications, such as investigating epidemic spread over time-varying networks [21]

and the mitigation of HIV mutations [22, 23]. Certain studies have made in-depth investigations of

stability analysis and control design of switched positive linear systems [21–32], in which the co-positive

Lyapunov function method is particularly emphasized [24, 26, 27, 30]. Indeed the nonnegativity of the

states facilitates the construction of such types of Lyapunov functions. An interesting result reported

in [18] shows that the stability problem of a switched nonlinear system can be transformed into the

stability problem of a switched positive linear system by using a trajectory-based comparison approach.

To the best of our knowledge, Refs. [33, 34] are the only studies that have reported on the stability

problem of switched nonlinear systems. In [33], the researchers considered impulsive nonnegative systems

whose stability condition was derived in terms of the Lyapunov function method. However, it is well

known that the Lyapunov function is not easy to construct for nonlinear systems. In [34], the researchers

extended the results in [10] and considered a class of switched positive nonlinear systems (SPNSs) with

homogeneous and cooperative vector fields under average dwell-time switching.

In this paper, we consider a class of SPNSs with each mode satisfying homogeneous, cooperative, and

irreducible properties (these properties will be formally defined in Section 2). Inspired by [9], we analyze

stability by adopting an approach that is different from the Lyapunov method. Our main idea is to map

the true state onto the invariant ray of each mode and generate the virtual state on the ray; then, we

analyze the dynamic behaviors of the virtual state. The behavior of the true state can thus be obtained

by using the monotonicity of the system solutions. Several stability conditions have been established

that depend on the states, rays, and/or times. The invariant ray of each mode can be constructed more

easily than the Lyapunov function as the key tool for stability analysis by using the fixed point iteration

methods. The obtained results provide a new clue for the stability analysis of SPNSs.

Section 2 provides some preliminaries and the problem formulation. Sections 3 analyzes the stability.

An illustrative example is given in Section 4; this is followed by the conclusion in Section 5.

2 Preliminaries

Notations. Let R (respectively, R+, R+
0 ) be the set of (respectively, nonnegative, positive) real numbers

and R
n (respectively, Rn

+, int(R
n
+)) the set of n-tuples with all components belonging to R (respectively,

R
+, R+

0 ); bd(R
n
+) , R

n
+\int(R

n
+). For a vector a ∈ R

n, ai, i ∈ N , {1, 2, . . . , n} denotes its ith element.

For any x, y ∈ R
n
+, x 6 y means xi 6 yi, ∀i ∈ N ; x < y means x 6 y and x 6= y; x ≪ y means xi < yi,

∀i ∈ N .

Next, we introduce some concepts that form the basis of the paper.

Definition 1 ([35]). Let ε > 0. For any set of positive scalars ri > 0, i = 1, 2, . . . , n, we define the

dilation operator δrε as δrε(x1, x2, . . . , xn) , (εr1x1 εr2x2 · · · εrnxn)T. The scalars ri are called the

weights of the dilation. A vector field g : Rn → R
n is said to be homogeneous of degree p w.r.t. δrε if

gi(δ
r
ε(x1, x2, . . . , xn)) = εri+pgi(x1, x2, . . . , xn), ∀i ∈ N .

Definition 2 ([36]). A matrix is said to be Metzler if and only if its off-diagonal entries are nonnegative.

A vector field g(x), x ∈ R
n, is cooperative in W ⊂ R

n if the Jacobian matrix ∂g
∂x

is Metzler, ∀x ∈ W .

Definition 3 ([1]). A matrix A is reducible if and only if there exists a permutation matrix P such that

PAPT =

(

B 0

C D

)

, (1)

where B and D are square matrices. When A is not reducible, it is said to be irreducible.

Consider the switched nonlinear system

ẋ(t) = fσ(t)(x(t)), (2)

where x ∈ R
n is the state that is continuous everywhere. We define M , {1, 2, . . . ,m}, where m is the

number of modes. The switching function is denoted by σ(t) : [0,∞) → M; it is a piecewise constant
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Figure 1 Invariant ray and the mapping ψi.

function continuous from the right. In addition, ∀i ∈ M, fi is continuous, and fi(0) = 0. Moreover, fi
satisfies the following assumption.

Assumption 1. Let us assume that ∀i ∈ M, fi satisfies the following three conditions:

(1) It is homogeneous of degree p ∈ R
+ with respect to δrε ;

(2) It is cooperative in R
n
+\{0};

(3) ∂fi
∂x

is irreducible for x ∈ int(Rn
+). For x ∈ bd(Rn

+)\{0}, either
∂fi
∂x

is irreducible or fij > 0 for j ∈ N

such that xj = 0. Here, fij denotes the jth element of fi.

Suppose that there exist χi ∈ R
n
+\{0}, ∀i ∈ M, which satisfies

fi(χi) = γχi
diag(r)χi, (3)

where γχi
∈ R, and diag(r) is a diagonal matrix where the ith diagonal entry is ri. We define Rχi

,

{δrε(χi) |ε∈R
+
0 }, ∀i ∈ M as a ray through χi. Such a ray depends on the value of ri and may be a curved

line or a straight line, as shown in Figure 1, where a system has two states and r1 > r2. Rχi
is said to

be invariant if fi(x) is tangent to Rχi
at each point of Rχi

. This means that the forward solution of the

mode i starting from the arbitrary point Rχi
stays on the ray for all future times [9]. It can be seen that

the invariant ray generalizes the concept of an eigenvector of linear systems for application in nonlinear

homogeneous systems.

