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Abstract This paper studies the fixed-time consensus (FixTC) and connectivity-preserving finite-time

consensus (FinTC) protocol designs for second-order multi-agent systems using output information only.

Herein, a distributed FixTC protocol based on the Lyapunov stability and bi-limit homogeneity approaches

is proposed with the aid of an auxiliary system. Then, when the graph is state-dependent, i.e., the agents

have limited sensing and communication ranges, a connectivity-preserving FinTC is proposed by designing

a mechanism suitable for this purpose. Theoretical analysis and several simulations are presented to verify

the effectiveness of the proposed protocols.
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1 Introduction

Distributed consensus for multi-agent systems (MASs) refers to drive a cluster of agents to reach an

agreement on state by designing a distributed control protocol. This has become a popular research topic

owing to its broad applications in a variety of areas, such as swarming of social foraging agents, flocking,

rendezvous, and formation control [1–7].

Existing consensus results roughly fall into two categories according to convergence rate: asymptotic

consensus [8] and finite-time consensus (FinTC) [9–16]. In numerous practical engineering applications,

FinTC demonstrates some advantageous properties like higher accuracy and better disturbance rejection

[17]; therefore, it is usually demanded that agents should achieve consensus in finite time. First, FinTC

was investigated in [9] for first-order MASs, where the normalized and signed gradient-based discontinuous

consensus protocols were designed. Ref. [10] proposed both continuous and discontinuous finite-time

control protocols for first-order MASs to achieve consensus. Wang et al. [11] investigated FinTC for

second-order linear MASs using the homogeneity method. In [12], the FinTC tracking control for MASs

with double-integrator dynamics and bounded disturbances was studied via the terminal sliding-mode

approach. Li et al. [13] investigated the robust FinTC problem for second-order MASs with and without

a leader using the backstepping method. Yu et al. [15] studied FinTC for more complicated second-

order MASs with uncertain disturbances and nonlinear dynamics by designing a decoupled distributed
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sliding-mode control protocol. The bipartite FinTC problem for first/second-order MASs on a directed

cooperative-competitive network was investigated in [16], and the settling time was precisely estimated

and formulated.

Although FinTC was achieved in the aforementioned cases, the settling time relies on the initial

states and may reach infinity as the initial states grow. To overcome this issue, the fixed-time stability

concept was proposed in [18], wherein the convergence time for a system was uniformly bounded about

the initial states. Ref. [19] presented the fixed-time stability theory for nonlinear differential equations

according to the Lyapunov stability approach. Some two-term nonlinear-control protocols were proposed

in [20, 21] for first-order MASs to ensure prescribed-time consensus. A new class of fixed-time consensus

(FixTC) protocols were designed in [22] for integrator MASs with nonlinear dynamics and uncertainties

simultaneously, and the role of each term in controllers was analyzed. Ref. [23] studied the FixTC problem

for nonlinear MASs under general directed topologies. Some FixTC protocols for MASs with second-order

dynamics were proposed in [24–26] from different viewpoints. Concretely, the FixTC tracking problem

was studied in [24, 25] by designing a new sliding surface and an observer-based controller, respectively.

Ref. [26] studied FixTC for nonlinear MASs without leader with the aid of the bi-limit homogeneity

method. Tian et al. [27] studied FixTC tracking of MASs where agents have high-order integrator

dynamics using the sliding mode and bi-limit homogeneity approaches.

Connectivity-preserving FinTC is another interesting topic. In many practical engineering applica-

tions, the agents have limited communication and sensing ranges, which implies that the communication

graphs for the MASs depend upon the distance between any pair of agents. To guarantee consensus, a

connectivity-preserving mechanism is essential, which has recently been studied. Connectivity-preserving

consensus for first-order linear MASs was investigated by using a special potential function [28] and a

bounded navigation function [29], respectively. Ref. [30] proposed a connectivity-preserving mechanism

for leader-follower MASs, which can ensure agents reach rendezvous. Su et al. [31] studied the rendezvous

for second-order MASs, where the control protocol has the ability to maintain connectivity. A robust

connectivity-preserving leader-follower consensus problem for nonlinear and disturbed MASs was studied

in [32]. In the above results, agents were all able to reach consensus asymptotically. Recently, some

finite-time connectivity-preserving consensus protocols have been proposed. The connectivity-preserving

FinTC problems for first-order MASs were investigated with unknown Lipschitz terms [33] and bounded

disturbances [34], respectively. Hong et al. [35] investigated the connectivity-preserving FinTC for second-

order nonlinear MASs by designing a new piecewise smooth potential function.

