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Abstract This paper investigates the asymptotic state estimation problem for linear systems with sensor

and actuator faults, where the faults are modeled via multiple modes. For the case of sensor faults, we first

introduce a new notion of detectability, i.e., detectability of system against sensor faults. The notion helps to

address the question of whether it is possible to asymptotically estimate the system state by using the control

input and system output, irrespective of which mode the system is in and what values the fault signals are.

A necessary and sufficient condition for the system to be detectable against sensor faults is given, and then

two switched observers are proposed for asymptotic state estimation with the help of maximin strategy. For

the system with ℓ fault modes, we provide the explicit form of the switched observer, which is based on

a bank of
ℓ(ℓ+1)

2
Luenberger-like or sliding-mode observers. Furthermore, extensions to the case of sensor

and actuator faults are further studied. Finally, a simulation example of a reduced-order aircraft system is

provided to show the effectiveness of the proposed approaches.
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1 Introduction

Observers were first proposed by Luenberger [1] as an effective method to estimate the state of a system

using its available input and output measurements. Observer design problem has received considerable

attention, owing to its applications in broad areas such as observer-based control, system monitoring, and

fault detection and isolation (FDI) [2]. For the system only with sensor faults, the state estimation can be

used directly to control the system, and the fault signals sometimes can be reconstructed from the system

output and the state estimation. Motivated by the work of [1], many extensions have been developed,

such as unknown input observers for linear systems [3], sliding-mode observers for linear systems [4],

distributed observer schemes for sensor networks [5], observer design for linear singular systems [6],

event-based estimators for linear systems [7], disturbance observer [8], and secure state estimators for

cyber-physical systems [9].

In the practical applications of control systems, the sensor/actuator faults generally induce unknown

fault signals entering into the system, result in poor state estimation performance or even cause the in-

stability of the observer error system. This has resulted in an important research area on state estimation
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for the systems with sensor/actuator faults, as surveyed in [10–16] and the references therein. For this

reason, we focus on the asymptotic estimator design problem for systems with sensor/actuator faults.

The main way to consider the observer design problem for the system with faults is to treat the fault

signals as unknown inputs and solve the problem of state estimation in the existence of the unknown

inputs. To name a few, in [10], the authors considered the observer design for linear systems subject to

faults by combining the sliding-mode observer with the unknown input observer, and the result has been

further extended to the case of linear systems with sensor faults [11]. Note that the traditional unknown

input observer approach mainly focuses on the system where the unknown inputs enter into the system

through state equation. In order to cope with the sensor faults, an output filter is introduced in [11]

so that the fault signals appear in the state equation instead of the output equation of the augmented

system. In [12], in the spirit of the unknown input observers, estimation schemes were designed for

linear systems with actuator faults. The scheme is based on the idea of decoupling the state and output

equations into fault-free subsystem, fault-dependent one, and sometimes also disturbance-dependent one.

An unknown input observer is constructed for the first subsystem and is then used for state and fault

estimation.

Nevertheless, a common limitation of these results [10–16] based on unknown input observer is that

only the fault modeled by single mode can be addressed. The existing approaches and results cannot

be applied to the case of the system with faults which modeled via multiple modes (In this paper, the

fault distribution matrix belongs to a set but we do not know which one it is, and the corresponding

fault signal is unknown). The main difficulty is: as the fault distribution matrix and the fault signal are

uncertain, it turns out that the fault-dependent term is subject to a double uncertainty which makes most

of the existing observer methods (e.g., [3,4,10–17]) non-applicable, where the distribution matrices of the

unknown inputs/faults are required to be exactly known a prior. In many practical applications, to cover

all the possible fault situations/scenarios, the fault is usually modeled through multiple modes (called

multiple mode fault for brevity). Such modeling is common in FDI literature [18–20] and fault-tolerant

control literature [21–26]. Unfortunately, to the best of our knowledge, there is no result available on the

asymptotic observer design problem for systems with such faults. This motivates the present study.

This paper is concerned with the challenging problem of asymptotic state estimation for linear systems

with multiple mode sensor/actuator faults. The main contributions are summarized as follows:

(1) For the system with multiple mode sensor faults, a necessary and sufficient condition is provided

to answer the question that whether it is possible to asymptotically estimate the system state by using

the control input and system output.

(2) Under the assumption that the system is detectable against sensor faults, two novel observers are

proposed for asymptotically estimating the system state based on maximin strategy.

(3) For the system with simultaneous sensor and actuator faults, we show that an asymptotic observer

can also be developed under certain conditions.

The paper is structured as follows. Section 2 provides preliminaries and background ideas including

the notion of detectability of system against sensor faults. A necessary and sufficient condition for the

system to be detectable against sensor faults is subsequently given in Section 2. The observer design

and its analytic results for the system with sensor faults are presented in Sections 3 and 4. Extensions

to the case of sensor and actuator faults are further studied in Section 5. Section 6 gives an example to

illustrate the results. Finally, Section 7 concludes the paper.

Notations. For a matrix A, A−1 and λmin(A) denote its inverse and minimum eigenvalue, respectively.

0m×n and In denote the zero matrix with m×n dimensions and the identity matrix with n×n dimensions,

respectively, and their subscripts will be omitted for simplicity without confusion. The notion A > 0

means that A is a symmetric positive definite matrix. Let diag{p1, . . . , pn} denote the diagonal matrix

with p1, . . . , pn on its main diagonal. For a constant matrix F , img(F ) denotes the image space (or

column space) of F , and F⊥ denotes a basis matrix of the orthogonal complement space of img(F ) if the

orthogonal complement space is not equal to {0}, otherwise F⊥ = 0. Finally, the cardinality of a finite

set J is denoted by card(J ).
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2 Problem statement and preliminaries

The background ideas and preliminaries are introduced in this section.

