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Abstract In time-aware recommender systems, we have to consider the dynamic aspect of recommendation

that is fond of new coming data. Usually, the recent data is more closely related to current recommendation

tasks and the early data are useful to indicate overall measurements of the preferences. We propose a

probabilistic model that uses the early data to generate the prior distribution and the recent data to capture

the change of the states of both users and items in collaborative filtering systems. Our model is dynamic

in the sense that it updates every time receiving new data. The time cost of every updating has a constant

limit, which is suitable to deal with large scale data for online recommendation. Experiments on real datasets

show the improvement performance of our model over the existing time-aware recommender systems.
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1 Introduction

Recommender systems give personalized suggestions to users from a large number of items. The users

and items of recommender systems change over time. Any user can go over to different preferences as

time goes by. The categories of items are changeable along with the trend of consumption. New users

and items are constantly incorporated, which might influence existing ones. Recommender systems have

to model the dynamics of recommendation over time.

Considering the behaviors of users, it is useful to define the distinction between the recent interests

and the early ones. Recommender systems more concern about “what might the users like now”, though

they are more or less influenced by “what did the users like before”. On the other side, the behaviors

of users change with the change of items over time. The distinction between the recent and early data

is relative. The early data can be increasingly accumulated by the recent data that is discarded by the

newest data in certain time widows. In collaborative filtering systems, the recent ratings, which are closer

to current status of both users and items, need to pay more attention. The early ratings are needed and

accumulated, which approximate overall measurements of the preferences of both users and items.

Most of time-aware recommender systems use the data of users and items without the distinction

between the recent and early data. The time related functions and features are common ways in time-

aware recommender systems [1–8]. These methods try to capture temporal properties of all the past time

by day or week specific parameters. However, they cannot build up the connection between the recent and

early time. Tensor factorizations handle time as a separate dimension [9–11]. By the three-vector inner-

product formula, the additional time vector can adjust the weight of each hidden factor. However, they
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cannot indicate individual change of each user or item. Similar to the time-related functions, they cannot

derive the connection between the recent and early time. The sequence pattern mining in recommender

systems is used to learn the behaviors of users [12–19]. The method takes care about the sequence of

actions of users in period. However, it does not concern about the difference of the recent and early data

and the change of the preferences of users.

There are probabilistic models such as hidden Markov models (HMMs) [20–27] and Kalman fil-

ter [28–32] in recommender systems. These studies explain the behaviors of users in probabilistic models

for making prediction. When learning the model parameters, they use historical data with the same

measurements of the preferences. Unfortunately, the model parameters would be influenced more by the

early data rather than the recent data. They cannot well deal with the difference of the recent and early

data.

In this paper, we consider the recommendation in collaborative filtering that changes over time by

making the distinction between the recent and early data. It updates when it receives the new coming

data and accumulates the historical data to approximate overall measurements of the preferences for

both interests of users and properties of items. We propose a probabilistic model based on HMM that

captures the change of the preferences of both users and items. Moreover, most of existing time-aware

recommender systems are offline recommendation by batch learning. They have to retrain the whole

model when new data is imported. In our model, the time cost of every update has a constant limit for

the recent and early data, which makes it suitable to deal with large scale data for online recommendation.

Experiments on real datasets show the improvement performance of our model over the existing time-

related recommender systems.

In Section 2, we discuss the related work. We present the probabilistic model for recommendation over

time in Section 3. In Section 4, we provide the algorithms of our model. In Section 5, we demonstrate

the improvement performance of our model. Finally, we make remarks in the concluding section.

2 Related work

The recommender systems based on neighborhood consider the importance of the recent data. In [33–38],

time weights are used as a simple way for time information. They calculate the similarity of items (or

users) by increasing the weights of items rated at recent time and make recommendation by similar

items. The time window is another way for time information [39, 40]. Only the ratings in a recent time

window are considered for the calculation of similar items and the others are discarded. However, the

time weights and the time window are so simple that they cannot distinct the recent and early ratings.

In our model, we only store the recent ratings, which is somehow similar to the time window method. We

do not discard the early ratings but accumulate them to get the prior distribution of random variables

of each user and item. Our model avoids the loss of information in the process of discarding ratings.

In [41,42], the models use the long-term and short-term preferences to describe the behaviors of users,

which is similar to the distinction between the recent and early data in our model. In [43–47], the models

concentrate on the short-term interests. Those studies mostly use graph-based algorithms, which are

totally different from probabilistic model. The user-item-session graph or user-item networks have some

connections about the users and their long-term or short-term preferred items. However, they cannot

model the change of the preferences of users by the graphs. Our model represents both the interests of

users and properties of items by the random variables with clear interpretations and the change of the

preferences of both users and items are represented by the temporal variables as well.