As discussed above, it can be seen that most existing FixTC results for second-order MASs use both

relative velocity and relative position information in these control protocols. However, the full state is

usually unavailable in practical situations; for instance, velocity may be measured inaccurately or there

may be no velocity sensors in the MASs. Therefore, the consensus problem for second-order MASs with

reduced state information is meaningful and practical. Recently, Tian et al. [36] proposed a FixTC for

second-order leader-follower MASs utilizing only output information by designing a fixed-time distributed

observer. On the other hand, results concerning second-order connectivity-preserving FinTC with only

relative position information have not been reported yet.

Motivated by the foregoing discussion and inspired by the auxiliary system approach [37], this study

investigates two consensus problems for second-order MASs with reduced state information, i.e., using

only relative position states. The first is the FixTC problem (in which the graph is time-invariant) and

the second is the connectivity-preserving FinTC problem with limited communication capabilities. The

novelties of this paper are summarized as follows. First, according to the Lyapunov stability theory

and the bi-limit homogeneity approach, a distributed FixTC protocol is designed with reduced state

measurements. Second, finite-time stability theory and homogeneity theory are utilized to design and

analyze a distributed connectivity-preserving FinTC protocol using only output states. The designed

control protocol can preserve the initial edges and cause the MAS to achieve FinTC.

The rest of the paper is arranged as follows. The mathematical preliminaries are given in Section 2.

The problem statement and main theoretical results concerning FixTC and connectivity-preserving FinTC

protocol designs are presented in Section 3. Section 4 includes numerical simulations to corroborate the
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theoretical results. Finally, Section 5 concludes this paper.

2 Preliminaries

Notations: Rn is a Euclidian space with n dimensions. The superscript T denotes transposition; let [N ]

denote the set {1, 2, . . . , N}; symbol ‖ · ‖ denotes the Euclidean norm. Let ξ[k] = sign(ξ)||ξ||k, where

ξ ∈ Rn and

sign(ξ) =







ξ

||ξ||
, ||ξ|| 6= 0,

0, ||ξ|| = 0

is the signum function.

2.1 Graph theory

An undirected communication network can be represented by an undirected time-varying graph G(t) =

(V,E(t),A(t)), where V = {ν1, ν2, . . . , νN} is the agent set. E(t) ∈ V×V and A(t) = (aij(t))N×N stand for

the edge set and the corresponding adjacency matrix at time t, respectively. Herein, aij(t) = aji(t) > 0 is

the edge weight. Typically, at time instant t, an undirected edge ǫij(t) can be described by an unordered

pair of nodes (νi, νj), indicating an undirected information flow between νi and νj . Furthermore, aij(t) >

0 ⇔ ǫij(t) ∈ E(t). Define the Laplacian matrix at time instant t as L(t) = (lij(t))N×N , where lij(t) =

−aij(t), j 6= i, lii =
∑N

j=1,j 6=i aij(t). Hence, L(t)1N = 0, ∀t.

2.2 Nonsmooth differential equations

Consider the following nonlinear system:

ż(t) = ω(z(t)), (1)

where z = (z1, z2, . . . , zm)T is the state vector and ω = (ω1, ω2, . . . , ωm)T : Rm → Rm is a vector field.