2.1 System model and fault model

Let us first consider the system only with sensor faults

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t) + Ffs(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the system state, control input and system output,

respectively. A, B, C and D are known constant matrices. The pair (F, fs(t)) belongs to a finite set of

fault modes given by

M ,
{
(F1, fs1(t)) , . . . , (Fi, fsi(t)) , . . . , (Fℓ, fsℓ(t))

}
, (2)

where (Fi, fsi(t)) corresponds to the i-th fault mode, and the corresponding fault distribution matrix and

unknown fault signal are Fi and fsi(t), respectively. fsi(t) is assumed to be piecewise continuous. The

positive integer ℓ > 1 represents the number of the total possible fault modes. Without loss of generality,

assume F1, . . . , Fℓ to be of full column rank. Note that, Eq. (1) with zero fault input can be used to

represent the system operating in fault-free case. Moreover, it is also worth remarking that the system

(1) will be reduced to the one in [13] when D = 0 and ℓ = 1.

For the input u(t), the initial state x(0), the fault distribution matrix Fi and the fault signal fsi(t),

the solution of (1) is denoted as x(t) = x(t, x(0), u(t)). The corresponding measured output is denoted

as y(t) = y(t, x(0), u(t), fsi(t)).

Remark 1. The considered fault model (2) is common in FDI literature [18,19] but has also been found

in fault-tolerant control literature [22]. Furthermore, an example is given to support the reasonability of

the multiple mode sensor faults; i.e., the following sensor faults [20] can be transformed into the form in

(1) and (2):

yF (t) =diag{ρi1, . . . , ρip}y(t) + diag{i1, . . . , ip}[ȳi1(t), . . . , ȳip(t)]
T = y(t) + Fifsi(t), (3)

with

Fi = [diag{ρi1 − 1, . . . , ρip − 1}, diag{i1, . . . , ip}] , fsi(t) =
[
y(t)T, ȳi1(t), . . . , ȳip(t)

]T
, (4)

where i = 1, . . . , ℓ represents the i-th fault mode, y(t) ∈ Rp denotes the input signal of the sensors,

yF (t) ∈ Rp denotes the output signal of the sensors, and ȳij(t) represents the stuck value or bias value

of the j-th sensor in the i-th mode. When ρij = 1 and ij = 0, there is no fault for the j-th sensor in

the i-th mode. When ρij = 0 and ij = 0, the j-th sensor is outage in the i-th mode. When ρij = 0 and

ij = 1, the j-th sensor is stuck at the value ȳij(t) in the i-th mode. When 0 < ρij < 1 and ij = 0, the

type of sensor faults is loss of effectiveness in the j-th sensor under the i-th mode. When ρij = 1 and

ij = 1, the j-th sensor suffers from bias fault in the i-th mode and ȳij(t) represents the bias value.

Another intuitive example is that, if no more than 1 sensor is subject to bias fault, the sensor’s output

can be transformed into the following form:

yF (t) = y(t) + Ffs(t), (5)

where F ∈ {diag(1, 0, . . . , 0), diag(0, 1, 0, . . . , 0), . . . , diag(0, . . . , 0, 1)} and fs(t) represents the bias fault.

Remark 2. Motivated by unknown input observers, some methods have been proposed for state or

fault reconstruction problems [10–17]. However, a common limitation of these results is that only single

mode fault (i.e., ℓ = 1) can be addressed. This limits the applicability of these results. Compared with

them, a more general case is investigated in this paper that ℓ can be any positive integer.
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Remark 3. As the fault distribution matrix F and the fault signal fs(t) are uncertain, it turns out

that the fault-dependent term Ffs(t) is subject to a double uncertainty. This double uncertainty makes

most of the existing observer methods (e.g., [3, 4, 10–17]) non-applicable for the system (1). As a result,

the problem under consideration is quite different and more challenging than those in [3,4,10–17], where

the distribution matrices of the unknown input or fault are known constant matrices. When considering

the linear system (1) with multiple mode faults, the problem to design an observer for asymptotically

estimating the system state is still open. To address it, we first design a bank of observers for the system

under consideration, and then a switched observer is proposed to recover the system state with the help

of the maximin strategy [9].

Remark 4. Typically, the disturbances are always inevitable in many practical applications. Compared

with the sensor/actuator fault signals, the disturbances are usually bounded and small in size and thus the

effects of the disturbances on the state estimation are smaller. For this reason, the disturbances are not

taken into account in the system under consideration, and we focus on the state estimation problem for the

system with faults instead of disturbances, which allows us to find a simple solution to the problem from

which we glean significant insights. It is also worth mentioning that the proposed asymptotic switched

observer to recover the system state is based on a bank of Luenberger-like (or sliding-mode) observers,

and thereby the robustness of the switched observer with respect to disturbances can be enhanced by

properly designing the Luenberger-like (or sliding-mode) observers, separately.

Design objective. Construct an observer such that the system state can be estimated asymptotically.

2.2 Detectability of system against sensor faults

This subsection is devoted to deriving conditions under which the system state can be asymptotically

estimated from the control input signal u(t) and output signal y(t), regardless of which mode the system

is in and what values the fault signals are. This motivates the following definition of “detectability of

system against sensor faults”.

Definition 1. The system (1) is detectable against the multiple mode sensor faults (2) if for every initial

states x1(0) ∈ Rn, x2(0) ∈ Rn, control input u(t) ∈ Rm and faults fsi(t), fsj(t) with i, j ∈ {1, . . . , ℓ}, we

have

y
(
t, x1(0), u(t), fsi(t)

)
= y

(
t, x2(0), u(t), fsj(t)

)
,

∀t > 0 ⇒ x
(
t, x1(0), u(t)

)
→ x

(
t, x2(0), u(t)

)
as t → ∞. (6)

In essence, this definition means that, when a system is detectable under multiple mode sensor faults,

the deviation between the possible system states x(t, x1(0), u(t)) and x(t, x2(0), u(t)) that are compatible

with the input signal u(t) and the measured output y(t) will converge to zero, regardless of which mode

the system is in and what values the fault signals are.

Remark 5. The only difference between the detectability of system against sensor faults in Definition 1

and the strong detectability in [27, Definition 1.2] is that the fault distribution matrix in the latter is

required to be unique (the one in this paper belongs to a finite set). One can see that Definition 1 is a

general version of strong detectability and will be reduced to the latter when ℓ = 1.

Now, an important theorem is given to provide the conditions for the system to be detectable.