In [20, 24, 25], the hidden (semi-)Markov models are applied for recommender systems, in which the

hidden variables are used to describe the states of users and the item selections are the observed evidences.

It is a convenient way to use HMMs to describe the item selections of users. In [23, 26], the HMMs are

applied to the sequence pattern mining in recommender systems. There are some specific applications

of HMMs for sport videos [21] and people-to-people recommendation [22, 27]. However, those models do

not have hidden variables for items and thus there are not proper ways to describe the hidden properties
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of items and their change over time.

Kalman filter is another probabilistic model used in recommender systems. In [32,48], the models CKF

and SRec have the temporal variables similar to our model. The most important difference between our

model and those models is that those models do not consider the distinction between the recent and early

data. The updating steps of those models use only the most recent rating or ratings of the most recent

time point. We set the prior distribution by accumulating the early ratings and run the forward-backward

algorithm on the recent ratings. Although only using the most recent rating is faster, our algorithm has

better recommendation performance and reasonable constant time cost. In [30, 31], Kalman smoothing

is used for all the historical data. As indicated in [32], it is inefficient and not able to handle large scale

data. In our model, the time-consuming forward-backward algorithm only runs on the recent ratings and

the maximal number of recent ratings is adjustable. Hence, our model is fast and suitable for large scale

online recommendation.

In recent years, deep learning is applied for recommender systems. The recurrent neural networks

(RNNs) can model long and short term sequential recommendation [49–53]. Though those studies have

the inspiration of deep learning in good trade-off between long term and short term prediction, they

cannot model the preferences of users and the distinction between the recent and early data. Our work

indicates that the probabilistic model gains a competitive advantage over rival deep learning in time-aware

recommender systems.

3 Model

3.1 Notations

Let CF = 〈User, Item,Time,Level,Rating〉 be a collaborative filtering system, where

(1) User is a set of users, and user (or u) ∈ User is a user.

(2) Item is a set of items, and item (or i) ∈ Item is an item.

(3) Time = R
+ indicates time, where R

+ is the set of positive real numbers.

(4) Level= {1, 2, . . . , N} is the values of ratings, given an integer N .

(5) Rating is a set of ratings, and rating = (user, item, time, level) (or r = (u, i, t, l)) ∈ Rating is a

rating, which means that user gives rating level to item at time.

We write RT(user) and RT(item) as the sets of ratings belonging to a user and an item, respectively.

For any rating set Ω, we write subscript to indicate the subset of ratings at a given time. For instance,

Ωt1 = {(u, i, t, l) ∈ Ω | t = t1}. We write TM(Ω) to represent the set of times (time points) that there

are ratings in Ω, i.e., TM(Ω) = {t | (u, i, t, l) ∈ Ω}. For a time t ∈ TM(Ω), t + δ(Ω, t) means the next

time in TM(Ω), i.e., t+ δ(Ω, t) = min{t′ | t′ ∈ TM(Ω) ∧ (t′ > t)}, and we simply write t+ δ to represent

the next time of t in TM(Ω) for given Ω.

We shall use the rating set in probabilistic formulas. For instance, P (Ω) denotes the probability of the

event defined by Ω, where each (u, i, t, l) ∈ Ω means that the rating, a user u gives to an item i at time

t, is level l.

3.2 Random variables

In CF, we collect the records of similar users (or items) and analyze common behaviors among them. We

use the hidden (random) variables to indicate the user types that describe the interests of users. The

users with the same type have similar opinion to the items. Any user has a type at specific time. Because

the interests of a user change over time, the user type changes.

We define the sets of user types UserType = {1, . . . , J} and item types ItemType = {1, . . . ,K}, where

J and K are integers, respectively. For each user, we define temporal variables Xuser,t ∈ UserType and

Yitem,t ∈ ItemType to describe which type the user and item belong to at time t, respectively. We

denote the starting time of Xuser,t and Yitem,t as τuser and τitem, respectively. For rating, we define the
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variable Ruser,item,t ∈ Level for each triplet (user, item, t). In CF, by some known ratings, Ruser,item,t are

(partially) observed, while Xuser,t and Yitem,t are hidden states.

For example, User = {u1, u2}, Item = {i1, i2, i3}, N = 5, Rating = {(u1, i1, 1, 3), (u2, i2, 2, 5), (u1, i2, 4,

4), (u2, i3, 6, 2)} and J = 3, K = 2. There are two user variables Xu1,t and Xu2,t with the values in

UserType = {1, 2, 3}. There are three item variables Yi1,t, Yi2,t and Yi3,t with the values in ItemType

= {1, 2}. There are four observed rating variables Ru1,i1,1 = 3, Ru2,i2,2 = 5, Ru1,i2,4 = 4, and Ru2,i3,6 = 2.

