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Abstract Emerging information technologies’ integration into various fields has enhanced the development

of these fields. Large volumes of data have been accumulated in this process. The accumulated data offer

opportunities and challenges for people facing practical problems. On the one hand, it is essential to depend

on a group’s capabilities rather than an individual’s capabilities to handle practical problems because the

individual may lack sufficient expertise and experience to use data. In this situation, the practical problems

can be considered as group decision making (GDM) problems. On the other hand, the accumulated data

can help generate quality solutions to GDM problems. To obtain such solutions under the assumption that

the accumulated data regarding a specific decision problem are available, this paper proposes a data-driven

GDM method. In the method, decision makers’ weights are learned from historical overall assessments and

the corresponding gold standards, while criterion weights are learned from historical overall assessments and

the corresponding decision matrices. The learned expert weights and criterion weights are used to produce

the aggregated assessments, from which alternatives are compared or the overall conclusion is made. In a

tertiary hospital located in Hefei, Anhui Province, China, the proposed method is applied to aid radiologists

in diagnosing thyroid nodules.
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1 Introduction

In an era of the Internet and big data, almost every event is accompanied by a large amount of information

and knowledge. In this situation, when a problem associated with an event is analyzed, it is usually found

that generating a rational or acceptable result from a single decision maker is difficult owing to lack of

sufficient expertise and experience. Thus, it is more feasible and reasonable to depend on group expertise

and experience than to depend on individual expertise and experience to achieve such a goal. In real

life, different group decision making (GDM) methods have been developed to handle various problems.

For example, to perform supplier evaluation and categorization, Galo et al. [1] proposed a GDM method

based on ELECTRE TRI; to evaluate and select green suppliers, Qin et al. [2] developed a multi-criteria

group decision making (MCGDM) method in the context of interval type-2 fuzzy sets; to select hotel

location, Cheng [3] proposed an MCGDM method based on interval-valued intuitionistic fuzzy sets; to
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construct the house of quality in the process of quality function deployment, Chen et al. [4] designed a

fuzzy GDM method; to select the best one from alternative marine fuels, Ren and Liang [5] proposed a

fuzzy MCGDM method by combining logarithmic least squares with TOPSIS; to select a way to control

the safety of ships not under control, Wu et al. [6] developed a hybrid GDM method based on TOPSIS;

to evaluate and compare product prototypes in a socio-economic theme-based new product development,

Lu et al. [7] proposed a fuzzy MCGDM method; and to help a car company to select a suitable supplier

to purchase automobile parts, Li et al. [8] proposed a GDM method with heterogeneous information.

These studies show that different GDM methods have been developed to satisfy various application

requirements. In general, one method cannot satisfy all possible requirements. In past studies, re-

searchers focused on GDM’s different perspectives, such as the aggregation of individual preference infor-

mation [9–11], the convergence of group consensus [12–15], the consistency of preference relations [16–21],

large scale GDM [22–24], GDM with various types of preference information [25–27], the construction of

value functions of preference information [28–30], the determination of criterion weights [31–34], and the

determination of decision makers’ weights [35–37]. The aggregation of individual preference information

is a necessary step in GDM that is usually associated with the expression of preference information. The

convergence of group consensus, which can be accelerated by a feedback mechanism [16,38] is a prerequi-

site for generating a group-satisfactory solution in theory. In the convergence process, group analysis and

discussion (GAD) helps to reach the expected group consensus, however, decision makers are encouraged

to update their preference information independently [12]. When GAD and the updating of decision

makers’ preference information are difficult to conduct because of the limitations of time, space, and

other factors, reaching the predefined group consensus becomes nearly impossible. The consistency is an

inherent issue when objects (alternatives) are compared in pairs by decision makers. Large scale GDM

aims to handle the situation where more than 20 decision makers are involved. It is not intended for

the GDM process in which only several (e.g., 3–5) decision makers are involved [22]. Various types of

preference information facilitate decision makers to flexibly provide assessments on alternatives. Their

applicability depends on the characteristics of decision problems and decision-makers’ choices between

different formats of preference information. The purpose of constructing value functions of preference

information is to facilitate a direct comparison among the preference information of different alternatives.

It is particularly useful when the expression of preference information is so complex that such a direct

comparison is difficult for all cases. Regarding criterion weights and decision makers’ weights, due to the

fact that they are a prerequisite to generating a GDM solution, they must be determined in appropriate

ways in the GDM process. These analyses show that different from other requirements of GDM, criterion

weights and decision-makers’ weights are closely related to generating a GDM solution instead of only a

group-satisfactory solution, and are not related to the characteristics of decision problems.

Owing to the significance of criterion weights and decision-makers’ weights in GDM, their determination

is a crucial issue in GDM’s studies. In relevant studies, criterion weights and decision-makers’ weights

are determined by the subjective judgments of facilitator and/or decision makers, decision matrices, or a

specific goal of GDM such as group consensus (see Section 2 for the detailed analysis). Little attention has

been paid to determining criterion weights and decision-makers’ weights from the data collected in very

similar decision situations. This may be caused by the difficulty in data collection and the availability of

decisions in similar situations. In practice, there are problems in which decision makers make judgments in

the same decision framework. For example, radiologists in a hospital provide overall diagnoses of thyroid

nodules by considering the perspectives of margin, contour, echogenicity, calcification, and vascularity.

When historical data regarding such problems are accumulated and available, to determine the criterion

weights and decision-makers’ weights from historical data becomes a new and significant issue, and this

facilitates the generation of a solution that is satisfactory to decision makers.

For decision-makers’ limited capabilities to recognize all information and data related to decision

problems under consideration, decision makers usually select to evaluate alternatives in an uncertain

way. For example, the following ways are used to characterize decision-makers’ uncertain preference

information in different contexts: linguistic distributions [34], fuzzy preference relations [16], triangular

fuzzy numbers [13], belief distributions [12], interval-valued intuitionistic fuzzy sets [22], and interval type-
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2 fuzzy sets [23]. The selection of the expression of uncertain preference information is determined by

the requirements of decision problems. Therefore, there is no uniform expression of uncertain preference

information for all decision problems. In some contexts, as a simple and useful expression of uncertain

preference information, interval numbers are applied in GDM [39–42], such as the evaluation and selection

of suppliers, the evaluation of transnational corporations for a strategic alliance, and the diagnosis of a

thyroid nodule. This shows that GDM with interval numbers is meaningful and useful in practical

applications.

In this paper, a data-driven method is proposed to learn criterion weights and decision-makers’ weights

from historical data for MCGDM problems with interval numbers. The modeling of MCGDM prob-

lems by using interval numbers is presented first. With the assumption that historical decision data of

decision-makers can be collectable under the same decision framework, the learning of expert weights

from historical overall assessments of alternatives and the corresponding gold standards is discussed.

Learning criterion weights from historical decision matrices and overall assessments is demonstrated from

a theoretical perspective when historical decision matrices corresponding to historical overall assessments

are available. Based on the elicitation of expert weights and criterion weights from historical decision

data, the process of the proposed method is presented. In the process, the aggregated assessments of all

alternatives, which are derived from a decision matrix, the learned expert weights, and the learned crite-

rion weights are applied to compare these alternatives or make an overall conclusion (see Section 4). The

proposed method is applied to aid radiologists, who are serving on a tertiary hospital located in Hefei,

Anhui Province, China in diagnosing thyroid nodules. The effect of auxiliary diagnoses is examined using

the historical examination reports and the relevant pathologic findings as gold standards in the period

from 2011 to 2018.

The rest of this paper is organized as follows. In Section 2, existing studies regarding the determination

of decision-makers’ weights and criterion weights are reviewed to show the importance of learning them

from historical decision data. The operations and distance of interval numbers are presented in Section 3.

Section 4 discusses the proposed method. Furthermore, the proposed method is applied to aid radiologists

in diagnosing thyroid nodules based on historical examination reports and pathologic findings in Section 5.

Finally, Section 6 presents the conclusion of the paper.

2 Literature review

Two important issues in the GDM process are the determination of criterion weights and the generation

of decision-makers’ (or experts’) weights. In existing studies, much attention has been paid to these two

issues.