Lemma 1 ([9]). Consider the mode i, i ∈ M, of the switched system (2) ẋ = fi(x) with fi satisfying

Assumption 1 and the initial states belonging to R
n
+. Then, the following hold:

• R
n
+ is a forward invariant set; the flow of the system is strongly monotone in R

n
+. Therefore, for any

two flows x̄(t) and x̂(t) with x̄(0), x̂(0) ∈ R
n
+, if x̄(0) < x̂(0), then x̄(t) ≪ x̂(t), ∀t > 0.

• There exists at least one invariant ray Rχi
⊂ int(Rn

+) such that χi satisfies (3). Moreover, Rχi
is

unique in int(Rn
+) if (p = 0) or (p > 0, γχi

6 0). The origin is asymptotically stable (respectively, stable)

if and only if γχi
< 0 (respectively, γχi

6 0).

From Lemma 1, it follows that the existence and uniqueness of the solution as well as the invariant

rays of the switched system (2) can be guaranteed under Assumption 1. The Rχi
can be constructed by

using various techniques; a typical way is the fixed point iteration method [37]. Because Rχi
is invariant,

we have fi(δ
r
ε(χi)) = γχi

εpdiag(r)δrε (χi). We can always pick a region D ∈ R
n small enough such that

x ∈ D ⇒ ρ(∂fi
∂x

) < 1, where ρ(·) denotes the spectral radius. This can help us find a point x⋆ ∈ D ∩Rχi

using fixed point iteration. Further, we obtain Rχi
.

Let tι, ι = 0, 1, . . . be the ιth switching instant, and t0 = 0. It follows that the mode σ(tι) is activated

in [tι, tι+1). Also, let tik, i ∈ M, k = 1, 2, . . . be the kth time when the mode i is switched on.

Assumption 2. For ι = 0, 1, . . ., infι tι+1 − tι > τ where τ > 0.

Assumption 2 imposes a minimal interval between the two switchings; this avoids the Zeno phe-

nomenon.

Definition 4 ([11]). The origin of the switched system (2) is stable under σ if for any ǫ > 0, there

exists a δ > 0 such that |x(t)| 6 ǫ, t > 0 whenever |x(0)| 6 δ. The origin of the switched system (2) is

asymptotically stable if it is stable, and limt→∞ |x(t)| = 0.
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In this study, we solve the problem of establishing switching conditions for the switched systems (2) with

each mode satisfying Assumption 1 and γχi
6 0, ∀i ∈ M such that the origin is stable or asymptotically

stable. We will show that several general stability criteria are provided without restricting to any specific

switching law. Under some conditions, the arbitrary switching law is also allowed.

3 Stability analysis

3.1 General condition

Stability analysis is mainly based on the invariant ray in each mode. We shall first establish a relation

between the true state and the invariant rays. For any given point x ∈ R
n
+, we define the set

Sx,i , {y ∈ Rχi
| x 6 y} , ∀i ∈ M.

The set Sx,i contains all points in the ray Rχi
, which are not less than x. Also, we define the mapping

ψi : R
n
+ → R

n
+ such that

ψi(x) , minSx,i, (4)

where “min” means that if a = minSx,i, then a < b, ∀b ∈ Sx,i\a.

It can be seen that ψi(x) maps x onto a point of the ray, which is minimal among all the points not

less than x in the ray, as shown in Figure 1. Note that ψi(x) always exists and is unique. Moreover, ψi

is monotone in R
n
+ in the sense that ψi(x) 6 ψi(y) for x 6 y.

We define zi(t) : [tik, tik+1) → R
n, ∀i ∈ M, for k = 1, 2, . . ., as a virtual state of the mode i starting

from the point in Rχi
at each tik and running in each activating interval of the mode i. The result is

given in the following theorem.

Theorem 1. Consider the switched system (2) with each mode satisfying Assumptions 1 and 2, and

γχi
6 0, ∀i ∈ M; the initial states x(0) ∈ R

n
+. It holds that x(t) ∈ R

n
+, ∀t > 0. At each switching instant

tik, let

zi(tik)=ψi(x(tik)), ∀i ∈ M, k = 1, 2, . . . (5)

The origin is stable if γχi
6 0 and

zi(ti(k+1)) 6 zi(tik). (6)

The origin is asymptotically stable if γχi
< 0 and

zi(ti(k+1)) < zi(tik). (7)

Proof. As fi satisfies Assumption 1, Rn
+ is a forward invariant set for each mode, that is, x(tι) ∈ R

n
+ ⇒

x(t) ∈ R
n
+, ∀t ∈ [tι, tι+1). Therefore, x(t) ∈ R

n
+, ∀t > 0 under any switching law.

As zi(tik) = ψi(x(tik)), we consider the following two cases.

Case 1: zi(tik) = x(tik). In this case, because Rχi
is an invariant ray, x(t) will always be on this ray.

Therefore, zi(t) = x(t), ∀t ∈ [tι, tι+1) with tι = tik.

Case 2: zi(tik) > x(tik). Due to the strong monotonicity property, zi(t) ≫ x(t), ∀t ∈ [tι, tι+1) with

tι = tik.