When ω(z(t)) is non-smooth, the solutions of (1) are understood in the Filippov sense [38] which is defined

by an absolutely continuous solution z : [0, T ] → Rm such that ż(t) ∈ K[ω](z(t)) for almost all t ∈ [0, T ],

where K[ω] : Rm → 2R
m

is the Filippov set-valued map, defined by

K[f ](z) ,
⋂

δ>0

⋂

u(S)=0

co{f(Bδ(z)\S)},

where u denotes the Lebesgue measure in Rm, co denotes the convex closure, and Bδ(z) denotes the open

ball centered at z with radius δ.

For a locally Lipschitz function W : Rm → R, the notation ∂W (z) denotes the generalized gradient of

W at z, and LωW (z) = ∩ξ∈∂W (z)ξ
TK[ω](z) denotes the set-valued Lie derivative of W with respect to ω

at z.

Lemma 1 ([38]). If ω(z(t)) is measurable and locally essentially bounded, then there exist Fillippov

solutions of (1) for any initial values.

ω(z) is called homogeneous of degree σ ∈ R with dilation (r1, . . . , rm), if ωi(ǫ
r1z1, . . . , ǫ

rmzm) =

ǫσ+riωi(z1, . . . , zm), where ri > 0 and i ∈ [m].

Lemma 2 ([39]). If ω(z) is homogeneous of degree σ < 0 with a dilation (r1, . . . , rm), where ω(z) is

continuous and its asymptotically stable equilibrium is zero, then the solutions of (1) can reach zero in

finite time.

The following definition and lemma clarify when the fixed-time stability can be obtained for system (1).

Definition 1 (Homogeneity in the ℓ-limit (ℓ = 0 or ∞) [18]). A vector field ω(z) : Rm → Rm is said to

be homogeneous in the ℓ-limit with associated triple (rℓ, σℓ, ωℓ), where rℓ = (rℓ,1, . . . , rℓ,m) is the weight

with rℓ,i > 0, σℓ ∈ R is the degree, and ωℓ = (ωℓ1, . . . , ωℓm)T is the approximating vector field in the
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ℓ-limit. If ω is continuous, for each i ∈ [m], ωℓi is continuous and not identically zero, σℓ + rℓ,i > 0, and,

for each compact set C j Rm \ {0}, the equation limε→ℓ maxz∈C |ωi(ε
rℓ,1z1,...,ε

rℓ,mzm)

ε
σℓ+rℓ,i

−ωℓi(z)| = 0 holds.

Definition 2 ([18]). If a vector field ω : Rm → R
m is homogeneous in the 0-limit and homogeneous in

the ∞-limit simultaneously, it is called homogeneous in the bi-limit.

Lemma 3 ([18]). Suppose the vector field ω : Rm → Rm is homogeneous in the bi-limit with associated

triples (r∞, σ∞, ω∞) and (r0, σ0, ω0). If the origins of the systems

ż = ω(z), ż = ω∞(z), ż = ω0(z)

are globally asymptotically stable and σ∞ > 0 > σ0, then all solutions of the system (1) converge to the

origin in fixed time.

3 Main results

3.1 Problem statement

The following second-order MAS consisting of N agents is considered:

ṗi(t) = vi(t), v̇i(t) = ui(t), i ∈ [N ], (2)

where pi(t) ∈ Rn and vi(t) ∈ Rn represent the position and the velocity states of the ith agent, re-

spectively, and ui(t) ∈ R
n is a control input to be designed later. Denote p(t) = (pT1 , . . . , p

T
N )T and

v(t) = (vT1 , . . . , v
T
N )T.

Definition 3. FinTC is said to be achieved by the second-order MAS (2), if there exists a finite time

T (p(0), v(0)) > 0, such that limt→T (p(0),v(0)) ||pi(t) − pj(t)|| = 0, limt→T (p(0),v(0)) ||vi(t) − vj(t)|| = 0,

and pi(t) = pj(t), vi(t) = vj(t), ∀t > T, i, j ∈ [N ]. Furthermore, if there exists Tmax such that

T (p(0), v(0)) 6 Tmax for all (p(0)T, v(0)T)T ∈ R2nN , then the second-order MAS (2) is said to achieve

FixTC.