Regarding criterion weights, the weights can be subjectively determined by a facilitator or experts

through different methods, such as point allocation [43], direct rating [44], eigenvector method [45],

and the model of goal programming [46]. As analyzed by Fu et al. [47], there are advantages and

disadvantages to using these methods to determine criterion weights. More importantly, different methods

may result in different criterion weights [48, 49], meaning that the facilitator or experts must select

a way to subjectively determine the criterion weights. To avoid subjective judgment biases toward

determining criterion weights, the facilitator or experts can select to objectively derive criterion weights

from decision matrices by following some principles [47]. One of the principles is that the weight of a

criterion is reflected by the amount of discriminating power contained in alternatives’ performances on

the criterion. Following this principle, some methods have been proposed such as the methods of standard

deviation [46], correlation coefficient and standard deviation integrated [50], entropy [31, 33, 49, 51], and

deviation maximization [34,52]. Another principle is that criterion weights should be assigned for a specific

goal. For example, in Fu and Xu’s work [32], weights are assigned to criteria to achieve high solution

reliability. Subjective and objective methods may be applicable in some situations. When historical

data regarding decision matrices and overall assessments are available, learning criterion weights from

historical data may be more reasonable than deriving criterion weights using subjective and objective
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methods.

For expert weights, the weights can subjectively be specified by a facilitator based on the background,

expertise, and experience of the experts. In particular, expert weights on different criteria can be differ-

ent [12]. When the subjective assignment of expert weights is not easy for the facilitator, the objective

assignment is adopted. Several methods have been developed to determine expert weights. In the work

of Shi et al. [37], to update expert weights for the purpose of reaching group consensus, the performance

values of expert behaviors in different categories are computed. In the work of Liu et al. [36], to obtain

expert weights, the variance of experts’ weighted assessments is minimized. In the work of Liu and

Li [40], the average deviation between an expert’s assessment and others’ assessments is measured and

used to update expert weights. In the work of Yue [53], to generate expert weights, the projection of

each expert’s assessment on the mean of all the experts’ assessments is used. Additionally, the entropy

of experts’ decision matrices [54] and the similarity degree between experts’ decision matrices [55] are

used to assign expert weights. These studies show that the assignment of expert weights is usually lack

of support of historical decision data. Although in some contexts, the subjective determination and ob-

jective assignment of expert weights are relatively reasonable, historical decision data can facilitate the

obtainment of expert weights that are more consistent with experts’ decision preferences.

The above analyses show that learning of criterion weights and expert weights is interesting and

important for MCGDM and it should be given much attention. In Section 4, it will be discussed in

detail.

3 Operations and distance of interval numbers

Let x = [x−, x+] = {r | x− 6 r 6 x+, x−, x+ ∈ R} denote an interval number. When 0 6 x− 6 x+, x is

called a positive interval number, which is the focus of this paper. Given two positive interval numbers

x and y, their operations are defined as follows.

Definition 1 ([56]). Suppose that x and y are two positive interval numbers. Then, their five arithmetic

operations are defined as

x+ y = [x− + y−, x+ + y+], (1)

x− y = [x− − y+, x+ − y−], (2)

x · y = [x− · y−, x+ · y+], (3)

x/y = [x−/y+, x+/y−], and (4)

λ · x = [λ · x−, λ · x+], λ > 0. (5)

According to Definition 1, given a set of positive interval numbers {x1, . . . , xL} and a set of weights

{θ1, . . . , θL}, the weighted sum of interval numbers x1, . . . , xL is represented by

x = [x−, x+] =

[∑L

i=1
θi · x−

i ,
∑L

i=1
θi · x+

i

]
. (6)

The other three arithmetic operations shown in (2)–(4) can be similarly extended using (5). However,

this is not useful in the proposed method and thus omitted here.

The distance between positive interval numbers is an important concept in the proposed method.

It will be used in learning criterion weights and expert weights. In past studies, the construction of

distance between positive interval numbers has attracted much attention. To facilitate the discussion on

existing distance measures between positive interval numbers, suppose that x̄ = 0.5 · (x− + x+), ȳ =

0.5 · (y− + y+), l(x) = x+ − x−, and l(y) = y+ − y−. Then, several distance measures are presented in

the following.

(1) Tran and Duckstein’s distance measure [57]:

D2
1(x, y) =

∫ 0.5

−0.5

∫ 0.5

−0.5

{
[x̄+ u · l(x)]− [ȳ + v · l(y)]

}2
dudv
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= [x̄− ȳ]2 +
1

12
[(l(x))2 + (l(y))2]. (7)

(2) City-Block distance measure [58]:

D2(x, y) = |x− − y−|+ |x+ − y+|. (8)

(3) Hausdorff distance measure [59]:

D3(x, y) = max{|x− − y−|, |x+ − y+|}. (9)

(4) Ramos-Guajardo and Grzegorzewski’s distance measure [60]:

D4(x, y) =
√
(x̄− ȳ)2 + 0.25 · θ · (l(x)− l(y)2 (10)

with θ > 0.

(5) Wasserstein distance measure [61]:

D2
5(x, y) =

∫ 1

0

[(x̄+ u · l(x))− (ȳ + u · l(y))]2du

=

∫ 1

0

[(x̄− ȳ)− (0.5 · l(x)− 0.5 · l(y)) · (2u− 1)]2du

= (x̄− ȳ)2 +
1

12
(l(x)− l(y))2. (11)

(6) Zhang and Liu’s distance measure [56]:

D6(x, y) =
1√
2

√
(x− − y−)2 + (x+ − y+)2. (12)

To analyze the above six distance measures, the properties that a distance measure between interval

numbers should satisfy are presented.

Definition 2 ([61]). Let x, y, and z be three interval numbers. If d(x, y) is regarded as a distance

measure between x and y, then it should satisfy:

(reflexivity) d(x, x) = 0, (13)

(symmetry) d(x, y) = d(y, x), and (14)

(triangular inequality) d(x, y) 6 d(x, z) + d(z, y). (15)

Additionally, d(x, y) 6 0 is a basic property that is not presented in Definition 2. Using Definition 2,

the six distance measures defined in (7)–(12) are analyzed. D1(x, y) defined as (7) does not satisfy the

reflexivity property shown in (13). Its advantage lies in that it considers the distance between each point

in one interval and any point in another interval. However, this advantage is not considered by the

other five distance measures defined in (8)–(12). To consider this advantage and the reflexivity property

simultaneously, Li et al. [62] proposed another distance measure between two interval numbers.

Definition 3 ([62]). Given two interval numbers x = [x−, x+] and y = [y−, y+], suppose that x̄ =

0.5 · (x− + x+), ȳ = 0.5 · (y− + y+), l(x) = x+ − x−, l(y) = y+ − y−, d = [d−, d+] = x ∩ y, and

l(d) = d+ − d−; then the distance between x and y is defined as

d(x, y) =
√
ID − I∩ (16)

=

√
(x̄− ȳ)2 +

1

12

(
(l(x))2 + (l(y))2

)
− 1

6
(l(d))2, (17)

where

ID =

∫ 1

0

∫ 1

0

(
(x− + u · l(x))− (y− + v · l(y))

)2
dudv (18)
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and

I∩ =

∫ 1

0

∫ 1

0

(
(d− + u · l(d))− (d− + v · l(d))

)2
dudv. (19)

The distance measure shown in Definition 3 is verified to satisfy the properties of reflexivity, symmetry,

and triangular inequality listed in Definition 2 [62]. However, the proof is not very clear. To make it

clear, a relevant lemma is presented and a formal proof is offered.

Lemma 1. Given three interval numbers x = [x−, x+], y = [y−, y+], and z = [z−, z+], suppose that

l = [l−, l+] = x ∩ y, m = [m−,m+] = y ∩ z, and n = [n−, n+] = x ∩ z; then it is satisfied that

− (n+ − n−)2 6 (y+ − y−)2 − (l+ − l−)2 − (m+ −m−)2. (20)

This lemma is proved in the Appendix. Based on Lemma 1, it can be verified that the distance

measure listed in Definition 3 satisfies three properties listed in Definition 2. Thus, this is presented in

the following theorem.

Theorem 1. Given three interval numbers x = [x−, x+], y = [y−, y+], and z = [z−, z+], the distance

measure listed in Definition 3 satisfies the three properties listed in Definition 2.

This theorem is formally proved in the Appendix. Next, the operations of interval numbers listed in

(1)–(6) and their distance measure listed in Definition 3 will be used in the proposed method.

4 Proposed method

In this section, MCGDM problems are modeled using positive interval numbers. Based on the operations

and distance of positive interval numbers presented in Section 3, criterion weights and expert weights are

learned from historical data and used to generate solutions to the modeled problems.