We can conclude that x(t) 6 zσ(tι)(t), ∀t ∈ [tι, tι+1). It also follows from Lemma 1 that the flow of each

mode in its activating period is strongly monotone in R
n
+. Therefore, the boundedness of zi(t), ∀i ∈ M,

implies the boundedness of x(t), and limt→∞ |zσ(t)(t)| = 0 leads to limt→∞ |x(t)| = 0. Next, we analyze

the behavior of zi.

Stability. Because zi(t) starts from the point in Rχi
, the solution zi(t) is always on Rχi

, that is, zis(t)

is always on εrsχis, for s ∈ N . It follows from (3) that

żis=γχi
rszis

=γχi
rsε

rs+pχis
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=
(

γχi
rsχis

− p

rs

)

︸ ︷︷ ︸

λis

(zis)
1+ p

rs . (8)

From (8), we can see that
żis

(zis)
1+ p

rs

= λis. (9)

By integrating the time derivative of zis along the trajectory of (9), we obtain the following equations:

−
p

rs

(

1

zis(t)
p

rs

−
1

zis(tik)
p

rs

)

= λis(t− tik), for p > 0, (10)

which is equivalent to
1

zis(t)
p
rs

−
1

zis(tik)
p
rs

= −
λisp

rs
(t− tik), for p > 0, (11)

and

zis(t) = eλis(t−tik)zis(tik), for p = 0, (12)

where t ∈ [tι, tι+1) with tι = tik.

We can see that all the elements of zi are independent of one another and do not increase in the period

in which the mode i is activated, if γχi
6 0.

For any given ǫ > 0, we can always pick δi > 0 such that if |x(0)| 6 δi, then |zi(ti1)| 6 ǫ. Therefore, we

can pick δ = mini∈M δi such that if |x(0)| 6 δ, then |zi(ti1)| 6 ǫ, ∀i ∈ M. Based on the condition (6) and

the decreasing property of zi in each activating period of the mode i, we have |zσ(tι)(t)| 6 ǫ ∀t ∈ [tι, tι+1).

This implies that |x(t)| 6 ǫ, ∀t > 0, and the stability of the switched system (2) is achieved.

Asymptotical stability. For γχi
< 0, λis < 0, ∀s ∈ N , it follows from (11) and (12) that zi(t) is

always decreasing in the period in which the mode i is activated. Note that due to the finiteness of M,

there exists an index i ∈ M that is associated with an infinite sequence of switching instants (ti1, ti2, . . .).

The condition (7) ensures that the sequence zi(ti1), zi(ti2), . . . is decreasing and positive and therefore

has a limit vector c ∈ int(Rn
+).

There also exists a family of positive definite continuous vector functions φi, i ∈ M such that Eq. (7)

can be rewritten as

zi(ti(k+1))− zi(tik) 6 −φi(zi(tik)). (13)

It follows that

0 = c− c= lim
k̃→∞

zi(tik̃)− lim
k→∞

zi(tik)

= lim
k→∞

(
zi(ti(k+1))− zi(tik)

)

6 lim
k→∞

(−φi(zi(tik))) 6 0. (14)

Therefore, limk→∞ |zi(tik)| = 0, which leads to limk→∞ |x(tik)| = 0. It follows from the Lyapunov

stability property that limt→∞ |x(t)| = 0, and the asymptotical stability of the switched system (2) at

the origin follows. This completes the proof.

Remark 1. Rather than analyzing multiple Lyapunov functions, which are often difficult to construct

for switched nonlinear systems, Theorem 1 fully relies on the invariant ray and the monotonicity of

the solution of each mode. Conditions (6) and (7) mean that the switching should be slow enough to

compensate for the differences between the various zi values, such that the state of any mode when it is

just switched on does not increase or even decrease as compared with the state when it was switched on

the last time.

Remark 2. In fact, ψi(x) can be regarded as the vector Lyapunov function of the mode i [38]; the

existence of the invariant rays provides us a comparison system of zi(t) such that the behavior of ψi(x)

can be conveniently analyzed. The max-separable/sum-separable Lyapunov functions in [5] can also be

constructed in this case, that is, by defining Vi(x) , maxi∈N ψis(xs) or Vi(x) ,
∑n

s=1 ψis(xs), we can

conclude that limt→∞ Vσ(t)(t) = 0.
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Remark 3. The conditions (5)–(7) are analogous to the conditions for the classical multiple Lyapunov

functions, which provide a general stability criterion without any restrictions for any specific switching

laws, such as time-dependent switching or state-dependent switching. We find from (5) that at each

switching time, the value of zi(tik) depends on the value of x(tik); therefore, the conditions (6) and (7)

can be checked by using real-time states information. If all modes share a common invariant ray, these

conditions can be guaranteed under arbitrary switching. For an extreme case, such as when γχi
= 0 for

i ∈ M, zi(t) is fixed, that is, zi(t) = zi(tik), ∀t ∈ [tik, tik+1).

Theorem 1 is also available for the linear case. Consider a switched linear system ẋ = Aix, ∀i ∈ M,

whereAi is Metzler, Hurwitz, and irreducible. Then, each mode is obviously homogeneous of degree 0 with

r = (1, . . . , 1). We define ϑ(Ai) , max{R(λ) : λ ∈ σ(Ai)}, where σ(Ai) , {z ∈ C : det(zI − Ai) = 0}

is the set of all eigenvalues of Ai. As Ai is Hurwitz, ϑ(Ai) < 0. According to the Perron-Frobenius

theorem [26], there exists a strictly positive eigenvector χi such that Aiχi = ϑ(Ai)χi. We can see that

Assumption 1 in Section 2 is satisfied for all modes of such a switched linear system. The following result

can be obtained as a special case of Theorem 1.