In the following, fully distributed control protocols will be designed to make the MAS (2) reach FixTC

without using velocity information when the considered network is time-invariant. Then, if the graph is

state-dependent, a fully distributed control protocol will be further designed without employing velocity

measurements which can preserve the initial edges and reach FinTC.

The following lemma is a standard result of an undirected graph and is useful for deducing theoretical

results.

Lemma 4 ([40]). The equation
∑N

i=1

∑N

j=1 qijy
T
i φ(xi − xj) = 1

2

∑N

i=1

∑N

j=1 qij(yi − yj)
Tφ(xi − xj)

holds for yi, xi ∈ Rn, where Q = [qij ] ∈ RN×N is a symmetric matrix and φ(·) is an odd function.

3.2 FixTC protocol under a fixed topology

In this subsection, we assume that G(t) is time-invariant and connected. Our goal is to propose a FixTC

protocol without using velocity information.

This protocol is designed as follows:

ui(t) =− l1

N∑

j=1

aij(pi − pj)
[α1] − l2

N∑

j=1

aij(pi − pj)
[α2] + γżi(t),

żi(t) =− c1z
[β1]
i − c2z

[β2]
i − l1

N∑

j=1

aij(pi − pj)
[α1] − l2

N∑

j=1

aij(pi − pj)
[α2], i ∈ [N ],

(3)

where l1, l2, γ, c1, c2 are some positive feedback gains, zi(t) is an auxiliary variable, α1 ∈ (0, 1), α2 > 1

and βi =
2αi

1+αi
, i = 1, 2.

Theorem 1. Assume that the undirected time-invariant communication graph G is connected; then,

FixTC can be reached for the MAS (2) with control protocol (3).
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Proof. Step 1: First, we prove that the system (2) with (3) is globally asymptotically stable.

Choose a Lyapunov candidate function:

V (t) =
l1

1 + α1

N∑

i,j=1

aij ||pi − pj ||
1+α1 +

l2
1 + α2

N∑

i,j=1

aij ||pi − pj ||
1+α2 +

N∑

i=1

||vi − γzi||
2 +

N∑

i=1

γ||zi||
2,

which is a positive definite function with respect to pi − pj, i 6= j, zi, and vi − γzi, i, j ∈ [N ].

Differentiating V (t) gives

V̇ (t) =l1

N∑

i,j=1

aij(vi − vj)
T(pi − pj)

[α1] + l2

N∑

i,j=1

aij(vi − vj)
T(pi − pj)

[α2]

+ 2
N∑

i=1

(vi − γzi)
T(v̇i − γżi) + 2

N∑

i=1

γzTi żi

=2l1

N∑

i,j=1

aijv
T
i (pi − pj)

[α1] + 2l2

N∑

i,j=1

aijv
T
i (pi − pj)

[α2]

+ 2

N∑

i=1

(vi − γzi)
T

(

− l1

N∑

j=1

aij(pi − pj)
[α1] − l2

N∑

j=1

aij(pi − pj)
[α2]

)

+ 2

N∑

i=1

γzTi

(

− c1z
[β1]
i − c2z

[β2]
i − l1

N∑

j=1

aij(pi − pj)
[α1] − l2

N∑

j=1

aij(pi − pj)
[α2]

)

=− 2γ

N∑

i=1

(c1||zi||
1+β1 + c2||zi||

1+β2).

Herein, Lemma 4 is used to derive the second equation. Define the invariant set Ω = {(pT1 , . . . , p
T
N , v

T
1 , . . . ,

vTN , z
T
1 , . . . , z

T
N)|V̇ (t) = 0}. From V̇ (t) = 0, one obtains zi = 0, i ∈ [N ]. Because the graph is undirected

and connected according to (3), zi = 0 means p1 = p2 = · · · = pN . Furthermore, we find that v1 =

v2 = · · · = vN . Thus, by invoking the nonsmooth LaSalle invariance principle [41], pi − pj → 0,

vi − vj → 0, zi → 0 as t→ ∞ for i, j ∈ [N ].