4.1 Modeling of MCGDM problems with positive interval numbers

Suppose that T experts (tj , j = 1, . . . , T ) face a common problem in which each alternative Al (l =

1, . . . ,M) is evaluated on L criteria (ei, i = 1, . . . , L) by using positive interval numbers. To analyze the

problem, each expert tj offers an interval-valued decision matrix, which is

IjL×M = (Iji,l)L×M =




[Ij−1,1 , I
j+
1,1 ] . . . [Ij−1,l , I

j+
1,l ] . . . [Ij−1,M , Ij+1,M ]

...
...

...
...

...

[Ij−i,1 , I
j+
i,1 ] . . . [Ij−i,l , I

j+
i,l ] . . . [Ij−i,M , Ij+i,M ]

...
...

...
...

...

[Ij−L,1, I
j+
L,1] . . . [I

j−
L,l , I

j+
L,l] . . . [I

j−
L,M , Ij+L,M ]




. (21)

To facilitate the analysis of the problem, [Ij−i,l , I
j+
i,l ] is normalized to be limited to [0, 1], which means

that 0 6 Ij−i,l 6 Ij+i,l 6 1. Assume that the relative weight of expert tj is denoted by λj and the relative

weight of criterion ei is denoted by wi. To generate a solution to the problem by integrating the opinions

of T experts, λj and wi should be determined. In general, Iji,l is combined using wi to generate the

aggregated assessment Ijl and the expert tj is not required to offer Ijl . However, this is not always the

case. For example, when a radiologist diagnoses an inpatient’s nodule to be malignant or benign, he or

she is required to offer the overall diagnosis by comprehensively considering the observations on different

criteria. Based on the expertise and experience of experts or standards commonly accepted in the decision

field, the transformation from observations on criteria to assessments can be implemented.

As presented in Section 2, expert weights can be subjectively specified by a facilitator based on the

background, expertise, and experience of experts or objectively determined using decision matrices. While

criterion weights can be subjectively determined using some methods on the condition that experts can

offer preferences as to criteria or objectively generated from decision matrices following some principles,
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the generation of expert weights and the determination of criterion weights in existing studies are effective

and rational to some extent from a traditional viewpoint. The learning of expert weights and criterion

weights from historical data is meaningful when historical decision data are available. The purpose of

MCGDM is to find a group solution that reflects the preferences of each expert for each alternative.

These preferences are closely related to experts’ historical decision data. For this reason, expert weights

and criterion weights learned from experts’ historical data are more consistent with the preferences of

the experts than those generated using traditional methods. In the following, we discuss the learning of

expert weights and criterion weights from historical decision data.

4.2 Learning of expert weights

Suppose that the historical decision data of experts can be collectable under the same decision framework.

In other words, different alternatives are evaluated on a uniform set of criteria in historical decision

processes. With the assumption that historical overall assessments Ijk (k = 1, . . . ,Kj) withKj alternatives

are obtainable, the learning of expert weights from the overall assessments is discussed.

To learn expert weights, a clear understanding of the weight of an expert is required. In MCGDM,

the weight of an expert is positively correlated with his or her capability to make a correct decision. The

stronger the capability of an expert, the higher the weight of the expert. This idea is presented in the

following assumption.

Assumption 1. In MCGDM, there is a positive correlation between the weight of an expert and the

expert’s capability to offer correct judgments.

From the idea listed in Assumption 1, an expert’s capability to make a correct decision is expected

to be measured to determine expert weights. The focus is the indication of a correct decision. The

gold standard is a reliably and precisely objective measure to judge the correctness of the thing to be

examined and, thus, it can be considered as the indication. In some situations where the gold standards

are available, the assessment of an expert that is completely consistent with gold standard can be regarded

as a correct decision. For example, a radiologist depends on pathologic findings as gold standards to verify

the correctness of the diagnosis of a thyroid nodule. Suppose that the gold standards corresponding to

historical overall assessments Ijk (k = 1, . . . ,Kj) are obtained as ~Ijk (k = 1, . . . ,Kj). The average similarity

between Ijk and ~Ijk is calculated as

Sj = 1−
∑Kj

k=1 d(I
j
k ,
~Ijk)

Kj

, (22)

where d(Ijk,
~Ijk) represents the distance between Ijk and ~Ijk that is calculated using Definition 3. For

normalized Ijk and ~Ijk, Eqs. (16) and (17) show that 0 6 d(Ijk,
~Ijk) 6 1, which means that 0 6 Sj 6 1.

According to Assumption 1, the weight of expert tj is derived from Sj , which is

λj =
Sj

∑T

k=1 S
k
. (23)

4.3 Learning of criterion weights

To learn expert weights, historical overall assessments Ijk (k = 1, . . . ,Kj) withKj alternatives are assumed

to be obtainable. Meanwhile, as presented in Subsection 4.1, historical observations on criteria can be

transformed into assessments based on the expertise and experience of experts or standards commonly

accepted in the decision field. This means that a historical matrix IjL×Kj
with Kj alternatives can be

assumed to be obtainable. On the condition that historical overall assessments Ijk (k = 1, . . . ,Kj) and a

historical matrix IjL×Kj
are available, the learning of criterion weights from them is discussed.

Similar to expert weights, to learn criterion weights, a clear understanding of the weight of a criterion

is required. In a general case, Ijk is generated from combining Iji×k (i = 1, . . . , L) using wi. The larger

the wi, the higher the similarity between Iji×k and Ijk. The converse conclusion may not be always true.

To construct a positive correlation between the similarity between Iji×k and Ijk and wi, assume that the

experts do not offer subjective preferences as to criteria.
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Assumption 2. For an MCGDM problem, each expert does not offer subjective preferences for the

assignment of criterion weights and the assessment on each criterion is involved in the overall assessment.

Based on Assumption 2, a positive correlation between the similarity between Iji×k and Ijk and wi can

be constructed.

Assumption 3. On the condition that Assumption 2 is satisfied in MCGDM, there is a positive

correlation between the weight of a criterion and the similarity between the assessment on the criterion

and the overall assessment.

To determine criterion weights based on the idea presented in Assumption 3, the similarity between

Iji×k and Ijk is calculated as

Sj
i,k = 1− d(Iji×k, I

j
k), (24)

where d(Iji×k , I
j
k) represents the distance between Iji×k and Ijk that is calculated using Definition 3.

According to Assumption 3, the weight of criterion ei is derived from Sj
i,k, which is

wj
i,k =

Sj
i,k∑L

h=1 S
j
h,k

. (25)

When (wj
1,k, . . . , w

j
L,k) (k = 1, . . . ,Kj) is obtained, the remaining problem is to generate a representa-

tive set of criterion weights (wj
1, . . . , w

j
L) that can reflect the preferences of the expert tj as to the criterion

weights, i.e., (wj
1,k, . . . , w

j
L,k) (k = 1, . . . ,Kj). For this purpose, an optimization model is constructed.

min f(wj
1, . . . , w

j
L) =

∑Kj

k=1

∑L

i=1
(wj

i,k − wj
i )

2 (26)

s.t.
∑L

i=1
wj

i = 1, (27)

0 6 wj
i 6 1, i = 1, . . . , L. (28)

In this model, the objective function is nonlinear and the constraints are linear. As a result, the

model can be regarded as a nonlinear programming problem (NLP) [63]. To facilitate the generation of

a solution to this optimization model, solving the generalized formulation of an NLP is discussed. The

generalized formulation of an NLP is given as follows.

min f(a1, . . . , aN ) (29)

s.t. gm(a1, . . . , aN ) = bm, m = 1, . . . ,M, (30)

where f(a1, . . . , aN ) and gm(a1, . . . , aN) (m = 1, . . . ,M) are real-valued functions with at least one of

them being nonlinear.

There are necessary and sufficient conditions to determine whether a vector is an optimal solution

to the NLP shown in (29) and (30), which can be seen in Theorems A.1 and A.2 of the Appendix.

Meanwhile, Theorem A.3 is presented in the Appendix to help discuss the uniqueness of a solution. With

the aid of the three theorems, a unique optimal solution to the optimization model shown in (26)–(28)

can be obtained.

Theorem 2. For the optimization model shown in (26)–(28),

(w̄j
1, . . . , w̄

j
L) =

(∑Kj

k=1 w
j
1,k

Kj

, . . . ,

∑Kj

k=1 w
j
L,k

Kj

)
(31)

is the unique optimal solution.