As usually, we assume that the variables for different users and items are independent for the sake of

simplicity. For the change of the variables over time, we assume that Xuser,t follows from the continuous-

time Markov assumptions: ∀t > 0, τuser 6 s0 < · · · < sn < s and 1 6 i, j, i0, . . . , in 6 J ,

P (Xuser,s+t = j | Xuser,s = i,Xuser,sn = in, . . . , Xuser,s0 = i0)

= P (Xuser,τuser+t = j | Xuser,τuser = i).
(1)

Thus, Xuser,t consists of a continuous-time Markov chain. For any t, there is a J × J transition matrix

Pt describing the change of random variable:

P (Xuser,s+t = j | Xuser,s = i) = (Pt)i,j . (2)

By Kolmogorov equations [54], a continuous-time Markov chain is described by the jump rate matrix

Q. For any t, we have the following equations, where exp and ln are the matrix exponential and the

matrix logarithm, respectively:

Q =
1

t
ln(Pt), (3)

Pt = exp(tQ). (4)

We write a parameter matrix A = Q, which is shared by all the users to describe Xuser,t.

Symmetrically, Yitem,t follows from the continuous-time Markov assumptions and consists of a

continuous-time Markov chain. We write a parameter matrix B the same as the jump rate matrix,

which is shared by all the items.

We consider the relationship among the variables Xuser,t, Yitem,t and Ruser,item,t. When a user of the

j-th type meets an item of the k-th type, the user prefers the item with the probability pj,k. We use the

binomial distribution B(N − 1, pj,k) to convert pj,k into discrete ratings:

P (Ruser,item,t = l | Xuser,t = j, Yitem,t = k)

= Pr(l − 1;N − 1, pj,k)

=

(

N − 1

l − 1

)

(pj,k)
l−1(1 − pj,k)

N−l.

(5)

3.3 Early ratings

We divide the ratings of a(n) user (item) into the early ones and the recent ones. The latest ratings of

a(n) user (item) are called the recent ratings, and the others called the early ratings. We denote the sets

of the early ratings and the recent ratings for user as ER(user) and RR(user), respectively. We have the

following conditions:

RT(user) = ER(user) ∪ RR(user),

ER(user) ∩ RR(user) = ∅. (6)

Similarly, the sets of the early ratings and the recent ratings for item are denoted as ER(item) and

RR(item) with the similar conditions, respectively.

By the partition of the ratings of user, let Xuser,t start at the first recent rating time τuser. The early

ratings of user are used to generate the prior distribution of the random variable, i.e., P (Xuser,τuser = j).

The recent ratings of user are used to analyze the change of the interests of the user in recent time.

We consider the generation of the prior distribution of the variable in the following:



Lin Z Q, et al. Sci China Inf Sci November 2019 Vol. 62 212105:5

P (Xuser,τuser = j) =
πjφuser,j

∑J

k=1 πkφuser,k
. (7)

The first part πj is a parameter shared by all the users. It is about the global probability of the users

belonging to each type. The second part φuser,j is about the probability of the users belonging to each

type on the basis of the previous behaviors of the user, which is a local value generated by the early

ratings in

φuser,j =
∏

(u,i,t,l)∈ER(user)

K
∑

k=1

q(item, t, k) Pr(l − 1;N − 1; pj,k), (8)

where q(item, t, k) is defined as follows:

q(item, t, k) =

{

P (Yitem,t = k), t > τitem,

gitem,t,k, t < τitem.
(9)

In (8), for t > τitem, we have the following equation according to (5):

P (Ruser,item,t = l | Xuser,t = j) =
K
∑

k=1

P (Yitem,t = k) Pr(l − 1;N − 1; pj,k). (10)

Note that if t < τitem, P (Yitem,t = k) is illegal because the starting time of Yitem set at τitem. In this

situation, we use a parameter gitem,t,k to approximate it.

3.4 Recent ratings

By the prior distribution of the early ratings, we can use the recent ratings of a(n) user (item) to infer

the change of the user (item) types over time. The goal is to figure out γt,j = P (Xuser,t = j | RR(user))

and ξt,i,j = P (Xuser,t = i,Xuser,t+δ = j | RR(user)). These posterior distributions explain the user types

after knowing the ratings and their change.

Firstly, we need to know the probability that the user generates the ratings with respect to each type.