Step 2: Let p̃i = pi − p̄, ṽi = vi − v̄ and z̃i = zi, where p̄ = 1
N

∑N
j=1 pj and v̄ = 1

N

∑N
j=1 vj . We can

obtain the error system of (2) with (3) by transforming the equilibrium point to the origin:

˙̃pi(t) =ṽi,

˙̃vi(t) =− γc1z̃
[β1]
i − l1(1 + γ)

N∑

j=1

aij(p̃i − p̃j)
[α1]

− γc2z̃
[β2]
i − l2(1 + γ)

N∑

j=1

aij(p̃i − p̃j)
[α2] − γc1

1

N

N∑

j=1

z̃
[β1]
j − γc2

1

N

N∑

j=1

z̃
[β2]
j ,

˙̃zi(t) =− c1z̃
[β1]
i − c2z̃

[β2]
i − l1

N∑

j=1

aij(p̃i − p̃j)
[α1] − l2

N∑

j=1

aij(p̃i − p̃j)
[α2], i ∈ [N ].

(4)

It is possible to check that Eq. (4) is homogeneous in the bi-limit, where its approximating systems in

the 0-limit and in the ∞-limit, respectively, are listed as follows:

˙̃pi(t) =ṽi,

˙̃vi(t) =− γc1z̃
[β1]
i − l1(1 + γ)

N∑

j=1

aij(p̃i − p̃j)
[α1] − γc1

1

N

N∑

j=1

z̃
[β1]
j ,

˙̃zi(t) =− c1z̃
[β1]
i − l1

N∑

j=1

aij(p̃i − p̃j)
[α1], i ∈ [N ],

(5)
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˙̃pi(t) =ṽi,

˙̃vi(t) =− γc2z̃
[β2]
i − l2(1 + γ)

N∑

j=1

aij(p̃i − p̃j)
[α2] − γc2

1

N

N∑

j=1

z̃
[β2]
j ,

˙̃zi(t) =− c2z̃
[β2]
i − l1

N∑

j=1

aij(p̃i − p̃j)
[α2], i ∈ [N ].

(6)

It can be shown that the approximating system in the 0-limit (5) with variables (p̃T1 , . . . , p̃
T
N , ṽ

T
1 , . . . ,

ṽTN , z̃
T
1 , . . . , z̃

T
N)T is homogeneous of degree σ0 = α1 − 1 < 0 with dilation

(2, . . . , 2
︸ ︷︷ ︸

nN

, 1 + α1, . . . , 1 + α1
︸ ︷︷ ︸

nN

, 1 + α1, . . . , 1 + α1
︸ ︷︷ ︸

nN

);

meanwhile, the approximating system in the ∞-limit (6) with variables (p̃T1 , . . . , p̃
T
N , ṽ

T
1 , . . . , ṽ

T
N , z̃

T
1 , . . . ,

z̃TN )T is homogeneous of degree σ∞ = α2 − 1 > 0 with dilation

(2, . . . , 2
︸ ︷︷ ︸

nN

, 1 + α2, . . . , 1 + α2
︸ ︷︷ ︸

nN

, 1 + α2, . . . , 1 + α2
︸ ︷︷ ︸

nN

).

From Step 1, one can conclude that the error system (4) is globally asymptotically stable. Following

a similar procedure in Step 1, it is easy to prove that systems (5) and (6) are all globally asymptotically

stable. From the above analysis and Lemma 3, we can conclude that the MAS (2) with control protocol (3)

can reach FixTC.

Corollary 1. Assume that the undirected time-invariant graph G is connected; then FixTC can be

reached for the MAS (2) using control protocol (7):

ui(t) =−
N∑

j=1

(l1aij(pi − pj)
[α1] + l2aij(pi − pj)

[α2]) + γżi(t),

żi(t) =−
N∑

j=1

(c1aij(zi − zj)
[β1] + c2aij(zi − zj)

[β2] + l1aij(pi − pj)
[α1] + l2aij(pi − pj)

[α2]),

(7)

where l1, l2, γ, c1, c2 are some positive feedback gains, zi(t) is an auxiliary variable, α1 ∈ (0, 1), α2 > 1

and βi =
2αi

1+αi
, i = 1, 2.