Theorem 2 is proved in the Appendix. Using the learned expert weights and criterion weights, a

group-satisfactory solution can be generated. The process is discussed in the following subsection.
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Figure 1 (Color online) MCGDM process for the proposed method.

4.4 MCGDM process

Based on the learning of expert weights and the learning of criterion weights, the process of the proposed

method is described in Figure 1.

A facilitator invites T experts to evaluate M alternatives on L criteria. Experts are encouraged to

use normalized positive interval numbers to implement the evaluation. For each expert, a historical

decision matrix and historical overall assessments with corresponding gold standards are collected. From

the historical overall assessments of the expert tj and the corresponding gold standards, the average

similarity between overall assessments and gold standards Sj is obtained using (22). Then using (23),

the average similarities of all experts are used to determine the weights of the experts λj (j = 1, . . . , T ).

For the expert tj , a historical decision matrix and the historical overall assessments are used to generate

Kj sets of historical weights (wj
1,k, . . . , w

j
L,k) (k = 1, . . . ,Kj) using (24) and (25). A representative set of

criterion weights (w̄j
1, . . . , w̄

j
L) that can reflect the preferences of the expert tj as to criteria is derived from

(wj
1,k, . . . , w

j
L,k) (k = 1, . . . ,Kj) through the optimization model presented in (26)–(28) and Theorem 2.

When expert weights and criterion weights of each expert are learned from a historical decision matrix

and historical overall assessments with corresponding gold standards, the decision matrix of each expert

can be aggregated to generate the aggregated group assessment of each alternative. Using the learned

expert weights λj (j = 1, . . . , T ) and (6), the decision matrix of each expert is first aggregated to generate

the group decision matrix, which is

IL×M = (Ii,l)L×M =

(∑T

j=1
λj · Iji,l

)

L×M

. (32)

Considering comprehensively the learned expert weights λj (j = 1, . . . , T ) and the learned criterion

weights of each expert (w̄j
1, . . . , w̄

j
L) (j = 1, . . . , T ), a set of criterion weights for the group is obtained as

wi =
∑T

j=1
λj · wj

i , i = 1, . . . , L. (33)

Because
∑T

j=1 λj = 1 and
∑L

i=1 w
j
i = 1,

∑L

i=1 wi = 1 clearly holds. Using (6) and wi obtained in (33),

Ii,l (i = 1, . . . , L) is aggregated as Il; i.e.,

Il =
∑L

i=1
wi · Ii,l, l = 1, . . . ,M. (34)

The aggregated assessments Il (l = 1, . . . ,M) can then be used to generate a group solution. From a

traditional perspective, to determine the best one or generate a ranking order of the alternatives, which
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is considered as a group solution, different alternatives need to be compared using Il (l = 1, . . . ,M). This

is a general purpose of MCGDM. However, this is not the only purpose. Decision makers may attempt

to make an overall conclusion using Il (l = 1, . . . ,M). For example, a group of radiologists work together

to provide the diagnosis of a patient’s thyroid nodule. Such a situation usually occurs in real life and can

be considered as another purpose of MCGDM. The generation of a group solution for the two purposes

is discussed in the following.

(1) Purpose of comparing alternatives. When the purpose of MCGDM is to compare different alterna-

tives by considering group opinions, Il and Im (l 6= m) need to be compared. For this purpose, the mean

and standard variance of Il = [I−l , I+l ] denoted by µl and σl are used to construct the score function of

the alternative Al. Suppose that a random variable V on Il follows the uniform distribution. Then, µl

and σl are calculated by

µl = E(v) =
I−l + I+l

2
(35)

and

σl =
√
E(V 2)− (E(V ))2 =

√√√√
∫ I

+

l

I
−

l

v2

I+l − I−l
dv −

(
I−l + I+l

2

)2

=
I+l − I−l√

12
. (36)

Using µl and σl defined in (35) and (36), respectively, the score function of alternative Al is constructed

as

S(Al) = µl(1− σl) =
I−l + I+l

2
·
(
1− I+l − I−l√

12

)
. (37)

The constructed score function satisfies some properties.

Property 1. Suppose that the overall assessments of two alternatives Al and Am are obtained as

Il = [I−l , I+l ] and Im = [I−m, I+m]. The score functions of Al and Am calculated using (37) satisfy:

(1) If I−l = I−m and I+l > I+m, then S(Al) > S(Am);

(2) If I+l = I+m and I−l > I−m, then S(Al) > S(Am);

(3) If
I
−

l
+I

+

l

2 =
I−

m+I+
m

2 and I+l − I−l < I+m − I−m, then S(Al) > S(Am); and

(4) 0 6 S(Al), S(Am) 6 1.

The conclusion presented in Property 1 can be clearly verified using (37) and, thus, the relevant proof

is omitted. Using S(Al) (l = 1, . . . ,M), all alternatives are compared to generate a group solution.

(2) Purpose of making an overall conclusion. In some contexts, such as diagnosis of a thyroid nodule,

MCGDM attempts to draw an overall conclusion. The conclusion is usually drawn from the overall

assessments of alternatives. According to the imaging reporting and data system (TIRADS) [64–67] in

the diagnosis of a thyroid nodule, the cancer risk of the detected thyroid nodule is divided into five grades

{3, 4A, 4B, 4C, 5}. Each grade is represented by a normalized positive interval number. When multiple

radiologists diagnose a thyroid nodule, a group solution obtained is the group diagnosis of the nodule that

is represented by one of the five grades. From a theoretical perspective, suppose that there is a set of grades

{G1, . . . , GN} with the corresponding normalized positive interval numbers {[H−
1 , H+

1 ], . . . , [H−
N , H+

N ]}.
Under this assumption, the grade to which each alternative is determined to belong is considered as the

group solution. For this purpose, the distance between Il = [I−l , I+l ] and [H−
n , H+

n ] (n = 1, . . . , N), i.e.,

d([I−l , I+l ], [H−
n , H+

n ]), is calculated using Definition 3. Assume that

n̂ = argmin{n | d([I−l , I+l ], [H−
n , H+

n ])}; (38)

then alternative al is evaluated as grade Gn̂.

5 Case study

Thyroid nodule is a frequently-occurring disease in the general population, especially in adults. In

clinical practice, radiologists can depend on imaging techniques to identify thyroid nodules [65]. Among

practical imaging techniques, ultrasonic examination, a technique without radiation is the first imaging
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mode to identify and diagnose thyroid nodules [68]. Through ultrasonic examination, a radiologist offers

the diagnosis of a detected nodule used to show that the nodule is malignant or benign, from which a

clinician determines the treatment of the nodule. Pathologic examination can correctly indicate whether a

thyroid nodule is cancerous or benign, and, thus, pathologic findings are considered as gold standards for

diagnosing thyroid nodules. A large number of diagnoses and pathologic findings have been accumulated

in the clinical practice of a hospital. Accumulated data can help radiologists offer consistent diagnoses.

More importantly, to improve diagnostic capability, a radiologist without a wealth of experience can learn

experience from historical data, which are collected from radiologists with sufficient experience. Using

the proposed method, the improvement of the diagnostic capability of a radiologist without a wealth

of experience through historical data collected from radiologists with sufficient experience is examined.

Historical examination reports and pathologic findings are collected from a tertiary hospital located in

Hefei, Anhui Province, China with the help of the third author. A solution system developed in the

Matlab environment is used to support the examination process.

5.1 Diagnosis of thyroid nodules

When a radiologist diagnoses thyroid nodules through ultrasonic examination, he or she observes the

features of the nodules. Possible features include margin, contour, size, vascularity, calcification, tallness,

halo, echogenicity, and solid component [66,69–72]. In clinical practice, a radiologist usually selects some

of these possible features to achieve observations and offer an overall diagnosis of a detected nodule.

Different sets of features are selected by radiologists who serve in different hospitals located in different

regions. Given a set of features, a radiologist offers the diagnosis of a thyroid nodule by considering the

observations on all features comprehensively. When each feature is considered as a criterion, the diagnosis

of a thyroid nodule can be regarded as a multi-criteria decision making problem.

When radiologists diagnose thyroid nodules, their overall diagnoses represent the cancer risk of the

nodules. Based on clinical practice, the TIRADS has been developed to characterize the cancer risk.