For t ∈ TM(RR(user)), we define Euser,t,j as the probability of that user gives all ratings just the same

as the elements of RR(user)t with respect to the j-th type:

Euser,t,j = P (RR(user)t | Xuser,t = j). (11)

Assume that the ratings from the users are independent to each other if their types are given, Euser,t,j

can be calculated by (5) as follows:

Euser,t,j =
∏

(u,i,t,l)∈RR(user)

K
∑

k=1

q(item, t, k) Pr(l − 1;N − 1, pj,k), (12)

where we use q(item, t, k) instead of P (Yitem,t = k) for the rating (u, i, t, l) is an early rating for item.

Then, we calculate the posterior distributions. To compute γ and ξ, we need αt,j = P (Xuser,t =

j,RR(user)[τuser,t]) and βt,j = P (RR(user)(t,T ] | Xuser,t = j). In fact, we only need to compute these

values for t ∈ TM(RR(user)). We have

ατuser,j = πjφuser,jEuser,τuser,j , (13)

αt+δ,j = Euser,t+δ,j

J
∑

i=1

αt,i exp(δQ)i,j , (14)

βT,j = 1, (15)

βt,i =

J
∑

j=1

βt+δ,j exp(δQ)i,jEuser,t+δ,j, (16)
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γt,i =
αt,iβt,i

∑J
j=1 αt,jβt,j

, (17)

ξt,i,j =
αt,i exp(δQ)i,jβt+δ,jEuser,t+δ,j

∑J

k=1

∑J

m=1 αt,k exp(δQ)k,mβt+δ,mEuser,t+δ,m

. (18)

The computation of these values calls the Forward-Backward algorithm [55]. The jump rate matrix Q

is stored in parameters A and B for users and items, respectively. First, we initialize ατuser,j by (13), and

use (14) to compute forward all αt,j . Then, we initialize βT,j by (15), and use (16) to compute backward

all βt,i. Finally, we compute γt,i and ξt,i,j by (17) and (18), respectively.

3.5 Parameter estimation

By computing the posterior distributions about user, we update the global parameters πi, Ai,j and pj,k.

Because these parameters are shared by all the users, we need the posterior distributions from them. We

use γ(user) to represent the γ value from user and ξ(user) in a similar way. Because pj,k are shared by

both users and items, we also need γ(item) whose computation is symmetrical to γ(user).

The global prior π is about the chance that the users belong to each type in the beginning. It is

estimated by the percentage of the users belonging to each type at τuser. λ1 is a given regularization

hyperparameter in

πi =

∑

user∈User γ(user)τuser,i + λ1
∑

user∈User

∑J

j=1 γ(user)τuser,j + Jλ1
. (19)

The elements of jump rate matrix Ai,j is the probability of that the user changes from type i to type

j. Before we compute A, we compute Ξ(user), the averaged and regularized transition matrix for each

user in

Ξi,j(user) = λ2

∑

t∈TM(RR(user)) ξ(user)t,i,jδ(RR(user), t)
∑J

k=1

∑

t∈TM(RR(user)) ξ(user)t,i,kδ(RR(user), t)
+ (1− λ2)1i=j . (20)

The first part of the formula in (20) is an average of the ξ value of the user with δ(RR(user), t) as the

weight. The division ensures the sum of each row of the matrix is 1. The second part is for the assumption

that makes the users’ type stable. The situation that the users’ type does not change (i.e., i = j) has

higher chance. λ2 is a given hyperparameter. 1i=j is a function that is 1 for i = j and 0 for else.

We use the sum of the matrix logarithm of Ξ from all the users to generate A by (21), where

the denominator (the total number of time points that the user has ratings) is an empirically scaling

factor in

A =

∑

user∈User ln(Ξ(user))
∑

user∈User |TM(RR(user))|
. (21)

The parameter pj,k is the probability of the users with type j and the items with type k. It is estimated

by the expected rating as

pj,k =

∑

(u,i,t,n)∈Rating(l − 1)γ(user)t,jγ(item)t,k
∑

(u,i,t,n)∈Rating(N − 1)γ(user)t,jγ(item)t,k
. (22)

The sum of γ(user)t,jγ(item)t,k gives the total chance that the user belongs to the j-th type and the item

belongs to the k-th type. The (l − 1)/(N − 1) follows the way to estimate parameters for the binomial

distributions.