Proof. This proof follows a similar procedure to that used in Theorem 1 and can be skipped for brevity.

Remark 1. Both control protocols (3) and (7) are fully distributed because each controller only uses

information from itself and its neighbors. Under control protocol (3), agent needs to only exchange

position information with its neighbors, whereas control protocol (7) requires the communication of the

corresponding position and auxiliary variables. In [36], a differentiator was utilized to estimate relative

velocities within a fixed time. However, neighbors’ input information had to be known in that case.

Unlike [36], the auxiliary variable zi introduced here depends only on relative state information and

compensates for relative velocity variation.

Remark 2. Herein, the final consensus value will be further analyzed. In fact, according to (2) and

(3), one obtains the final consensus value as p̄(t) = 1
N

∑N

i=1 pi(t) = 1
N

∑N

i=1(pi(0) +t(vi(0) − γzi(0))),

and v̄(t) = 1
N

∑N
i=1 vi(t) =

1
N

∑N
i=1(vi(0)− γzi(0)). If one chooses zi(0) = 0, i ∈ [N ], the final consensus

value will not be affected by the initial values of auxiliary variable zi(0).

3.3 Connectivity-preserving FinTC protocol under a state-dependent topology

In accordance with the literature [33–35], we consider state-dependent communication in this subsection,

which means that any two agents can only communicate with each other when their distance falls within

a certain range.
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Assumption 1. There is a connection (an undirected edge) between two agents when and only when

the distance between them is within a certain range R, i.e., for the neighbors of agent i at time t,

Ni(t) = {j
∣
∣||pi(t)− pj(t)|| < R}.

Design the finite-time connectivity-preserving consensus protocol as follows:

ui(t) =− l
N∑

j=1

̟ij(t)(pi − pj)
[α] + γżi(t),

żi(t) =− cz
[β]
i − l

N∑

j=1

̟ij(t)(pi − pj)
[α], i ∈ [N ],

(8)

where l, γ, c are some positive feedback gains, α ∈ (0, 1), β = α
1+α

, and ̟ij(t) = ̟(||pi(t) − pj(t)||) is

designed as

̟ij(t) =







ψ(||pi(t)− pj(t)||), ||pij(0)|| < R and ||pij(t)|| < R,

ℓ, ||pij(0)|| > R and ||pij(t)|| < R,

0, otherwise,

where pij(t) = pi(t) − pj(t) and ψ(s) : [0, R) → [0,∞) is an artificial potential function which satisfies

the following properties.

(1) ψ(s) is continuous on [0, R). ψ(s) = ℓ when s ∈ [0, τR], where ℓ > 1 is a positive constant; ψ(s) > ℓ

when s ∈ [τR,R) with τ ∈ (0, 1).

(2)
∫ r

0 ψ(s)s
αds→ ∞ when r → R.

Remark 3. The first property of ψ(s) is to make homogeneous condition satisfied which requires that

ψ(s) is a constant in the region [0, τR]. Furthermore, the condition ψ(s) > ψ(τR) > 1 for s ∈ [0, R)

ensures that the weight will not be too small or else the consensus rate will be slow. The second property

of ψ(s) ensures that the initial edges will not be lost as time evolves. The following function is one

example that was originally used in [35]:

ψ(s) =







Rα+1

Rα+1 − (τR)α+1
, 0 6 s 6 τR,

Rα+1

Rα+1 − sα+1
, τR < s < R.

(9)

Remark 4. Note that the control protocol (8) is discontinuous because ̟ij(t) is discontinuous. There-

fore, the solutions of system (2) with control protocol (8) are understood in the Filippov sense [38]. Since

the right-hand side of (2) with (8) is measurable and locally essentially bounded, there exist Filippov

solutions of (2) based on Lemma 1.