Theorem 1. The following statements are equivalent:

(i) The system (1) is detectable against the multiple mode sensor faults (2);

(ii) The pair (A, (F⊥
ij )

TC) is detectable for all i, j ∈ {1, . . . , ℓ}, where Fij , [Fi, Fj ].

Proof. Note that, in view of the usual definition of detectability [28], the condition (ii) can be equiva-

lently re-stated as the following condition:

(ii)′ For every i, j ∈ {1, . . . , ℓ} and initial condition x(0) ∈ Rn, we have (F⊥
ij )

TCeAtx(0) = 0, ∀t > 0 ⇒

eAtx(0) → 0 as t → ∞.

Hence, to prove this theorem, we just need to show the equivalence of the conditions (i) and (ii)′. Now

we are ready to prove it.
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(i) ⇒ (ii)′: Suppose for the sake of contradiction that (ii)′ does not hold and (i) holds. Then, there

exist i, j ∈ {1, . . . , ℓ} and an initial condition x(0) such that

(F⊥
ij )

TCeAtx(0) = 0, ∀t > 0 and lim
t→∞

eAtx(0) 6= 0. (7)

Let

fsi(t) = FT
i BFij

(
(BFij

)TFijF
T
ijBFij

)−1
(BFij

)TC

(

x(t, x(0), u(t)) −

∫ t

0

eA(t−τ)Bu(τ)dτ

)

,

fsj(t) = −FT
j BFij

(
(BFij

)TFijF
T
ijBFij

)−1
(BFij

)TC

(

x(t, x(0), u(t)) −

∫ t

0

eA(t−τ)Bu(τ)dτ

)

,

(8)

where x(t, x(0), u(t)) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ , and BFij

is any basis matrix of img(Fij). It can

be verified that (BFij
)TFij is of full row rank.

With such choices of fsi(t) and fsj(t), one can check that

[
F⊥
ij , BFij

]T (
Cx(t, x(0), u(t)) +Du(t)− Fifsi(t) + Fjfsj(t)

)

=

[

(F⊥
ij )

T

(BFij
)T

](

Du(t) + C

∫ t

0

eA(t−τ)Bu(τ)dτ

)

(9)

holds for all t > 0, where we have used the facts that (F⊥
ij )

TFij = 0 and (F⊥
ij )

TCeAtx(0) = 0, ∀t > 0.

From the definitions of F⊥
ij and BFij

, it can be seen that either [F⊥
ij , BFij

] or BFij
is invertible. Thus,

Eq. (9) is equivalent to

eAt×0+C

∫ t

0

eA(t−τ)Bu(τ)dτ+Du(t)+Fifsi(t)=Cx
(
t, x(0), u(t)

)
+Du(t)+Fjfsj(t), ∀t>0. (10)

We can view the left-hand side of (10) as the output y(t, 0, u(t), fsi(t)) and the right-hand side of (10) as

the output y(t, x(0), u(t), fsj(t)). If the system (1) is detectable against the multiple mode sensor faults

(2), it can be obtained from Definition 1 that

lim
t→∞

(

eAt × 0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

)

= lim
t→∞

(

eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ

)

, (11)

which means that limt→∞ eAtx(0) = 0 and it contradicts (7).

(ii)′ ⇒ (i): Suppose by contradiction that (i) does not hold and (ii)′ holds. Thus, there exist two initial

conditions x1(0), x2(0), a control input u(t) and some fault signals fsi(t), fsj(t) with i, j ∈ {1, . . . , ℓ}

such that

y
(
t, x1(0), u(t), fsi(t)

)
= y

(
t, x2(0), u(t), fsj(t)

)
, ∀t > 0, (12)

lim
t→∞

x
(
t, x1(0), u(t)

)
6= lim

t→∞
x
(
t, x2(0), u(t)

)
. (13)

It can be seen from (12) that

CeAtx1(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ +Du(t) + Fifsi(t)

= CeAtx2(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ +Du(t) + Fjfsj(t) (14)

holds for all t > 0, which implies

CeAt
(
x1(0)− x2(0)

)
+ Fij

[
fT
i (t),−fT

j (t)
]T

= 0, ∀t > 0. (15)

Premultiply (15) by (F⊥
ij )

T and then we have

(F⊥
ij )

TCeAt
(
x1(0)− x2(0)

)
= 0, ∀t > 0. (16)
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If (ii)′ holds, it can be obtained from (16) that limt→∞ eAt(x1(0)− x2(0)) = 0, which means that

lim
t→∞

(

eAtx1(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ

)

= lim
t→∞

(

eAtx2(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ

)

. (17)

The left-hand side of (17) is limt→∞ x(t, x1(0), u(t)) and the right-hand side of (17) is limt→∞ x(t, x2(0),

u(t)). Thus, (17) is equivalent to limt→∞ x(t, x1(0), u(t)) = limt→∞ x(t, x2(0), u(t)), which contra-

dicts (13).

3 Observer design for the system with sensor faults

In the previous section, we have quantified the necessary and sufficient conditions for the detectability

of system against sensor faults. Nevertheless, we did not discuss how to estimate system state from the

input signal and output signal. In this section, we focus on constructing a switched observer based on a

bank of ℓ(ℓ+1)
2 Luenberger-like observers to asymptotically estimate the system state.

3.1 Observer design for the case that ℓ = 1

According to Theorem 1, the system (1) is detectable for the case that ℓ = 1 if and only if the pair
(
A, (F⊥

1 )TC
)
is detectable. Thus, the following Luenberger-like observer can be established to estimate

the system state for the case that ℓ = 1.

˙̂x1(t) =Ax̂1(t) +Bu(t) + L1(F
⊥
1 )T

(
ŷ1(t)− y(t)

)
,

ŷ1(t) =Cx̂1(t) +Du(t),
(18)

where the observer matrix L1 is selected a priori such that A+ L1(F
⊥
1 )TC is Hurwitz. It is pretty easy

to prove that, if the system (1) is detectable for the case that ℓ = 1, there always exists a matrix L1 such

that A+ L1(F
⊥
1 )TC is Hurwitz and then the Luenberger-like observer (18) is a exponential observer for

the system (1). Clearly, it is easy to design an observer for the case that ℓ = 1. Hence, we only consider

the case ℓ > 2 in the remainder part of this section, which is difficult to solve.