Corollary 1. Consider the switched system (2) satisfying Assumption 2, where fi(x) = Aix, ∀i ∈ M,

with Ai being Metzler, Hurwitz, and irreducible; the initial states x(0) ∈ R
n
+. It holds that x(t) ∈ R

n
+,

∀t > 0. At each switching instant tik, we choose zi(tik) as in (5). The origin is asymptotically stable if

Eq. (7) holds for every switching instant.

Remark 4. For the stability analysis of switched positive linear systems, most existing methods in

literature rely on the co-positive Lyapunov function [24, 26, 30], which can be constructed because of

the nonnegativity of states. However, Corollary 1 provides an alternative clue that follows the Perron-

Frobenius theorem and is based on the positive eigenvector of Ai. These eigenvectors can also be found

conveniently in linear systems.

3.2 Conditions based on initial state, ray, and time

A disadvantage of Theorem 1 is that the states need to be checked all the time. With the help of the

dynamic behavior of the rays (11) and (12), we shall give several different stability conditions that depend

on the initial state, the rays, and the time, as shown below.

Corollary 2. Consider the switched system (2) with each mode satisfying Assumptions 1 and 2, γχi
< 0,

∀i ∈ M, and the initial state x(0) ∈ R
n
+. At each tι, let

zσ(tι)(tι)=ψσ(tι)(zσ(tι−1)(tι)), (15)

zσ(0)(0)=ψσ(0)(x(0)). (16)

Suppose that the mode σ(tι) is switched on for the kth time at t = tι, that is, tι = tσ(tι)k. The origin is

asymptotically stable if

tι − tι−1 > max
s∈N




rs

λσ(tι−1)sp




1

ψ−1
σ(tι)

(
zσ(tι)s(tσ(tι)(k−1))

) p

rs

−
1

zσ(tι−1)s(tι−1)
p

rs



 , τ



 , for p > 0, (17)

tι − tι−1 > max
s∈N

(

1

λσ(tι−1)s
ln

(
ψ−1
σ(tι)

(
zσ(tι)s(tσ(tι)(k−1))

)

zσ(tι−1)s(tι−1)

)

, τ

)

, for p = 0. (18)

Proof. Because zσ(0)(0) = ψσ(0)(x(0)), we have

x(t) 6 zσ(0)(t), ∀t ∈ [0, t1).

This together with zσ(t1)(t1) = ψσ(t1)(zσ(0)(t1)) leads to x(t1) 6 zσ(t1)(t1). Therefore,

x(t) 6 zσ(t1)(t), ∀t ∈ [t1, t2).

By induction, we have

x(t) 6 zσ(tι)(t), ∀t ∈ [tι, tι+1).
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Figure 2 An illustrative switching law of Corollary 2.

Therefore, the boundedness and convergence of zi(t) also implies the boundedness and convergence of

x(t).

Letting t = tl, tik = tl−1 in (11) and (12), and substituting (17) into (11) for p > 0 or substituting

(18) into (12) for p = 0, we obtain

ψσ(tι)

(
zσ(tι−1)(tι)

)
< zσ(tι)(tσ(tι)(k−1)). (19)

Because zσ(tι)(tσ(tι)k) = zσ(tι)(tι) = ψσ(tι)(zσ(tι−1)(tι)), we have

zσ(tι)(tσ(tι)k) < zσ(tι)(tσ(tι)(k−1)).

This is the same as condition (7) in Theorem 1. Asymptotical stability can be achieved by following

Theorem 1.

Algorithm 1 shows how to check the stability by using Corollary 2.

Algorithm 1 Stability checking algorithm S1

Step 1: Given a switching law σ(t) and the initial state x(0), let zσ(0)(0) = ψσ(0)(x(0)), and let l take the value 1. We

define m vectors Θi ∈ R
n, i ∈ M, and let Θi = 0 ∀i ∈ M.

Step 2: Calculate zσ(tι−1)
(tι) according to (11) or (12).

Step 3: Calculate zσ(tι)(tι) according to (15). If Θσ(tι) = 0, go to Step 5.

Step 4: If zσ(tι)(tι) < Θσ(tι), go to Step 5; else stop the algorithm.

Step 5: Let Θσ(tι) = zσ(tι)(tι), and let l = l+ 1. Go to Step 2.

Remark 5. On comparing (15) and (16) with (5), we find that unlike Theorem 1, in Corollary 2,

zσ(tι−1)(tι) (not x(tι)) is mapped onto the ray Rχσ(tι)
at the time tι. Figure 2 illustrates S1 when a

switched system has two state variables and two modes; the switching sequence is 1 → 2 → 1 → · · · . Let

z1(0) = ψ1(x(0)), z2(t1) = ψ2(z1(t1)), z1(t2) = ψ1(z2(t2)), and so on, as proposed by (15) and (16). The

value of zσ(tι−1)(t) can be calculated a priori conveniently based on the dynamics of the ray Rχσ(tι−1)
;

this allows us not to check x(t) all the time. We can find from (8) that for the two cases of p > 0 and

p = 0, the solution difference zi(t1) − zi(t2) at any two instants t1 and t2 with t1 > t2 satisfies (11) and

(12), respectively. This further leads to the conditions (17) and (18).