There is no international standard of TIRADS although many TIRADSs have been proposed in existing

studies. It is mostly accepted that the cancer risk of the detected thyroid nodule is divided into five

categories {TIRADS 3, TIRADS 4A, TIRADS 4B, TIRADS 4C, TIRADS 5} with five risk intervals

{[0%, 3%), [3%, 24%], [25%, 75%], [76%, 95%], (95%, 100%]} [64, 68]. From a discussion with the third

author, it is known that clinicians may find difficulties in correctly treating nodules when the categories

4A and 4B are used as the overall diagnoses of the nodules. To address this issue, in the tertiary

hospital located in Hefei, Anhui Province, China, where the third author serves, categories 4A and 4B

are further divided into two subgrades and three subgrades, respectively. This is found by checking

historical examination reports in the period from 2011 to 2018. Table 1 shows the relevant details

regarding the TIRADS used in the ultrasonic department of the hospital. Here, FNAB represents fine

needle aspiration biopsy. As shown in Table 1, there is a correspondence between TIRADS category and

cancer risk. When radiologists use TIRADS categories to offer the overall diagnoses of nodules, they

actually aim to describe the cancer risk of the nodules. Based on this fact, interval numbers limited to

[0, 1] are used to describe the overall diagnoses of nodules in the case study.

Through discussing with the third author and analyzing historical examination reports in the period

from 2011 to 2018, five criteria used by radiologists in the ultrasonic department of the hospital are

identified. They are margin, contour, echogenicity, calcification, and vascularity and are denoted by

ei (i = 1, . . . , 5). The observations on the five criteria in the hospital are collected from the historical

examination reports, which can be seen in [68]. In clinical practice, the radiologists transform observations

on the five criteria into TIRADS categories and then using criterion weights wi (i = 1, . . . , 5), they

combine the categories to generate the overall TIRADS category, which is the overall diagnosis of a

detected thyroid nodule. For each radiologist, the transformation is dependent on his or her expertise and

experience. To consider the ultrasonic department as a whole, the common expertise and experience of the

department are generated from the third author communicating with representative radiologists. Using

the common expertise and experience of the department, the relationship between the observations on the
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Table 1 TIRADS categories applied in the hospital

Category Finding Cancer risk Recommendation

TIRADS 3 Probably benign <3% Follow-up/FNAB

TIRADS 4 Suspicious 3%–75%

TIRADS 4A Low suspicion 3%–24%

TIRADS 4A-1 Tending towards benign nodule 3%–15% Follow-up/FNAB

TIRADS 4A-2 Not excluding the possibility of malignant nodule 16%–24% FNAB

TIRADS 4B Intermediate suspicion 25%–75%

TIRADS 4B-1 Not excluding the possibility of benign nodule 25%–40% FNAB

TIRADS 4B-2 Medium possibility of malignant nodule 41%–65% FNAB

TIRADS 4B-3 Large possibility of malignant nodule 66%–75% FNAB

TIRADS 4C High suspicion 76%–95% FNAB

TIRADS 5 Suggestive of malignancy > 95% FNAB

Table 2 Details about the eight radiologists

Radiologist Serving period Diagnostic record

D1 2013–2018 591

D2 2011–2018 586

D3 2012–2018 628

D4 2015–2018 397

D5 2013–2017 179

D6 2011–2016 180

D7 2017–2018 202

D8 2018–2018 93

five criteria and the TIRADS categories shown in Table 1 is constructed, as shown in [68]. Furthermore,

based on the correspondence between TIRADS categories and cancer risk, as shown in Table 1, the

observations on the five criteria are transformed into assessments represented by interval numbers limited

to [0, 1].

Pathologic findings are gold standards of overall diagnoses of thyroid nodules. They can correctly

determine whether nodules are malignant or benign. When the pathologic finding of a nodule shows

that the nodule is malignant, the finding is represented by an interval number [1, 1]. On the contrary,

when a nodule is judged to be benign, the finding is represented by an interval number [0, 0]. Because

the overall diagnoses of nodules and the corresponding pathologic findings are represented by interval

numbers limited to [0, 1], the average similarity between the overall diagnoses and the pathologic findings

for a radiologist, which is calculated using (22), can be used to characterize the diagnostic capability of the

radiologist. Therefore, different radiologists in the department have different diagnostic capabilities. For

a radiologist without a wealth of experience, an important issue is to help improve his or her diagnostic

capability through accumulated data collected from radiologists with sufficient experience. To address

this issue, the proposed method is applied to comprehensively consider the advice of radiologists with a

wealth of experience, which is reflected by their historical data, to generate diagnostic recommendations

for a radiologist without sufficient experience.

5.2 Generation and examination of diagnostic recommendations

To apply the proposed method to generate diagnostic recommendations for a radiologist who is of in-

sufficient experience, the historical examination reports of eight radiologists in the department and the

corresponding pathologic findings in the period from 2011 to 2018 are collected. Suppose that the eight

radiologists are denoted by Dk (k = 1, . . . , 8). Table 2 presents the periods the eight radiologists served

on the department and the numbers of their diagnostic records.

All the records shown in Table 2 are collected from diagnosing inpatients. Using (22), the diag-

nostic capabilities of the eight radiologists are obtained from the overall diagnoses of nodules and
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Table 3 Weights of the five criteria for the eight radiologists

Radiologist Learned criterion weight

t1 w1

i (i = 1, . . . , 5) = (0.1893, 0.2386, 0.1798, 0.2119, 0.1804)

t2 w2

i (i = 1, . . . , 5) = (0.1901, 0.2412, 0.1778, 0.2164, 0.1745)

t3 w3

i (i = 1, . . . , 5) = (0.2005, 0.2352, 0.188, 0.1938, 0.1825)

t̃1 w̃1

i (i = 1, . . . , 5) = (0.2002, 0.2287, 0.1745, 0.2115, 0.1851)

t̃2 w̃2

i (i = 1, . . . , 5) = (0.1928, 0.2238, 0.1852, 0.216, 0.1822)

t̃3 w̃3

i (i = 1, . . . , 5) = (0.1981, 0.2205, 0.2126, 0.1911, 0.1778)

t̃4 w̃4

i (i = 1, . . . , 5) = (0.2027, 0.2314, 0.1668, 0.2291, 0.1699)

t̃5 w̃5

i (i = 1, . . . , 5) = (0.1811, 0.251, 0.1713, 0.2276, 0.169)

the corresponding pathologic findings associated with the records of the eight radiologists, which are

(0.7843, 0.7958, 0.7505, 0.7732, 0.7317, 0.7451, 0.7445, 0.7025). The radiologists D1, D2 and D4 are clearly

the top three radiologists. They are selected as a group to generate diagnostic recommendations for

the other five radiologists and are denoted by tj (j = 1, 2, 3). The remaining radiologists are denoted

by t̃k (k = 1, . . . , 5) = {D3, D5, D6, D7, D8}. Their diagnostic capabilities are denoted by C̃R0

k (k =

1, . . . , 5) = (0.7505, 0.7317, 0.7451, 0.7445, 0.7025). According to (23), the weights of the three radiolo-

gists in the group are obtained as λj (j = 1, 2, 3) = (0.3332, 0.3382, 0.3286).

As demonstrated in Subsection 5.1, using the common expertise and experience of the department,

the assessments on the five criteria can be derived from the observations presented in the records of

the eight radiologists. Owing to the correspondence between TIRADS categories and cancer risk pre-

sented in Table 1, they are represented by interval numbers limited to [0, 1]. From the assessments on

the five criteria and the overall assessments provided by each of the eight radiologists in their records,

the weights of the five criteria for each of the eight radiologists, i.e., wj
i (j = 1, 2, 3, i = 1, . . . , 5)

and w̃k
i (k = 1, . . . , 5, i = 1, . . . , 5) are learned according to Subsection 4.3, as presented in Table 3.

Using the weights of radiologists tj (j = 1, 2, 3), i.e., λj , their learned criterion weights presented in

Table 3, and (33), a set of criterion weights for the group is generated, which is wi (i = 1, . . . , 5) =

(0.1932, 0.2384, 0.1818, 0.2075, 0.1791). By combining the assessments on the five criteria associated with

the records of the radiologists t̃k (k = 1, . . . , 5) using wi (i = 1, . . . , 5) and (34), the aggregated as-

sessments associated with the records are obtained. Based on the aggregated assessments and the

correspondence between TIRADS categories and cancer risk, as shown in Table 1, the recommended

TIRADS categories for the nodules in the records are generated using (38). From the cancer risk corre-

sponding to the recommended categories and the pathologic findings corresponding to the nodules, the

diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5) based on wi (i = 1, . . . , 5) are calculated using

(22), which are C̃Gw

k (k = 1, . . . , 5) = (0.6857, 0.6737, 0.7522, 0.5841, 0.5245). It can be observed that

C̃Gw

k < C̃R0

k (k = 1, 2, 4, 5).