Remark 6. In [13], the authors proposed sliding-mode observers for the system with sensor faults,

where single fault mode is considered, i.e., ℓ = 1. Compared with [13], there are several advantages of

the observer (18). First and foremost, the design condition is more relaxed than that in [13], where the

observability of the pair (A,C) is needed. Furthermore, the Luenberger-like observer (18) is easier to

implement and simpler than the sliding-mode one.

3.2 Switched observer design for the case that ℓ > 2

Note that, if the system (1) is detectable against the multiple mode sensor faults (2), then the pair

(A, (F⊥
J )TC) is detectable (please see Theorem 1 for details) and there always exists a matrix LJ such

that A+ LJ (F⊥
J )TC is Hurwitz, where J ⊆ {1, . . . , ℓ}, 1 6 card(J ) 6 2, and FJ is defined as follows:

FJ =







Fii, if J = {i},

Fij , if J = {i, j} and i < j,

Fji, if J = {i, j} and j < i.

(19)

Motivated by this point and following the same framework as the Luenberger-like observer, we construct

an observer for the set J , which satisfies J ⊆ {1, . . . , ℓ} and 1 6 card(J ) 6 2, as follows:

˙̂xJ (t) = Ax̂J (t) +Bu(t) + LJ (F⊥
J )T

(
ŷJ (t)− y(t)

)
,

ŷJ (t) = Cx̂J (t) +Du(t),
(20)

where the observer matrix LJ is selected a priori such that A+ LJ (F⊥
J )TC is Hurwitz.
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Theorem 2. Consider the system (1) with ℓ > 2, and the observer (20) with J ⊆ {1, . . . , ℓ} and

1 6 card(J ) 6 2. Assume that the system (1) is detectable against the multiple mode sensor faults (2).

If the fault mode that the system operates in belongs to the set J , then there always exists an observer

matrix LJ such that the observer estimation error converges to zero, i.e., x̂J (t) → x(t) as t → ∞.

Proof. Without loss of generality, one can assume that the system operates in the i-th mode, i.e.,

(F, fs(t)) = (Fi, fsi(t)), but does not know the value of i. From the assumption of the theorem, one can

conclude that F = Fi, {i} ⊆ J ⊆ {1, . . . , ℓ}, and thus (F⊥
J )TF = (F⊥

J )TFi = 0. Therefore, we have

(F⊥
J )T

(
ŷJ (t)− y(t)

)
= (F⊥

J )T
(
Cx̂J (t)− Cx(t) − Ffs(t)

)
= (F⊥

J )TC
(
x̂J (t)− x(t)

)
. (21)

Combining (1), (20) and (21), one can obtain

d

dt

(
x̂J (t)− x(t)

)
=

(
A+ LJ (F⊥

J )TC
)(
x̂J (t)− x(t)

)
. (22)

As the system (1) is assumed to be detectable against sensor faults, it can be seen from Theorem 1 that the

pair (A, (F⊥
J )TC) is detectable. Hence, an observer matrix LJ can be chosen such that A+ LJ (F⊥

J )TC

is Hurwitz, and further we have limt→∞

(
x̂J (t)− x(t)

)
= 0. Thus, the proof is completed.

According to Theorem 2, the state can be estimated asymptotically according to the observer (20)

if the fault mode that the system operates in belongs to the set J . Unfortunately, the aforementioned

condition cannot be confirmed a priori. This is to say, the state estimation cannot be got based on only

one x̂J (t). To overcome the difficulty, a switched observer is proposed with the help of the maximin

strategy.

For each subset N ⊆ {1, . . . , ℓ} satisfying card(N ) = 1, let πN (t) denote the largest deviation between

the estimation x̂N (t) and any estimation x̂O(t), where O is a set which satisfies N ⊆ O ⊆ {1, . . . , ℓ} and

card(O) = 2:

πN (t) = max
{1,...,ℓ}⊇O⊇N , card(O)=2

∥
∥
(
x̂N (t)− x̂O(t)

)∥
∥. (23)

If F = FN , one has x̂N (t) → 0 and x̂O(t) → 0 as t → ∞. That is, x̂N (t) and all x̂O(t) provide the

effective estimations for the system state x(t). In other words, πN (t) is small, which motivates the

following scheme for obtaining state estimation:

x̂(t) = x̂ϑ(t)(t), ϑ(t) ∈ argmin
N⊆{1,...,ℓ}, card(N )=1

πN (t). (24)

One can see that the switched observer (24) is based on a bank of ℓ(ℓ+1)
2 Luenberger-like observers (20).

In the sequel, we give the following result on the performance of the proposed switched observer.

Theorem 3. Consider the system (1) with ℓ > 2, which is detectable against the sensor faults (2).

Then, the switched observer (24) can be implemented to asymptotically estimate the system state.

Proof. Without loss of generality, one can assume that the system (1) operates in the i-th mode, i.e.,

(F, fs(t)) = (Fi, fsi(t)), but does not know the value of i. Let I = {i}. Clearly, card(I) = 1.

According to Theorem 2, it follows readily that

lim
t→∞

πI(t) = lim
t→∞

(

max
{1,...,ℓ}⊇O⊇I, card(O)=2

‖x̂I(t)− x̂O(t)‖

)

= max
{1,...,ℓ}⊇O⊇I, card(O)=2

∥
∥
∥ lim
t→∞

(
x̂I(t)− x̂O(t)

)
∥
∥
∥ = 0. (25)

Recall from (24), and then one has πϑ(t)(t) 6 πI(t). Observer that for the set ϑ(t), there is at least

one set P(t) satisfying I ⊆ P(t), {1, . . . , ℓ} ⊇ P(t) ⊇ ϑ(t) and card(P(t)) = 2. More specifically, P(t)

can be chosen as P(t) = ϑ(t) ∪ I ∪ Z(t), where Z(t) is any set such that Z(t) ⊆ {1, . . . , ℓ} \ (ϑ(t) ∪ I)

and card(Z(t)) = 2− card(ϑ(t) ∪ I). Furthermore, with such choice of P(t), one has

∥
∥x̂ϑ(t)(t)− x(t)

∥
∥ 6

∥
∥x̂ϑ(t)(t)− x̂P(t)(t)

∥
∥+

∥
∥x̂P(t)(t)− x(t)

∥
∥. (26)
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Note that

πϑ(t)(t) = max
{1,...,ℓ}⊇O⊇ϑ(t), card(O)=2

∥
∥x̂ϑ(t)(t)− x̂O(t)

∥
∥. (27)

Thus, from (27) and the facts that {1, . . . , ℓ} ⊇ P(t) ⊇ ϑ(t) and card(P(t)) = 2, we have

∥
∥x̂ϑ(t)(t)− x̂P(t)(t)

∥
∥ 6 πϑ(t)(t) 6 πI(t). (28)

Furthermore, from the definition of P(t), one can get that I ⊆ P(t) ⊆ {1, . . . , ℓ} and card(P(t)) = 2.