Remark 6. Given a switching law with the prescribed switching sequence and switching time, the

algorithm S1 provides an explicit procedure to check the stability a priori and off-line by using the

behaviors of the invariant rays. For t ∈ [tι−1, tι), zσ(tι−1)(t) can be calculated based on Rχσ(tι−1)
(Steps 2

and 3); then we can check whether tι satisfies the conditions (17) and (18) (Step 4). To check any

time instant before which the mode i is activated for k times, we require only the information of zi(tik).
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Therefore, the values of at-the-most m vectors need to be preserved; Θi is just used to store zi(tik)

(Step 5).

Corollary 3. Consider the switched system (2) with each mode satisfying Assumptions 1 and 2; γχi
< 0,

∀i ∈ M, and the initial states x(0) ∈ R
n
+. At each tι, let

zσ(tι)(tι)=ψσ(tι)(zσ(tι−1)(tι)), (20)

zσ(0)(0)=ψσ(0)(x(0)). (21)

The origin is asymptotically stable if

tι − tι−1 > max
s∈N




rs

λσ(tι−1)sp




1

ψ−1
σ(tι)

(
zσ(tι−1)s(tι−1)

) p

rs

−
1

zσ(tι−1)s(tι−1)
p

rs



 , τ



 , for p > 0, (22)

tι − tι−1 > max
s∈N

(

1

λσ(tι−1)s
ln

(
ψ−1
σ(tι)

(
zσ(tι−1)s(tι−1)

)

zσ(tι−1)s(tι−1)

)

, τ

)

, for p = 0. (23)

Proof. Substituting (22) into (11) for p > 0 or substituting (23) into (12) for p = 0 yields

ψσ(tι)

(
zσ(tι−1)(tι)

)
< zσ(tι−1)(tι−1). (24)

Further, we have

zσ(tι)(tι) < zσ(tι−1)(tι−1). (25)

Note that condition (25) is included by (7) as a special case; stability is achieved by using Theorem 1.

Asymptotical stability also follows from Theorem 1. This completes the proof.

Algorithm 2 shows how to check the stability by using Corollary 3.

Algorithm 2 Stability checking algorithm S2

Step 1: Given a switching law σ(t) and the initial state x(0), let zσ(0)(0) = ψσ(0)(x(0)) and let l take the value 1. Define a

vector Θ ∈ R
n, and let Θ = zσ(0)(0).

Step 2: Calculate zσ(tι−1)
(tι) according to (11) or (12).

Step 3: Calculate zσ(tι)(tι) according to (15). If Θσ(tι) = 0, go to Step 5.

Step 4: Let Θ = zσ(tι)(tι), and let l = l+ 1. Go to Step 2.

Remark 7. On comparing Corollary 2 with Corollary 3 (and comparing S1 and S2), we find that

Corollary 2 compensates for the difference between zi and other modes in the whole period [ti(k−1), tik)

such that zi(tik) < zi(ti(k−1)). However, Corollary 3 compensates for the difference among the zi values

∀i ∈ M in each interval [tι, tι+1); zσ(tι)(tι) decreases over each time instant tι, ι = 1, 2, . . ., as shown

in Figure 3. For t ∈ [tι−1, tι), because zσ(tι−1)(tι−1) is known, the value of zσ(tι−1)(t) can be computed.

Then, the value of tι can be checked by using conditions (22) and (23). One benefit of this method is

that for any t ∈ [tι, tι+1), only the information of zσ(tι)(tι) needs to be known. The value of only one

vector needs to be preserved (in Θ of S2).

Note that the algorithms S1 and S2 check the values of zσ(tι−1)(tι) and zσ(tι)(tι) at each tι; this

guarantees the convergence of the states for each switching instant. Therefore, we provide some insights

into the implementation issue of both algorithms (see Remark 8).

Remark 8. Because the Zeno phenomenon is excluded as indicated in Section 2, three kinds of switching

laws can be considered. Although in the practice, the first situation is often encountered, the algorithms

S1 and S2 are available in all these three situations.

(1) Finite switchings happen in finite time intervals. In this case, both algorithms stop after a fi-

nite number of steps. The asymptotical stability of the system can be guaranteed, and the states will

asymptotically converge to a small region around the origin in this finite time interval.

(2) Finite switchings happen in infinite time intervals. In this case, both algorithms also stop after a

finite number of steps. Let us suppose that there is no switching after t = t⋆. Each mode is individually



Yang H, et al. Sci China Inf Sci November 2019 Vol. 62 212206:9

)0(1z

)( 12 tz

)( 21 tz

)( 32 tz

)0(x

)( 11 tz

)( 22 tz

)( 31 tz

R 
1χ

R 
2χ

x2

x1
0

Figure 3 An illustrative switching law of Corollary 3.

asymptotically stable; therefore, the asymptotical stability of the system in the whole infinite time interval

can also be guaranteed.

(3) Infinite switchings happen in infinite time interval. In this case, both algorithms will never stop.