According to a discussion with the third author, it is found that the diagnostic capability of a radiologist

is not only dependent on the weights of the five criteria, but also associated with the distributions of

overall diagnoses provided by the radiologist on the TIRADS categories Tc (c = 1, . . . , 8) = {TIRADS

3, TIRADS 4A-1, TIRADS 4A-2, TIRADS 4B-1, TIRADS 4B-2, TIRADS 4B-3, TIRADS 4C, TIRADS

5}. Based on the group’s criterion weights, there is lack of consideration of the distributions of overall

diagnoses, which results in the lower diagnostic capabilities of radiologists t̃k (k = 1, 2, 4, 5). This reflects

the difference between the diagnosis of thyroid nodules and traditional GDM problems. Based on the

expertise and experience of the third author, TIRADS categories Tc (c = 4, . . . , 8) = {TIRADS 4B-1,

TIRADS 4B-2, TIRADS 4B-3, TIRADS 4C, TIRADS 5} indicate malignant nodules, while TIRADS

categories Tc (c = 1, 2, 3) = {TIRADS 3, TIRADS 4A-1, TIRADS 4A-2} indicate benign nodules. The

higher the degree to which a radiologist is sure about a malignant nodule, the larger the possibility that

the radiologist prefers the TIRADS category with high cancer risk. Conversely, the higher the degree to

which a radiologist is sure about a benign nodule, the larger the possibility that the radiologist prefers

the TIRADS category with low cancer risk.

Based on the sufficient consideration of such preferences of radiologists and the professional sugges-
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Table 4 Distributions of the overall diagnoses on the TIRADS categories for the eight radiologists

Radiologist Nodule Distributions of overall diagnoses on Tc

t1 Malignant dm
1,c (c = 1, . . . , 8) = (10, 14, 15, 25, 42, 25, 36, 66)

t1 Benign db
1,c (c = 1, . . . , 8) = (261, 29, 15, 10, 24, 12, 2, 5)

t2 Malignant dm
2,c (c = 1, . . . , 8) = (10, 1, 19, 1, 17, 49, 26, 84)

t2 Benign db
2,c (c = 1, . . . , 8) = (254, 12, 33, 11, 20, 33, 8, 8)

t3 Malignant dm
3,c (c = 1, . . . , 8) = (5, 1, 18, 0, 32, 76, 17, 18)

t3 Benign db
3,c (c = 1, . . . , 8) = (155, 18, 23, 7, 13, 10, 2, 2)

t̃1 Malignant d̃m
1,c (c = 1, . . . , 8) = (17, 1, 21, 2, 36, 71, 52, 42)

t̃1 Benign d̃b
1,c (c = 1, . . . , 8) = (206, 31, 47, 26, 42, 20, 9, 5)

t̃2 Malignant d̃m
2,c (c = 1, . . . , 8) = (9, 3, 5, 0, 8, 14, 8, 9)

t̃2 Benign d̃b
2,c (c = 1, . . . , 8) = (66, 11, 11, 11, 13, 9, 2, 0)

t̃3 Malignant d̃m
3,c (c = 1, . . . , 8) = (3, 1, 3, 2, 5, 9, 2, 12)

t̃3 Benign d̃b
3,c (c = 1, . . . , 8) = (84, 2, 7, 9, 20, 16, 2, 3)

t̃4 Malignant d̃m
4,c (c = 1, . . . , 8) = (3, 5, 14, 1, 14, 46, 19, 14)

t̃4 Benign d̃b
4,c (c = 1, . . . , 8) = (60, 7, 12, 1, 1, 4, 1, 0)

t̃5 Malignant d̃m
5,c (c = 1, . . . , 8) = (3, 2, 2, 2, 11, 27, 10, 2)

t̃5 Benign d̃b
5,c (c = 1, . . . , 8) = (17, 7, 4, 1, 3, 2, 0, 0)

tions of the third author, following the maximum possibility principle, a way is designed to revise the

recommended TIRADS categories derived from the group’s criterion weights. For a TIRADS category

indicating a malignant nodule, the objective category is selected from the categories whose cancer risk is

higher than that of the category under consideration. While for a TIRADS category indicating a benign

nodule, the objective category is selected from the categories whose cancer risk is lower than that of the

category under consideration. For example, when the recommended TIRADS category is TIRADS 4B-2,

the objective category may be one of TIRADS 4B-3, TIRADS 4C, and TIRADS 5. Conversely, when the

recommended TIRADS category is TIRADS 4A-2, the objective category may be one of TIRADS 4A-1

and TIRADS 3. To reflect the preferences of a radiologist in the determination of the objective category,

the comparison between possible objective categories is dependent on their possibilities of occurring in

the overall diagnoses provided by the radiologist. The possibilities are closely associated with the distri-

butions of overall diagnoses on the TIRADS categories Tc (c = 1, . . . , 8) for the radiologist. Precisely, the

distributions of overall diagnoses represent the numbers of each of the TIRADS categories in the overall

diagnoses when nodules are diagnosed by a radiologist as malignant (or benign) ones. By examining the

records of radiologists tj (j = 1, 2, 3) and t̃k (k = 1, . . . , 5), the distributions of their overall diagnoses on

the TIRADS categories Tc (c = 1, . . . , 8) are identified and denoted by dmj,c (j = 1, 2, 3, c = 1, . . . , 8) and

dbj,c as well as d̃mk,c (k = 1, . . . , 5, c = 1, . . . , 8) and d̃bk,c, as presented in Table 4. According to Table 4

when the recommended TIRADS category for radiologist t1 is T5, the objective category is T8 because the

possibility of T8 occurring in the overall diagnoses is larger than those of T6 and T7 for malignant nodules,

as shown by dm1,c (c = 6, 7, 8). This reflects the fact that when a nodule is diagnosed to be malignant and

its cancer risk is considered to be at least equal to cancer risk corresponding to T5, radiologist t1 prefers

T8 to T6 and T7.

Following the maximum possibility principle, both the group’s criterion weights and the group’s dis-

tributions of overall diagnoses on the TIRADS categories Tc (c = 1, . . . , 8) are used to generate the rec-

ommended TIRADS categories for the nodules in the records provided by radiologists t̃k (k = 1, . . . , 5).

From dmj,c (j = 1, 2, 3, c = 1, . . . , 8) and dbj,c, the group’s distributions of the overall diagnoses of malignant

and benign nodules can be calculated by

dmc =

⌊∑3

j=1
λj · dmj,c

⌋
, c = 1, . . . , 8, and (39)

dbc =

⌊∑3

j=1
λj · dbj,c

⌋
, c = 1, . . . , 8, (40)
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Table 5 Diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5) in different situations

Condition Diagnostic capabilities of five radiologists

Group’s weights and group’s distributions C̃
Gw ,Gd
k

(k = 1, . . . , 5) = (0.8088, 0.7712, 0.8104, 0.7793, 0.7721)

Group’s weights and radiologists’ distributions C̃
Gw,Rd
k

(k = 1, . . . , 5) = (0.7566, 0.7469, 0.8104, 0.6821, 0.6577)

Radiologists’ weights and group’s distributions C̃
Rw,Gd
k

(k = 1, . . . , 5) = (0.8012, 0.7712, 0.805, 0.7698, 0.7721)

Radiologists’ weights and radiologists’ distributions C̃
Rw,Rd
k

(k = 1, . . . , 5) = (0.7514, 0.7469, 0.805, 0.6745, 0.6577)

Radiologists’ overall diagnoses C̃
R0

k
(k = 1, . . . , 5) = (0.7505, 0.7317, 0.7451, 0.7445, 0.7025)

where ⌊x⌋ represents the number to which x rounds down. Especially, using (39) and (40), it is obtained

that dmc (c = 1, . . . , 8) = (8, 5, 17, 8, 30, 49, 26, 56) and dbc (c = 1, . . . , 8) = (223, 19, 23, 9, 19, 18, 4, 5).