It can be further seen from Theorem 2 that

lim
t→∞

∥
∥x̂P(t)(t)− x(t)

∥
∥ 6 lim

t→∞

(

max
I⊆Q⊆{1,...,ℓ}, card(Q)=2

‖x̂Q(t)− x(t)‖

)

= max
I⊆Q⊆{1,...,ℓ}, card(Q)=2

∥
∥
∥ lim
t→∞

(x̂Q(t)− x(t))
∥
∥
∥ = 0. (29)

Combining (25), (26), (28) and (29), one has limt→∞ ‖x̂ϑ(t)(t)− x(t)‖ = 0, which completes the proof.

4 Another observer approach for system only with sensor faults

The observer design problem for the system with sensor faults has been well solved in Section 3. However,

the observer (24) cannot be extended to the case of the system with actuator faults. In this section,

another observer approach is proposed, which is extended to the case of the system with simultaneous

actuator and sensor faults in the next section.

Consider a new state xf (t) ∈ Rp, which is a filtered version of y(t), satisfying

ẋf (t) = Afxf (t) + y(t), (30)

where Af ∈ Rp×p is a Hurwitz matrix. Obviously, Eqs. (1) and (30) can be rewritten as the following

augmented system of order n+ p.

[

ẋ(t)

ẋf (t)

]

︸ ︷︷ ︸

ẋa(t)

=

[

A 0

C Af

]

︸ ︷︷ ︸

Aa

[

x(t)

xf (t)

]

︸ ︷︷ ︸

xa(t)

+

[

B

D

]

︸ ︷︷ ︸

Ba

u(t) +

[

0

F

]

︸ ︷︷ ︸

Fa

fs(t),

[

(F⊥)Ty(t)

xf (t)

]

︸ ︷︷ ︸

ya(t)

=

[

(F⊥)TC 0

0 I

]

︸ ︷︷ ︸

Ca

[

x(t)

xf (t)

]

︸ ︷︷ ︸

xa(t)

+

[

(F⊥)TD

0

]

︸ ︷︷ ︸

Da

u(t). (31)

One should note that, ya(t) is unavailable because we only know F ∈ {F1, . . . , Fℓ}, but we do not know

which one it is. For simplification purpose, let us define

F a
ij =

[

0

Fij

]

, Ca
ij =

[

(F⊥
ij )

TC 0

0 I

]

, Da
ij =

[

(F⊥
ij )

TD

0

]

. (32)

Now, we establish the following lemma, which is helpful to prove our main results.

Lemma 1. The following statements are equivalent:

(a) The system (1) is detectable against the multiple mode sensor faults (2);

(b) The invariant zeros of (Aa, F a
ij , C

a
ij) lie in the left half plane for all i, j ∈ {1, . . . , ℓ}; i.e., for all s

with non-negative real part,

rank

[

sIn+p −Aa −F a
ij

Ca
ij 0

]

= (n+ p) + rank(F a
ij), ∀i, j ∈ {1, . . . , ℓ}. (33)
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Proof. It can be obtained from Theorem 1 that the condition (a) is equivalent to the following condition:

(a)′ The pair (A, (F⊥
ij )

TC) is detectable for all i, j ∈ {1, . . . , ℓ}.

Hence, to prove this theorem, we just need to prove the equivalence between (a)′ and (b). By performing

elementary column and row operations, one can obtain that

rank

[

sIn+p −Aa −F a
ij

Ca
ij 0

]

= rank









sIn −A 0 0

−C sIp −Af −Fij

(F⊥
ij )

TC 0 0

0 Ip 0









(e1)
== rank







sIn −A 0 0

−C 0 −Fij

0 Ip 0







= rank

[

sIn −A 0

C Fij

]

+ p
(e2)
== rank







sIn −A 0

(F⊥
ij )

TC 0

(BFij
)TC (BFij

)TFij






+ p

(e3)
==rank







sIn −A 0

(F⊥
ij )

TC 0

0 (BFij
)TFij






+p=rank

[

sIn −A

(F⊥
ij )

TC

]

+p+rank(Fij), (34)

where (e1), (e2) and (e3) are deduced from the facts that (F⊥
ij )

TFij = 0, either [F⊥
ij , BFij

] or BFij
is

invertible, and (BFij
)TFij is of full row rank. One can see from (34) that (b) is equivalent to that

rank

[

sIn −A

(F⊥
ij )

TC

]

= n, ∀i, j ∈ {1, . . . , ℓ} (35)

holds for all s with non-negative real part, which is equivalent to that the pair (A, (F⊥
ij )

TC) is detectable

for all i, j ∈ {1, . . . , ℓ}. Hence, the proof is completed.

According to Lemma 1, if the system (1) is detectable against the faults (2), then the invariant zeros of

(Aa, F a
ij , C

a
ij) are stable for all i, j ∈ {1, . . . , ℓ}. Note that, rank(Ca

ijF
a
ij) = rank(F a

ij) is always satisfied.