This can be avoided using a “periodic” switching law that often appears in practice. In each period

[kT, (k + 1)T ) when k = 0, 1, . . . with the period time length T > 0, the switching sequence and the

switching intervals are the same as those in other periods. The two algorithms only need to check the

period [0, T ), and need to stop at t = T . Because zi(t), ∀i ∈ M monotonously decreases along the

invariant ray Rχi
, if the asymptotical stability is verified in [0, T ), it is also guaranteed in the whole

infinite time interval.

3.3 Conditions based on initial state and time

Similar to the classical multiple Lyapunov function methods in switched systems [11, 14], Theorem 1

needs to check the states all the time. Corollaries 2 and 3 also require some information about zi on the

rays. One will expect to check the stability a priori without requiring any information about zσ(t)(t) and

x(t).

Definition 5 ([11]). If there exists a positive number τa such that

Nσ(t̄1, t̄2) 6 N0 +
t̄2 − t̄1

τa
, ∀t̄2 > t̄1 > 0, (26)

where N0 > 0 denotes the chattering bound, and Nσ(t̄1, t̄2) denotes the number of switchings of σ over

the interval [t̄1, t̄2). Then, the positive constant τa is called the average dwell time (a.d.t.) of σ over

[t̄1, t̄2).

Note that if the condition specified in (26) is satisfied ∀t̄2 > t̄1 > 0, then such an a.d.t. is available

globally over the time interval [0,∞). If t̄1 and t̄2 are specified, then τa is only available for [t̄1, t̄2).

Let zσ(tι)(tι) = ψσ(tι)(zσ(tι−1)(tι)). For the sake of clarity, let i = σ(tι), j = σ(tι−1). Then, we have

zis

zjs
=

(
χjl

χil

) rs
rl χis

χjs
︸ ︷︷ ︸

µijs

, ∀s ∈ N , (27)

where l ∈ N such that zil = zjl. Because χi and χj can be fixed a priori, the value of µijs can also be

fixed a priori. We define

µ , max
i,j∈M,i6=j

(

max
s∈N

µijs

)

. (28)
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If all modes share a common invariant ray, then µ = 1. Also, we define

λ , max
i∈M

(

max
s∈N

λis

)

, (29)

where λis is defined in (8).

Theorem 2. Consider the switched system (2) with each mode satisfying Assumptions 1 and 2; γχi
< 0,

∀i ∈ M, and the initial state x(0) ∈ R
n
+. At each tι, let zσ(tι)(tι) and zσ(0)(0) satisfy (20) and (21). The

origin is asymptotically stable if

• For p > 0, an a.d.t. τa is available for [kT, (k + 1)T ) where T > 0 and k = 0, 1, . . . such that

τa > max
s∈N








T ln
(

µ
p

rs

)

ln

(
1−λpT

rs
zσ(0)s(0)

p
rs

µ
pN0
rs

)








; (30)

• For p = 0, τa is available for [0,∞) such that

τa > −
lnµ

λ
. (31)

Before proving Theorem 2, it is necessary to obtain the key idea behind it. Recall that the “dwell time”

method for switched systems often rely on a common constant upper bound of the ratios between any of

the two Lyapunov functions, that is, Vi 6 µVj , µ > 1, ∀i, j ∈ M [11]. Therefore, if the assumptions of

Theorem 1 are relaxed, we can find a common constant upper bound for the ratios between zi and zj . If

this can be done, then based on the dynamic behavior of zi, we can design the switching law based on

the dwell time.

Considering the point x ∈ R
n
+, we shall try to find the ratio between zi(x) and zj(x). For the mode i,

let zis = ψis(x), ∀s ∈ N . From the definition of ψi in (4), we have zis > xs, and there exists at least a

number l ∈ N such that zil = xl. Also, note that zil = εrlχil; therefore,

zis = εrsχis =

(
zil

χil

) rs
rl

χis =

(
xl

χil

) rs
rl

χis. (32)

Similarly, for the mode j,

zjs =

(
xv

χjv

) rs
rv

χjs, (33)

where v ∈ N such that zjv = xv. Consequently,

zis

zjs
=

(
xl

χil

) rs
rl

(
χjv

xv

) rs
rv χis

χjs

. (34)

We can see from (34) that the ratio zis
zjs

largely depends on the value of x, and this ratio changes as x

changes. This makes the upper bound of zis
zjs

difficult to determine unless l = v (in this case, such an

upper bound depends on the values of χi and χj). This upper bound of the ratios is expected to be

satisfied between any two modes that are activated successively in the given or even arbitrary switching

sequences. Unfortunately, it is not possible to guarantee that the trajectory of x(t) can always satisfy

the condition l = v.

However, inspired by Corollary 3, we let zσ(tι)(tι) satisfy (20), and we try to find the ratio between

zσ(tι) and zσ(tι−1). This leads to the setting of Theorem 2.

Proof of Theorem 2. For the case p > 0, the main idea of achieving asymptotical stability is to

choose a period time length T such that zσ(t)(t) is guaranteed to decrease over each time instant kT ,

k = 0, 1, . . ., which is the starting time of each period in which the local a.d.t. is available, that is

zσ((k+1)T )((k + 1)T ) < zσ(kT )(kT ).
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Consider the interval [0, T ). Let us suppose that there are ς switching times in [0, T ). It follows from

(11) that ∀s ∈ N ,

1

zσ(tς)s(T )
p
rs

−
1

zσ(tς )s(ts)
p
rs

>
−λp

rs
(T − ts),

...
1

zσ(0)s(t
−
1 )

p

rs

−
1

zσ(0)s(0)
p

rs

>
−λpt1
rs

.