Suppose that the recommended TIRADS category of a nodule for radiologist t̃k based on the group’s

criterion weights wi (i = 1, . . . , 5) is T k
c̃ . Then following the maximum possibility principle, T k

c̃ is revised

to be T k
ĉ such that

ĉ = argmax{dmc , c ∈ {c̃+ 1, . . . , 8}} (4 6 c̃ 6 7), or (41)

ĉ = argmax{dbc, c ∈ {1, . . . , c̃− 1}} (2 6 c̃ < 4), or (42)

ĉ = c̃ (c̃ = 1, 8). (43)

When the recommended TIRADS categories of all nodules in the records of radiologists t̃k (k = 1, . . . , 5)

are revised using (41)–(43), the diagnostic capabilities of the five radiologists based on the group’s criterion

weights wi (i = 1, . . . , 5) and the distributions of the overall diagnoses (dmc , dbc) can be obtained as

C̃Gw,Gd

k (k = 1, . . . , 5) using (22), as shown in the second row of Table 5.

From the comparison between C̃Gw,Gd

k (k = 1, . . . , 5) and C̃R0

k , it can be found that the diagnostic

capabilities of radiologists t̃k (k = 1, . . . , 5) based on the group’s criterion weights wi (i = 1, . . . , 5) and

the group’s distributions of the overall diagnoses (dmc , dbc) are beyond their own diagnostic capabilities.

The diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5) are increased by
C̃

Gw,Gd
k

−C̃
R0
k

C̃
R0
k

(k = 1, . . . , 5) =

(7.77%, 5.4%, 8.76%, 4.67%, 9.91%). To examine the contributions of wi (i = 1, . . . , 5) and (dmc , dbc) to

the diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5), three situations are considered. The three

situations include: (1) the group’s criterion weights and the five radiologists’ distributions of overall

diagnoses; (2) the five radiologists’ criterion weights and the group’s distributions of overall diagnoses;

and (3) the five radiologists’ criterion weights and the radiologists’ distributions of overall diagnoses. The

diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5) in the three situations are obtained as C̃Gw,Rd

k (k =

1, . . . , 5), C̃Rw ,Gd

k , and C̃Rw ,Rd

k , which are also shown in Table 5. It is easy to see that C̃Gw,Gd

k >

{C̃Gw,Rd

k , C̃Rw ,Gd

k , C̃Rw,Rd

k } (k = 1, . . . , 5). This highlights the contributions of wi (i = 1, . . . , 5) and

(dmc , dbc) to the diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5). It can also be observed from Table 5

that C̃Rw,Gd

k > C̃R0

k (k = 1, . . . , 5), C̃Gw,Rd

k < C̃R0

k (k = 4, 5), and C̃Rw ,Rd

k < C̃R0

k (k = 4, 5). These

indicate that the contribution of (dmc , dbc) to the diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5) is

larger than that of wi (i = 1, . . . , 5). It is worth noting that this finding is closely related to the inherent

characteristic of diagnosing thyroid nodules, as indicated in the expertise and experience of the third

author.

5.3 Random simulation

As presented in the above process of generating diagnostic recommendations, the criterion weights and

the distribution of the overall diagnoses of the group, which is composed of tj (j = 1, 2, 3), work to-

gether to help improve the diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5). To further explore the

influence of the group’s criterion weights and the group’s distribution of the overall diagnoses on the rec-

ommended diagnostic capabilities of the five radiologists, random simulation experiments are conducted

in the following.

From (33), (39) and (40), it can be observed that the weights of radiologists tj (j = 1, 2, 3) in the

group, i.e., λj (j = 1, 2, 3), are involved in the determination of the group’s criterion weights wi (i =
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1, . . . , 5) and the determination of the group’s distribution of the overall diagnoses (dmc , dbc). To explore

the relationship between the recommended diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5), i.e.,

C̃Gw,Gd

k (k = 1, . . . , 5), and λj (j = 1, 2, 3), 30 groups of λj such that
∑3

j=1 λj = 1 are randomly generated.

For each group of λj , C̃
Gw,Gd

k (k = 1, . . . , 5) is calculated using the process presented in Subsection 5.2.

The movement of C̃Gw,Gd

k (k = 1, . . . , 5) with random λj (j = 1, 2, 3) is plotted in Figure 2. It can be

observed from Figures 2(a)–(c) that C̃Gw,Gd

k1
> C̃R0

k1
(k1 = 1, 2, 3) always holds and from Figures 2(d) and

(e) that C̃Gw,Gd

k2
(k2 = 4, 5) fluctuates around C̃R0

k2
. These observations indicate that wi (i = 1, . . . , 5) and

(dmc , dbc) derived from different sets of λj (j = 1, 2, 3) can always help improve the diagnostic capabilities

of radiologists t̃k1
(k1 = 1, 2, 3); while wi (i = 1, . . . , 5) and (dmc , dbc) derived from some specific sets of

λj (j = 1, 2, 3) can help improve the diagnostic capabilities of radiologists t̃k2
(k2 = 4, 5). It can also

be observed from Figure 2 that larger C̃Gw,Gd

k , which is at least beyond C̃R0

k , is generated when λ1 or

λ2 is the maximum one among λj (j = 1, 2, 3). This finding is consistent with the fact that the own

diagnostic capabilities of t1 and t2 are larger than that of t3. Consequently, t1 and t2 can contribute more

to improving the diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5) than t3. Overall, the importance

of λj (j = 1, 2, 3) with respect to the diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5) is reflected

by the experimental results shown in Figure 2.

The group’s criterion weights wi (i = 1, . . . , 5) and the group’s distribution of the overall diagnoses

(dmc , dbc) are used to determine the aggregated diagnoses and further the recommended diagnostic capa-

bilities of radiologists t̃k (k = 1, . . . , 5), i.e., C̃Gw,Gd

k . To explore the different influence of wi (i = 1, . . . , 5)

and (dmc , dbc) on C̃Gw ,Gd

k (k = 1, . . . , 5), 30 groups of wi (i = 1, . . . , 5) such that
∑5

i=1 wi = 1 and

30 groups of (dmc , dbc) are randomly generated, respectively. Given the group’s random criterion weights

and the group’s distribution of the overall diagnoses derived from the distributions of tj (j = 1, 2, 3),

suppose that the recommended diagnostic capabilities of radiologists t̃k (k = 1, . . . , 5) are obtained as

C̃Ḡw,Gd

k ; while given the group’s criterion weights derived from the criterion weights of tj (j = 1, 2, 3)

and the group’s random distribution of the overall diagnoses, the recommended diagnostic capabilities

of radiologists t̃k (k = 1, . . . , 5) are obtained as C̃Gw,Ḡd

k . All experimental results are presented and

compared in Figure 3. It can be observed from Figure 3 that C̃Ḡw,Gd

k (k = 1, . . . , 5) fluctuates around

C̃R0

k with the group’s different random criterion weights, C̃Gw,Ḡd

k (k = 1, 2, 4, 5) fluctuates around C̃R0

k

with the group’s different random distributions of the overall diagnoses, and C̃Gw,Ḡd

k is always larger than

C̃R0

3 . Meanwhile, from Figures 3(b)–(e), it can also be observed that the group’s specific distributions

of the overall diagnoses may result in greatly small C̃Ḡw,Gd

k . These observations indicate that random

wi (i = 1, . . . , 5) can cause the larger amplitude of variation in C̃Gw,Gd

k than random (dmc , dbc) and hence,

more attention should be paid to wi (i = 1, . . . , 5) in a random environment. It may be a different case

when there are some constraints on wi (i = 1, . . . , 5) and (dmc , dbc) as discussed in Subsection 5.2. Overall,

the importance of wi (i = 1, . . . , 5) and (dmc , dbc) with respect to the diagnostic capabilities of radiologists

t̃k (k = 1, . . . , 5) is reflected by the experimental results shown in Figure 3.

From the above simulation experiments and analysis, it can be revealed that the group’s criterion

weights and the group’s distribution of the overall diagnoses influence the diagnostic capabilities of

radiologists t̃k (k = 1, . . . , 5) significantly. On the condition that the constraints on the group’s criterion

weights and the group’s distribution of the overall diagnoses are satisfied, determining appropriately the

group’s criterion weights and the group’s distribution is greatly important for improving the diagnostic

capabilities of radiologists t̃k (k = 1, . . . , 5).

5.4 Performance comparison between group-recommended diagnoses and overall diagnoses

based on binary classification

Subsection 5.2 focuses on using historical data collected from radiologists tj (j = 1, 2, 3) with sufficient

experience to improve the diagnostic capabilities of t̃k (k = 1, . . . , 5) without a wealth of experience.