From [29], rank(Ca
ijF

a
ij) = rank(F a

ij) and the invariant zeros of the system model given by the triple

(Aa, F a
ij , C

a
ij) are stable if and only if there exist P a

ij > 0, Qa
ij > 0, La

ij and Ra
ij such that

He
(
P a
ij(A

a + La
ijC

a
ij)

)
= −Qa

ij and Ra
ijC

a
ij = (F a

ij)
TP a

ij . (36)

Let Ca
J , Da

J , F a
J , P a

J , Qa
J , La

J and Ra
J be constructed in a same way as FJ . Thus, Eq. (36) can be

rewritten as

He
(
P a
J (Aa + La

JCa
J )

)
= −Qa

J and Ra
JCa

J = (F a
J )TP a

J . (37)

Inspired by (37), a sliding-mode observer is proposed for the set J ⊆ {1, . . . , ℓ} and 1 6 card(J ) 6 2

as follows:

˙̂xaJ (t) = Aax̂aJ (t) +Bau(t) + La
J

(
ŷaJ (t)− yaJ (t)

)

+ ρ̂J (t)(P a
J )−1(Ca

J )T(Ra
J )TΓ

(
Ra

J

(
yaJ (t)− ŷaJ (t)

))
,

ŷaJ (t) = Ca
J x̂aJ (t) +Da

J u(t),

yaJ (t) =

[

(F⊥
J )Ty(t)

xf (t)

]

= Ca
J xa(t) +Da

J u(t) +

[

(F⊥
J )TF

0

]

fs(t),

(38)

where

Γ
(
Ra

J

(
yaJ (t)− ŷaJ (t)

))
=







Ra
J

(
yaJ (t)− ŷaJ (t)

)

∥
∥Ra

J

(
yaJ (t)− ŷaJ (t)

)∥
∥
, if

∥
∥Ra

J

(
yaJ (t)− ŷaJ (t)

)∥
∥ 6= 0,

0, otherwise.

(39)
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Solutions of (38) need to be understood in a Filippov sense [30]. In (38), ρ̂J (t) is the estimation of the

unknown constant ρ , supt>0 ‖fs(t)‖, and it is tuned as

˙̂ρJ (t) = −rJ σJ (t)ρ̂J (t) + 2rJ
∥
∥Ra

J

(
yaJ (t)− ŷaJ (t)

)∥
∥, (40)

where rJ denotes any positive constant and the function σJ (t) represents the positive uniform continuous

function satisfying

lim
t→∞

∫ t

0

σJ (τ)dτ 6 σ̄J < ∞ (41)

with any given positive constant σ̄J . Define ρ̂J (0) to be positive, and thus ρ̂J (t) is always positive. One

can check that σJ (t) can be chosen as σJ (t) = θJ1
e−θJ2

t with θJ1
/θJ2

6 σ̄J and θJ1
, θJ2

> 0.

Remark 7. Compared with the sliding-mode observer proposed in [11], the upper bound of the faults

is not required to be known beforehand in (38). Furthermore, a drawback of the aforementioned result

is that only single fault mode can be addressed, while there is not such a constraint in our approach.

Let x̃aJ (t) = x̂aJ (t)− xa(t) and ρ̃J (t) = ρ̂J (t)− ρ, and then one can get the following error system:

˙̃xaJ (t) =
(
Aa + La

JCa
J

)
x̃aJ (t)− F afs(t)− La

J

[
FTF⊥

J , 0
]T

fs(t)− ρ̂J (t)(P a
J )−1(Ca

J )T(Ra
J )T

× Γ
(

Ra
J

(

Ca
J x̃aJ (t)−

[
FTF⊥

J , 0
]T

fs(t)
))

, (42)

˙̃ρJ (t) = −rJ σJ (t)ρ̃J (t)− rJ σJ (t)ρ+ 2rJ

∥
∥
∥Ra

J

(

Ca
J x̃aJ (t)−

[
FTF⊥

J , 0
]T

fs(t)
)∥
∥
∥. (43)

Similar to Section 3, we only consider the case that ℓ > 2 in the sequel.

Theorem 4. Consider the original system (1) and the augmented system (31) with ℓ > 2, and the

observer (38)–(41) with J ⊆ {1, . . . , ℓ} and 1 6 card(J ) 6 2. Assume that the original system is

detectable against the multiple mode sensor faults (2). If the fault mode that the system operates in

belongs to the set J , then there always exist observer parameters La
J , P a

J and Ra
J such that all signals

in the resulting closed-loop system are uniformly ultimately bounded and x̂aJ (t) → xa(t) as t → ∞.

Proof. From Lemma 1 and the analysis below it, one can see that there always exist P a
J > 0, Qa

J > 0,

La
J and Ra

J such that

He
(
P a
J (Aa + La

JCa
J )

)
= −Qa

J and Ra
JCa

J = (F a
J )TP a

J , (44)

if and only if the system (1) is detectable against the sensor faults (2). With such choices of P a
J , Qa

J ,

La
J , and Ra

J , we further consider the following Lyapunov function for the error system (42) and (43):

VJ (x̃aJ (t), ρ̃J (t)) = x̃T
aJ (t)P a

J x̃aJ (t) +
1

2rJ
ρ̃TJ (t)ρ̃J (t). (45)

Without loss of generality, one can assume that the system operates in the i-th mode, i.e., (F, fs(t)) =

(Fi, fsi(t)), but does not know the value of i. From the assumption of the theorem, one has F = Fi and

{i} ⊆ J ⊆ {1, . . . , ℓ}. One can check that (F⊥
J )TF = (F⊥

J )TFi = 0, and (42) and (43) can be rewritten

as follows:

˙̃xaJ (t) =
(
Aa + La

JCa
J

)
x̃aJ (t)− F afs(t)− ρ̂J (t)(P a

J )−1(Ca
J )T(Ra

J )TΓ
(
Ra

JCa
J x̃aJ (t)

)
, (46)

˙̃ρJ (t) = −rJ σJ (t)ρ̃J (t)− rJ σJ (t)ρ+ 2rJ
∥
∥Ra

JCa
J x̃aJ (t)

∥
∥. (47)

Taking the derivatives of VJ (x̃aJ (t), ρ̃J (t)) along the trajectory of (46) and (47), together with (44),

ρ = supt>0 ‖fs(t)‖ and −ρ̃2J (t)− ρρ̃J (t) 6 ρ2/4 yields

V̇J (x̃aJ (t), ρ̃J (t)) 6 x̃T
aJ (t)He

(
P a
JAa+P a

JLa
JCa

J

)
x̃aJ (t)−2x̃T

aJ (t)P
a
J F afs(t)−2ρ̂J (t)