Further, we have

1

zσ(tς)s(T
−)

p

rs

>
1

µ
pς

rs zσ(0)s(0)
p

rs

−
λp

rs
(T − ts)−

ς−1∑

j=0

1

µ
p(ς−j)

rs

λp

rs
(tj+1 − tj)

>
1

µ
pς

rs zσ(0)s(0)
p

rs

+
λ0pT

µ
pς

rs rs
. (35)

Therefore,

1

zσ(tς)s(T )
p

rs

−
1

zσ(0)s(0)
p

rs

>

(

1

µ
p

rs
(N0+

T
τa
)
− 1

)

1

zσ(0)s(0)
p

rs

+
λ0pT

µ
p

rs
(N0+

T
τa
)rs

︸ ︷︷ ︸

Φs

. (36)

Condition (30) ensures that Φs > 0, ∀s ∈ N .

By induction, we can conclude that for k = 1, 2, . . .,

1

zσ((k+1)T )s((k + 1)T )
p

rs

−
1

zσ(0)s(0)
p

rs

> (k + 1)Φs. (37)

Therefore, limk→∞ zσ(kT )(kT ) = 0. Since zσ(t)(t) is always bounded in each interval [kT, (k + 1)T ),

k = 0, 1, . . ., we can conclude that limt→∞ zσ(t)(t) = 0. This also implies that limt→∞ x(t) = 0. The

asymptotical stability is guaranteed at the origin.

For the case p = 0, the result follows from the well-known a.d.t. condition [11]. This completes the

proof.

Remark 9. The initial condition x(0) needs to be known for the case p > 0, but this condition is

not required for p = 0. For the case p > 0 and µ = 1, the asymptotical stability can be guaranteed

under arbitrary switching. However, in the presence of multiple invariant rays, we can see from (30)

that T ↑⇒ τa ↑. The required a.d.t increases and the switching becomes slow when the time interval

in which the a.d.t. is available becomes long. Therefore, it is difficult to apply the a.d.t. to the overall

time interval [0,∞) in this case. This is essentially a range a.d.t. values. Different selections of T lead to

different τa values while the asymptotical stability is always maintained. Theorem 2 can also be extended

to other variations of a.d.t. such as the persistent dwell time [13], and mode-dependent dwell time [15].

Remark 10. The result of Theorem 2 is consistent with that of Corollaries 2 and 3, that is, if the

switching is slow enough, then the systems is asymptotically stable at the origin. However, Corollaries 2

and 3 impose restrictions on each switching interval. Theorem 2 relies on the a.d.t. and an upper bound

of the ratio between zσ(tι) and zσ(tι−1). Because Corollaries 2 and 3 require some information of zσ(t)(t),

their computation burdens are heavier than those of Theorem 2.

Remark 11. The result obtained using Theorem 2 is different from the result obtained from [34], where

we consider a class of SPNSs with each mode being cooperative and homogeneous of degree 0 w.r.t. δ1ε .

A key assumption in [34] is that for every i ∈ M, there exists a vector vi ≫ 0 such that fi(vi) ≪ 0; the

a.d.t. scheme is developed based on such a set of vectors. The method used for choosing vi still needs

further investigation. Moreover, the case of a higher-order homogeneous degree is not considered in [34].
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3.4 Discussion on robustness

The methods and procedures proposed in the previous subsections can be potentially extended to the

systems with uncertainties in both the mode dynamics and switching scheme, as explained below:

• For mode uncertainties. In this case, the dynamics of the mode i can be written as ẋ = fi(x)+gi(x),

where gi denotes the uncertainties in the mode i. In [8], the researchers have shown that if gi(x) ∈ R
n
+,

then for the mode i with fi satisfying Assumption 1 and the initial states belonging to R
n
+, R

n
+ is still

a forward invariant set. However, the invariant ray may not exist for the uncertain mode even if fi
satisfies Assumption 1, and γχi

< 0. The invariant ray-based approach is still available if an additional

assumption is imposed on gi, which is based on the homogeneous system theory [39]. If gi is the higher-

order homogeneous term as compared with fi, that is, gi is homogeneous of degree (p+k) ∈ R
+ w.r.t. δrε ,

where k > 0, then the asymptotical stability of the system ẋ = fi(x) implies the asymptotical stability

of mode i. This still allows us to analyze ẋ = fi(x) by using the proposed methods without considering

the uncertainties.

• For switching uncertainties. In this case, the switching condition is perturbed, which makes the

actual switching law deviate from the nominal law. We consider two typical switching laws: the time-

dependent switching law and the state-dependent switching law. For the time-dependent switching law,

the uncertainties bring differences between each actual switching time and the nominal law, as described

in [17]. If the upper bound of these difference is known, then we can modify the conditions of Corollaries 2

and 3 and Theorem 2 by taking into account such a bound and by lengthening or shortening the nominal

activating periods of the modes. For the state-dependent switching, the nominal set of states that trigger

each switching changes into a new set of states. If we know the maximum ranges of these changes in

the state space, we can modify the conditions of Theorem 1 by taking into account these ranges and

reestablishing the relationship between zi(ti(k+1)) and zi(tik).