When the judgment on whether thyroid nodules are malignant (positive) or benign (negative) becomes

the focus, the diagnosis of nodules is regarded as a binary classification problem. To address this problem,
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Figure 2 (Color online) Movement of C̃
Gw ,Gd
k

(k = 1, . . . , 5) with random λj (j = 1, 2, 3). (a) t̃1; (b) t̃2; (c) t̃3; (d) t̃4;

(e) t̃5.

the performance of nodule classification derived from group-recommended diagnoses is compared with

that derived from overall diagnoses.

As indicated in [68], the area under the receiver operating characteristic (ROC) curve (AUC) is a com-

monly accepted measure used in comparing the performance of classification rules in clinical applications.

It is adopted to compare the performances of nodule classification based on the group-recommended and

overall diagnoses. The concepts associated with ROC curve include true positive, false negative, false
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Figure 3 (Color online) Comparison between C̃
Ḡw,Gd
k

and C̃
Gw ,Ḡd
k

(k = 1, . . . , 5). (a) t̃1; (b) t̃2; (c) t̃3; (d) t̃4; (e) t̃5.

positive, true negative, false positive rate (FPR), and true positive rate (TPR), in which the first four

concepts for the diagnosis of thyroid nodules are explained in [68]. Based on these concepts, ROC

curves from the group-recommended and overall diagnoses will be constructed to make a performance

comparison between them.

As presented in Subsection 5.2, in the process of improving the diagnostic capabilities of radiologists

t̃k (k = 1, . . . , 5), the group-recommended TIRADS categories of thyroid nodules for the radiologists are

obtained. As suggested by the third author, the group-recommended TIRADS category that is one of
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{TIRADS 4B-1, TIRADS 4B-2, TIRADS 4B-3, TIRADS 4C, TIRADS 5} indicates a malignant nodule;

while the group-recommended TIRADS category that is one of {TIRADS 3, TIRADS 4A-1, TIRADS

4A-2} indicates a benign nodule. The division of TIRADS 4B and TIRADS 4A is to facilitate radiologists’

precise diagnosis of thyroid nodules and differentiate the diagnostic capabilities of different radiologists.

In clinical practice, {TIRADS 3, TIRADS 4A, TIRADS 4B, TIRADS 4C, TIRADS 5} is sufficient for

the binary classification of thyroid nodules. To address nodule classification, each group-recommended

TIRADS category of a thyroid nodule is changed to one of {TIRADS 3, TIRADS 4A, TIRADS 4B,

TIRADS 4C, TIRADS 5}. Similarly, each overall diagnosis of thyroid nodule provided by radiologists

t̃k (k = 1, . . . , 5) is changed to one of {TIRADS 3, TIRADS 4A, TIRADS 4B, TIRADS 4C, TIRADS 5}.
After transformation, the categories {TIRADS 4B, TIRADS 4C, TIRADS 5} mean malignant nodules

and the categories {TIRADS 3, TIRADS 4A} mean benign nodules. Because each category corresponds

to a cancer risk interval, two variables c−r and c+r such that 0.25 6 c−r 6 1 and 0.75 6 c+r 6 1 are

used as two thresholds to implement the binary classification of thyroid nodules. If the lower bound of

the cancer risk interval of the group-recommended TIRADS category (or the overall diagnosis) is larger

than or equal to c−r and the upper bound is larger than or equal to c+r , then the nodule is judged to be

malignant; otherwise, it is judged to be benign. Assume that the two variables c−r and c+r are changed

from 1 to 0.25 with a step of (1− 0.25)/100 and from 1 to 0.75 with a step of (1− 0.75)/100, respectively.

With this assumption, using the group-recommended TIRADS categories (or the overall diagnoses) of

thyroid nodules for radiologists t̃k (k = 1, . . . , 5), 100 groups of FPRs and TPRs are computed to form

the radiologists’ ROC curves. The curves of each radiologist constructed from the group-recommended

TIRADS categories and from the overall diagnoses are plotted in one figure to facilitate the performance

comparison. Figure 4 shows the ROC curves of radiologists t̃k (k = 1, . . . , 5).

To compare ROC curve constructed from the group-recommended TIRADS categories with ROC curve

from the overall diagnoses for radiologists t̃k (k = 1, . . . , 5), the curves’ associated AUCs are calculated as

(Sk
G, S

k
O) (k=1, . . . , 5)= {(0.0693, 0.0008), (0.0881, 0.0004), (0.0431, 0.0008), (0.0375, 0.0002), (0.0429, 0)}.

It is easy to see that (Sk
G > Sk

O) (k = 1, . . . , 5). Consequently, compared with the nodule classification de-

rived from the overall diagnoses, the nodule classification derived from the group-recommended TIRADS

categories possesses higher performance. This finding indicates that the application of the proposed

method to the diagnosis of thyroid nodules can improve radiologists’ diagnostic accuracy.

6 Conclusion

A large amount of diversified information and knowledge in the era of informatization drives us to depend

on group expertise and experience to handle real problems. Many GDM-related studies have been con-

ducted to generate group-satisfactory solutions. Among the factors that influence the generation of

group-satisfactory solutions in these studies, the weight of each criterion and the weight of each expert

are two principal ones. Traditional methods mainly use the subjective preferences of experts or objective

decision matrices to determine criterion weights and experts’ weights, and pay little attention to the

learning of the two types of weights from historical decision data. Such learning is beneficial for the

generation of the two types of weights and further the generation of GDM solutions that are consistent

with the preferences of experts characterized by their historical decision data.

To help generate group-satisfactory solutions based on historical decision data, this paper proposes a

data-driven MCGDM method with positive interval numbers. In this paper, to facilitate the learning of

criterion weights and experts’ weights from historical decision data, existing distance measures between

positive interval numbers are analyzed to highlight the selected distance measure. With the assumption

that experts’ weights are positively correlated to their capabilities to make correct decisions, the weight of

each expert is learned from historical overall assessments and the corresponding gold standards based on

the selected distance measure between positive interval numbers. To learn criterion weights, it is assumed

that the larger the weight of a criterion, the larger the similarity between the assessment on the criterion

and the overall assessment. A set of historical assessments on criteria and historical overall assessment can

generate a set of criterion weights under this assumption. Based on all sets of learned criterion weights,
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Figure 4 Comparison between ROC curves from the group-recommended TIRADS categories and that from the overall

diagnose for radiologists. (a) t̃1; (b) t̃2; (c) t̃3; (d) t̃4; (e) t̃5.

an optimization model is constructed to generate a representative set of criterion weights and the unique

optimal solution to the model is theoretically found. By involving the learning of criterion weights and

experts’ weights, the MCGDM process of the proposed method is presented and analyzed. The proposed

method is used to help improve the capabilities of radiologists in diagnosing thyroid nodules based on

the historical examination reports and the corresponding pathologic findings collected from the tertiary

hospital located in Hefei, Anhui Province, China. In addition to the criterion weights of the radiologists

with high diagnostic capabilities, their distributions of the overall diagnoses are verified to help improve

the radiologists with low diagnostic capabilities.
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The theoretical contributions of this paper include: (1) a data-driven MCGDM method with interval

numbers is proposed; (2) expert weights are learned from historical overall assessments and the corre-

sponding gold standards; (3) criterion weights are learned from historical assessments on criteria and

historical overall assessments, in which the obtainment of the weights and their uniqueness are theoret-

ically proved; and (4) the two processes of the proposed method for its two purposes are developed, in

which one is to compare alternatives and the other is to make an overall conclusion. The application of

the proposed method to helping improve the diagnostic capabilities of radiologists highlights the practical

contributions of this paper.

When the individual diagnoses of other diseases on each criterion and the overall diagnoses of the

diseases are represented by interval numbers, there exists a linearly weighted relationship between the

individual diagnoses and the overall diagnoses, and the historical data are available, the proposed method

can be applied in the auxiliary diagnosis of the diseases without any change. Only the criteria for

diagnosing the diseases need to be identified based on the radiologist’s expertise and experience. If the

first two conditions are not satisfied in the diagnosis of other diseases, the proposed method needs to

be simply extended, in which the similarity between the expressions of the diagnoses is required to be

reconstructed and the combination of the individual diagnoses is required to be reconsidered. In the

future study, the proposed method will be extended to be applied in the auxiliary diagnosis of other

diseases, in which the scalability of the proposed method will be evaluated.
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