∥
∥Ra

JCa
J x̃aJ (t)

∥
∥

+
ρ2

4
σJ (t) + 2ρ̃J (t)

∥
∥Ra

JCa
J x̃aJ (t)

∥
∥
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6 x̃T
aJ (t)He

(
P a
JAa+P a

JLa
JCa

J

)
x̃aJ (t)+2ρ

∥
∥Ra

JCa
J x̃aJ (t)

∥
∥−2ρ̂J (t)

∥
∥Ra

JCa
J x̃aJ (t)

∥
∥

+
ρ2

4
σJ (t) + 2ρ̃J (t)

∥
∥Ra

JCa
J x̃aJ (t)

∥
∥

=− x̃T
aJ (t)Qa

J x̃aJ (t) +
ρ2

4
σJ (t), (48)

where the second inequality is derived from the facts that (a) −2x̃T
aJ (t)P a

JF afs(t) = −2x̃T
aJ (t)P a

JF a
J fs(t)

62ρ‖Ra
JC

a
J x̃aJ (t)‖ if {i}=J ; (b) −2x̃T

aJ (t)P a
JF afs(t)=−2x̃T

aJ (t)P a
JF a

J [fT
s (t), 0]T62ρ‖Ra

JC
a
J x̃aJ (t)‖

if {i} $ J , i = minζ∈J ζ; and (c) −2x̃T
aJ (t)P a

J F afs(t) = −2x̃T
aJ (t)P a

JF a
J [0, fT

s (t)]T 6 2ρ‖Ra
JCa

J x̃aJ (t)‖

if {i} $ J , i = maxζ∈J ζ.

Integrating (48) over [0, t] yields

0 6

∫ t

0

x̃T
aJ (τ)Qa

J x̃aJ (τ)dτ 6 VJ (x̃aJ (0), ρ̃J (0))− VJ (x̃aJ (t), ρ̃J (t)) +
ρ2

4

∫ t

0

σJ (τ)dτ

6 VJ (x̃aJ (0), ρ̃J (0)) +
ρ2

4

∫ t

0

σJ (τ)dτ , (49)

which implies that

VJ (x̃aJ (t), ρ̃J (t)) 6 VJ (x̃aJ (0), ρ̃J (0)) +
ρ2

4
σ̄J , (50)

and

λmin(Q
a
J )

∫ ∞

0

‖x̃aJ (τ)‖2 dτ 6 VJ (x̃aJ (0), ρ̃J (0)) +
ρ2

4
σ̄J . (51)

From (50), the solutions (x̃aJ (t), ρ̃J (t)) are uniformly bounded, and then we have that x̃aJ (t) is

uniformly continuous. According to (51) and Barbalat Lemma [31], one can obtain limt→∞ ‖x̃aJ (t)‖ = 0.

Thus, the proof is completed.

Analogous to Subsection 3.2, for each subset N ⊆ {1, . . . , ℓ} satisfying card(N ) = 1, let πaN (t) denote

the largest deviation between x̂aN (t) and x̂aO(t), where O is a set which satisfies N ⊆ O ⊆ {1, . . . , ℓ}

and card(O) = 2:

πaN (t) = max
{1,...,ℓ}⊇O⊇N , card(O)=2

∥
∥
(
x̂aN (t)− x̂aO(t)

)∥
∥. (52)

If F = FN , one can see from Theorem 4 that x̂aN (t) → 0 and x̂aO(t) → 0 as t → ∞. That is,

x̂aN (t) and all x̂aO(t) provide the effective estimations for xa(t), which motivates the following scheme

for obtaining the state estimation:

x̂a(t) = x̂aϑ(t)(t), ϑ(t) ∈ argmin
N⊆{1,...,ℓ}, card(N )=1

πaN (t). (53)

One can see that the switched observer (53) is based on a bank of ℓ(ℓ+1)
2 sliding-mode observers (38).

Next, we will give the following result on the performance of the above switched observer.

Theorem 5. Consider the original system (1) and the augmented system (31) with ℓ > 2. Assume that

the system (1) is detectable against the multiple mode sensor faults (2). Then, the switched observer

(53) can be implemented to asymptotically estimate the augmented system state xa(t).

Proof. Analogous to the proof of Theorem 3.

5 Extensions for the system with simultaneous sensor and actuator faults

In this section, the approach in Section 4 is extended to the system subject to both the actuator faults

and sensor faults, which is described as follows:

ẋ(t) = Ax(t) +Bu(t) + Efa(t),

y(t) = Cx(t) +Du(t) + Ffs(t),
(54)
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where (E,F, fa(t), fs(t)) ∈ {(E1, F1, fa1(t), fs1(t)), . . . , (Eℓ, Fℓ, fsℓ(t), faℓ(t))}, and (Ei, Fi, fai(t), fsi(t))

corresponds to the i-th fault mode for i = 1, . . . , ℓ. The positive integer ℓ > 1 denotes the number of the

total possible fault modes. For the i-th fault mode, Ei ∈ Rn×vi , Fi ∈ Rp×qi are the fault distribution

matrices, fai(t) ∈ Rvi denotes the unknown actuator fault signal, and fsi(t) ∈ Rqi represents the unknown

sensor fault signal. fai(t) and fsi(t) are assumed to be piecewise continuous and bounded.

Analogous to Section 4, consider a new state xf (t) ∈ Rp, which satisfies

ẋf (t) = Afxf (t) + y(t), (55)

where Af ∈ Rp×p is a Hurwitz matrix. Eqs. (54) and (55) can be rewritten as the following augmented

system:

[

ẋ(t)

ẋf (t)

]

︸ ︷︷ ︸

ẋa(t)

=

[

A 0

C Af

]

︸ ︷︷ ︸

Aa

[

x(t)

xf (t)

]

︸ ︷︷ ︸

xa(t)

+

[

B

D

]

︸ ︷︷ ︸

Ba

u(t) +

[

E 0

0 F

]

︸ ︷︷ ︸

Fnew

[

fa(t)

fs(t)

]

︸ ︷︷ ︸

fnew(t)

,

[

(F⊥)Ty(t)

xf (t)

]

︸ ︷︷ ︸

ya(t)

=

[

(F⊥)TC 0

0 I

]

︸ ︷︷ ︸

Ca

[

x(t)

xf (t)

]

︸ ︷︷ ︸

xa(t)

+

[

(F⊥)TD

0

]

︸ ︷︷ ︸

Da

u(t). (56)

Eq. (56) is in the form of (31). As described in Section 4, a switched observer can be designed by

replacing F a with F new for the system (56). Because the switched observer follows the same scheme as

the one in Section 4, we just point out the existence conditions for the switched observer with respect to

the system (56):

(i) The invariant zeros of (A,Eij , (F
⊥
ij )

TC) lie in the left half plane for all i, j ∈ {1, . . . , ℓ}, where

Eij , [Ei, Ej ];

(ii) rank((F⊥
ij )

TCEij) = rank(Eij) is satisfied for all i, j ∈ {1, . . . , ℓ}.