4 An example of chemical reactions

4.1 Model setting

In this subsection, we consider a class of dissipative cyclic chemical reactions as in [8]

αX1 → αX2 → · · · → αXn → αX1,

where Xi, i ∈ N , denotes the ith chemical component, and α is a natural number that denotes the

stoichiometric coefficient. This means that in the cyclic reactions, the reactant of the ith component

becomes the product of the (i + 1)th component.

We define x , (x1 x2 · · · xn)T, where xi denotes the concentration of Xi. Let us suppose that all

reactions are at a given constant temperature. According to the mass action principle [40], the dynamical

behavior of x obeys the following differential equation:

ẋ = Cr(x) − dσ(t)r(x), (38)

where r(x) , (xα1 xα2 · · · xαn)
T with α being the power of the states, and

C ,










−1 0 · · · 1

1 −1 · · · 0
...

. . .
. . .

...

0 · · · 1 −1










, dσ ,










aσ1 0 · · · bσ1

bσ2 aσ2 · · · 0
...

. . .
. . .

...

0 · · · bσn aσn










, (39)

where the reaction rate constants of all reactions are kept equal to 1 to simplify the notation and the

calculations. The switching dissipation term dσ(t) models the extraction of some chemicals from the

reactor, thus ∀i ∈ N , ai > 0, 0 < bi < 1. The switching function σ : [0,∞) → M implies that the

dissipative behavior may switch among the m different modes. It is clear that the system (38) is a

switched system with all the modes satisfying Assumption 1 in Section 2.
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Figure 4 The state trajectory.

4.2 Simulation

In the simulation, let n = 2, m = 2, and α = 2. Then, the chemical reaction process can be described as

2X1 ⇆ 2X2,

and
(

ẋ1

ẋ2

)

=

(

−x21 + x22 − aσ1x
2
1 − bσ1x

2
2

−x22 + x21 − aσ2x
2
2 − bσ2x

2
1

)

, (40)

where the switching function σ : [0,∞) → {1, 2}. It is clear that the homogeneous degree p = 1.

For the mode 1, let us suppose a11 = 9
4 , b11 = 0, a12 = 1

9 , and b12 = 0. For the mode 2, we suppose

a21 = 1, b21 = 0, and a22 = 1, b22 = 0. We obtain two points χ1 = (1 3
2 )

T and χ2 = (1 1)T, which lead

to two invariant rays Rχ1 , Rχ2 for two modes, and γχ1 = γχ2 = −1. Suppose that the initial states are

x(0) = (1.2 1.4)T and σ(0) = 1, and the switching sequence is periodical, that is, 1 → 2 → 1 → · · · . We

also suppose that the prescribed switching instants are t1 = 0.5 s, t2 = 1.5 s, t3 = 3 s, t4 = 4.5 s, and

t5 = 6 s (in the simulation, we consider only a finite number of switchings in the finite time interval, which

is enough to illustrate the theoretical results). We shall check the stability under the given switching law.

First, we illustrate Corollary 2 and S1. From the definition of ψi and (16), it follows that z1(0) =

(1.2 1.8)T; let Θ1 = z1(0). According to (11), one has z1(t1) = (0.75 1.125)T; this together with (15)

yields z2(t1) = (1.125 1.125)T; let Θ2 = z2(t1). Similarly, we have z2(t2) = (0.5294 0.5294)T and

z1(t2) = (0.5294 0.7941)T; we also have z1(t2) < Θ1, which means that t2 − t1 satisfies condition (17).

Also, let Θ1 = z1(t2). At the instant t3, we have z1(t3) = (0.2951 0.4426)T and z2(t3) = (0.4426 0.4426)T;

therefore, z2(t3) < Θ2, and condition (17) holds. Let Θ2 = z2(t3). By repeating the above procedures, we

obtain that condition (17) is also satisfied for t4 and t5. Note that the above procedures can be followed

off-line without requiring any real-time state information.

Second, we illustrate Corollary 3 and S2. Based on the calculations for Corollary 2, we have zσ(ti)(ti) <

zσ(ti−1)(ti−1) for i = 1, 2, . . . , 5. This makes condition (22) hold at each switching instant.

Finally, we illustrate Theorem 2. We have λ = − 2
3 , µ = 3

2 . Let us suppose that N0 = 0.01, T = 3.

Condition (30) requires that τa > 0.9973 s, which is satisfied by the prescribed switching instants.

The state trajectory in the interval [0, 7) s is shown in Figure 4, from which we can see that the states

are always positive, and asymptotical stability is achieved.

One advantage of the invariant ray-based method over the classical multiple Lyapunov functions tech-

nique is that the states x do not have to be checked. Moreover, the dynamics of zi is known, and its

solution can be calculated conveniently a priori; therefore, the values of zi also do not have to be checked

in real time. This significantly facilitates the stability checking process.
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5 Conclusion

This paper establishes several stability conditions for a class of SPNSs by using the tool of invariant

rays. These conditions can be used for stability checking as well as for stabilization design. By using the

methods in [16], Theorem 2 could be potentially extended to the case when there exist some unstable

modes, that is, γχi
> 0 for i ∈ M. The key idea is to achieve stability by a tradeoff among the stable

and unstable modes. For an unstable mode, there may exist multiple invariant rays [9]; we could use any

of these rays for stability analysis.
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