The following energy function is used in this subsection:

W (t) = l
N∑

i,j=1

∫ ||pi−pj ||

0

̟(s)sαds+
N∑

i=1

||vi − γzi||
2 +

N∑

i=1

γ||zi||
2.

Theorem 2. If G(0) is connected and W (0) is finite, then for MAS (2) with control protocol (8), the

following statements hold.

(1) The initial edges will always be preserved for t > 0.

(2) The FinTC can be achieved.

Proof. (1) T1 is assumed to be the first finite-time instant satisfying limt→T
−

1

||pi(t) − pj(t)|| = R for

some (i, j) ∈ E(0). That is, the initial edges will always be maintained on the time interval [0, T1). Let

ω be the right-hand side of system (2) with (8). The set-valued Lie derivative of W (t) is calculated as

follows:

LωW (t) =K






l

N∑

i,j=1

̟ij(t)(vi − vj)
T(pi − pj)

[α] + 2

N∑

i=1

(vi − γzi)
T(v̇i − γżi) + 2

N∑

i=1

γzTi żi






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=K






2l

N∑

i,j=1

̟ij(t)v
T
i (pi − pj)

[α] + 2
N∑

i=1

(vi − γzi)
T

(

− l
N∑

j=1

̟ij(t)(pi − pj)
[α]

)

+2

N∑

i=1

γzTi

(

− cz
[β]
i − l

N∑

j=1

̟ij(t)(pi − pj)
[α]

)






=− 2γc

N∑

i=1

||zi||
1+β . (10)

Herein, Lemma 4 is utilized to derive the second equation. Based on Eq. (10), one has LωW (t) 6 0,

from which it follows that W does not increase. On the contrary, if there exist agents i′ and j′ satisfying

(i′, j′) ∈ E(0) and limt→T
−

1

||pi′j′ (t)|| = R, then
∫ ||pi′j′ (t)||

0 ̟(s)sαds =
∫ ||pi′j′ (t)||

0 ψ(s)sαds → +∞ based

on the second property of ψ. This means W (t) → ∞ as t → T1, which contradicts the fact that

LωW (t) 6 0. Therefore, the initial edges will be always be preserved for t > 0.

(2) Define the invariant set S = {(pT1 , . . . , p
T
N , v

T
1 , . . . , v

T
N , z

T
1 , . . . , z

T
N )|0 ∈ LfW (t)}. Note that Ẇ (t) = 0

implies zi = 0, i ∈ [N ]. Because the graph is always connected, from (8), zi = 0 means that p1 = p2 =

· · · = pN . Furthermore, we obtain that v1 = v2 = · · · = vN . Therefore, by invoking the invariance

principle for discontinuous dynamic systems [42], we obtain pi− pj → 0, vi− vj → 0, zi → 0 when t→ ∞

for i, j ∈ [N ].

Let p̃i = pi − p̄, ṽi = vi − v̄ and z̃i = zi, where p̄ = 1
N

∑N

j=1 pj and v̄ = 1
N

∑N

j=1 vj . We obtain the

error system of (2) with (8) by transforming the equilibrium point to the origin:

˙̃pi(t) =ṽi,

˙̃vi(t) =− γcz̃
[β]
i − l(1 + γ)

N∑

j=1

̟ij(t)(p̃i − p̃j)
[α] − γc

1

N

N∑

j=1

z̃
[β]
j ,

˙̃zi(t) =− cz̃
[β]
i − l

N∑

j=1

̟ij(t)(p̃i − p̃j)
[α], i ∈ [N ].