Remark 8. If the fault signals are large with rapid change, the conventional observer may results

in that the estimation error evolves away from the origin. Therefore, the conventional robust observer

cannot guarantee a desirable estimation performance against severe adversarial attacks. Nevertheless, the

proposed approach can be used to asymptotically estimate the system state, regardless of the magnitude

and the change of the attack signals.

6 Simulation studies

In this section, a simulation example of a reduced-order aircraft system is given to show the effectiveness

of the proposed approaches.

Example 1. The effectiveness of the switched observer will be verified in a linearized reduced-order

aircraft system borrowed from [32]. The system has the form as (54), where x(t) = [β(t), p(t), γ(t)]T and

u(t) = [δDT, δAI, δRU, δRTV, δYTV]. The physical meanings of β(t), p(t), γ(t), δDT, δAI, δRU, δRTV and

δYTV can be found in [32].

In this example, the attack angle, Mach number, and altitude are selected as 29.73◦, 0.2, and 10000ft,

respectively. Then we have

A=







−0.0590 0.4960 −0.8680

−5.5130 −0.9390 0.6650

0.0680 0.0260 −0.1040






, C=I3, D=02×5, B=







0.0060 0.0060 0.0040 0 0.0900

1.8790 1.3280 0.0290 0.6750 0.2170

−0.1090 −0.0960 −0.0840 0.0070 −2.9740






.

Here, the following three possible fault modes are considered:

• Fault mode 1. E1 = [0, 1, 0]T, F1 = [1, 1, 0]T, fa1 = 3 + 3 sin(0.1t) and fs1 = 3 + 3 sin(0.2t);
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Figure 1 (Color online) ‖xa(t)‖ and its estimation ‖x̂a(t)‖ for (a) (E,F ) = (E1, F1), (b) (E,F ) = (E2, F2), and

(c) (E,F ) = (E3, F3), respectively.

• Fault mode 2. E2 = [0, 1, 0]T, F2 = [0, 1, 1]T, fa2 = 3− 3 cos(0.3t) and fs2 = 3− 3 cos(0.4t);

• Fault mode 3. E3 = [0, 1, 0]T, F3 = [1, 1, 1]T, fa3 = 3 + 3 sin(0.5t) and fs3 = 3 + 3 sin(0.6t).

Through some validations, the conditions (i) and (ii) below (56) are satisfied. Thus, a switched observer

can be reconstructed. By applying the theory developed in this paper, the observer parameters Ra
J , P a

J ,

La
J and F⊥

J for all J ⊆ {1, 2, 3} satisfying 1 6 card(J ) 6 2 can be obtained, e.g.,

P a
{2,3} =















65.2262 −0.0002 −44.3730 0.0001

−0.0002 1.1653 −1.1655 0.0831

−44.3730 −1.1655 391.0014 −0.0830

0.0001 0.0831 −0.0830 2.7041

−27.3839 0.5905 14.9032 −0.9879

27.3838 −0.6430 −14.8507 −0.0342

−27.3839 27.3838

0.5905 −0.6430

14.9032 −14.8507

−0.9879 −0.0342

34.7703 −33.3997

−33.3997 34.4436















, F⊥
{2,3} =







−0.0000

−0.7071

0.7071






,

Ra
{2,3} =









−1.6482 0.0831 0.5905 −0.6430

−1.6482 0.0831 0.5905 −0.6430

0.0742 −1.0221 1.3707 1.0440

−0.0432 1.6820 0.3828 1.0098









, La
{2,3} =















0.0057 −0.0550 −0.0939 0.1013

6.1122 0.3967 −1.3044 0.7337

0.0221 −0.0026 −0.0137 0.0118

−0.2216 −2.3886 −1.0965 −1.1555

0.0286 −1.1627 −2.8674 −2.8260

0.1164 −1.0802 −2.7946 −2.9127















. (57)

For simulation purpose, let xa(0) = [xT(t), xT
f (t)]

T = [10, 10, 10, 0, 0, 0]T, x̂aJ (0) = [9, 9, 9, 0, 0, 0]T,

ρ̂J (0) = 3, rJ = 50, σJ = e−t and u(t) = 05×1. The system states and their estimations are shown in

Figure 1 with (E,F ) = {(E1, F1), (E2, F2), (E3, F3)}, respectively. Also, the observer estimation errors

are plotted in Figure 2. It can be seen from Figures 1 and 2 that the system state can be estimated

asymptotically.

7 Conclusion

In this paper, the asymptotic state estimation problem for linear systems with multiple mode faults has

been studied. For the case of sensor faults, we introduced a new notion, i.e., detectability of system



Xie C-H, et al. Sci China Inf Sci November 2019 Vol. 62 212202:14

0

2

4

 

 

0

1

2

 

 

0 5 10 15 20 25 30
0

2

4

 

 

t (s)

||x
a
(t)||~

||x
a
(t)||~

||x
a
(t)||~(a)

(c)

(b)

Figure 2 (Color online) ‖x̃a(t)‖ for (a) (E, F ) = (E1, F1), (b) (E, F ) = (E2, F2), and (c) (E, F ) = (E3, F3), respectively.

against sensor faults. A necessary and sufficient condition for the system to be detectable against sensor

faults has been given. Two switched observers have been developed for state estimation with the help of

maximin strategy. Extensions to the case of sensor and actuator faults have been investigated.
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