(11)

Let Ω̄ = {(pT1 , . . . , p
T
N , v

T
1 , . . . , v

T
N , z

T
1 , . . . , z

T
N)|||pi(t)− pj(t)|| 6 τR, i, j ∈ [N ]}. From the above analy-

sis, it is apparent that the error system (11) is globally asymptotically stable. Thus, there exists a finite

time T such that (pT1 , . . . , p
T
N , v

T
1 , . . . , v

T
N , z

T
1 , . . . , z

T
N ) ∈ Ω̄ for all t > T . Moreover,̟ij(t) = ψ(τR) for t >

T based on the definition of̟ij(t). Then, the error system (11) with variables (p̃T1 , . . . , p̃
T
N , ṽ

T
1 , . . . , ṽ

T
N , z̃

T
1 ,

. . . , z̃TN)T is homogeneous of degree σ = α− 1 < 0 with dilation

(2, . . . , 2
︸ ︷︷ ︸

nN

, 1 + α, . . . , 1 + α
︸ ︷︷ ︸

nN

, 1 + α, . . . , 1 + α
︸ ︷︷ ︸

nN

).

Then, based on Lemma 2, FinTC can be achieved for MAS (2) with (8).

Remark 5. In the proof of Theorem (2), the initial energy W (0) must be finite, implying that there

do not exist any two neighboring agents with a geometrical distance infinitely close to R at t = 0.

4 Simulations

To verify the two control protocols (3) and (8), two numerical examples will be presented in this section.

Example 1. In this example, the graph is set time-invariant, as shown in Figure 1. Consider the

MAS (2) with the FixTC control protocol (3) and choose the control parameters l1 = 2, l2 = 3, c1 =

c2 = γ = 1, α1 = 2/3, α2 = 5/4, β1 = 4/5, and β2 = 10/9. The initial values are chosen as p(0) =

(−3, 1, 5,−9,−5)T, v(0) = (3,−4,−2, 2, 5)T, and z(0) = (0, 0, 0, 0, 0)T. The trajectories of the state are

illustrated in Figure 2 and the control inputs are shown in Figure 3.
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Figure 1 (Color online) Connected graph G(0).

0 10 15 20 25 30
Time (s)

−10

−5

0

5

10

15

20

25

P
o
si

ti
o
n

0 10 15 20 25 30
Time (s)

−15

−10

−5

0

5

10

15

V
el

o
ci

ty

(a) (b)

5 5

Figure 2 (Color online) Trajectories of (a) positions and (b) velocities under control protocol (3).
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Figure 3 (Color online) Evolution of control inputs (3).

Example 2. In this example, it is assumed that the graph is state-dependent and that the sensing

range is R = 3. Consider the MAS (2) with the connectivity-preserving FinTC control protocol (8) and

choose the control parameters l = 1.5, c = γ = 1, α = 1/2, β = 2/3. Furthermore, let τ = 0.2. The initial

values are chosen as p(0) = (−3,−1, 1,−7,−5)T, v(0) = (3,−4,−2, 2, 5)T, and z(0) = (0, 0, 0, 0, 0)T. The

initial graph is shown in Figure 1. The trajectories of the states are depicted in Figure 4 and the control

inputs are given in Figure 5. From Figure 6, one can observe that the original connections are preserved

with control protocol (8) because the distances for adjacent agents in graph G(0) are always less than

the sensing range.

5 Conclusion

Herein, two consensus problems for second-order MASs without velocity measurements were consid-

ered. The first was the FixTC problem with a time-invariant graph. A distributed FixTC protocol

was designed without using velocity measurements based on the Lyapunov stability theory and the bi-

limit homogeneity approach. The other problem was the connectivity-preserving FinTC problem with

a state-dependent graph. By invoking the finite-time stability and homogeneity theories, a distributed

connectivity-preserving FinTC protocol was designed using only output state information, which can

preserve the initial edges and make the MAS reach FinTC. One main advantage of the homogeneity-
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Figure 4 (Color online) Trajectories of (a) positions and (b) velocities under control protocol (8).
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Figure 5 (Color online) Evolution of control inputs (8). Figure 6 (Color online) The evolution of distances for

adjacent agents in G(0) with control protocol (8).

based distributed controller designed here is the concise choice of parameters. However, the time could

not be estimated easily. Future work will focus on precise convergence time estimation and the design of

distributed FixTC protocols for nonlinear second- and higher-order MASs with reduced state information.
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