4 Algorithm

First of all, we illustrate a summary of the hyperparameters, the random variables and the parameters

in our model in Table 1.
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Table 1 Hyperparameters, random variables and parameters

Symbol Meaning

J Number of user types

K Number of item types

M Max number of recent ratings

λ1 Regularization for π and ω

λ2 Regularization for A and B

Xuser,t The type user belongs to at time t

Yitem,t The type item belongs to at time t

Ruser,item,t The rating that user give to item at time t

pj,k Probability that type j user likes type k item

Ai,j Jump rate matrix for users

Bk,m Jump rate matrix for items

πj Global prior distribution for users

ωk Global prior distribution for items

fuser,t,j Approximation of user variable distribution

gitem,t,k Approximation of item variable distribution

Table 2 Additional persistent variables

Variable name Data type Meaning

τuser Number Time of the first recent rating of user

τitem Number Time of the first recent rating of item

φuser,j Number Local prior for users

ψitem,k Number Local prior for items

xuser,t,j Number P (Xuser,t = j|Rating)

yitem,t,k Number P (Yitem,t = k|Rating)

RecRating(user) Queue Recent rating for user

RecRating(item) Queue Recent rating for item

Our algorithms take all the hyperparameters and the parameters as persistent variables, in addition

to the variables in Table 2. J,K,M are integers. p is a J × K matrix and its elements are randomly

initialized in (0, 1). A and B are J×J and K×K matrixes, respectively, and are initialized as the matrix

logarithm of an identity matrix with small noise. π and φ (ω and ψ) are vectors with length J(K), with

elements initialized to 1. The queues are empty in initial.

4.1 Updating

The updating algorithm is used every time the system receives a new rating (user, item, T, l). First, the

new rating is pushed into the queues of users and items. Second, we turn some of the recent ratings of

the users into the early ratings and store their information in the local prior distribution φuser,j. Third,

we calculate the posterior distributions for the variables of the users and update the global parameters.

Similarly, we do the same thing for the related items.

The procedures are described for users in detail by the functions ConvertRating and UpdateParameter

in Algorithm 1. The procedures for items are analogous.

We describe the algorithm of converting the recent ratings to the early ones. Assume that one of the

recent ratings (user, item1, t1, l1) is converted into an early one, we update φuser,j according to (8) in the

following:

φuser,j ← φuser,j

K
∑

k=1

q̂(item1, t1, k) Pr(l1 − 1;N − 1; pj,k), j = 1, 2, . . . , J, (23)

where

q̂(item, t, k) =

{

yitem,t,k, t > τitem,

gitem,t,k, t < τitem.
(24)
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Algorithm 1 Update

1: function Update((user, item, T, l));

2: RecRating(user).push((user, item, T, l));

3: RecRating(item).push((user, item, T, l));

4: ConvertRating(user);

5: UpdateParameter(user);

6: ConvertRating(item);

7: UpdateParameter(item);

8:

9: function ConvertRating(user);

10: while RecRating(user).size() > M do

11: (user, item1, t1, l1)← RecRating(user).front();

12: Update φuser,j by (23);

13: RecRating(user).pop();

14: (user, item2, t2, l2)← RecRating(user).front();

15: if τuser < t2 then

16: τuser ← t2;

17: for j = 1, . . . , J do

18: fuser,t,j ← xuser,t,j ;

19: end for

20: end if

21: end while

22:

23: function UpdateParameter(user);

24: for t ∈ TM(RR(user)) do

25: Prepare Euser,t,j by (12);

26: end for

27: Initial ατuser,j as (13);

28: for t ∈ TM(RR(user)), forward do

29: Calculate αt,j by (14);

30: end for

31: Initial βT,j as (15);

32: for t ∈ TM(RR(user)), backward do

33: Calculate βt,i by (16);

34: end for

35: for t ∈ TM(RR(user)) do

36: Calculate γt,i and ξt,i,j by (17) and (18);

37: end for

38: Update πi, Ai,j , and pj,k by (19)–(22);

If the converted rating is the last recent rating of time t1, there is not recent rating at t1. The value

τuser changes from t1 to the next time that user has recent ratings. In this situation, Xuser,t starts at new

τuser and P (Xuser,t1 = j | Rating) would be an illegal value. The function q(user, t1, j) inherits its value

for later use.

We describe the algorithms of computing the posterior distributions and updating the global parame-

ters. First, we prepare Euser,t,j for t ∈ Timeuser according to (12) with q(·) replaced by q̂(·). We compute

α, β, γ and ξ according to (13)–(18) with the jump rate matrix A. Then we update the global parameters

π, A and p. These parameters are computed as the divisions of sums of the values from all the users.

We do not need to compute all the users’ values once again. Instead, we record just the sums and the

contribution of each user. When one user’s value is updated, we subtract the previous contribution of

the user and add the new one.

Finally, we analyze the time cost of the updating algorithm. It takes the time cost O(JK) to convert

to an early rating. The number of converted ratings at a time is less than M . Thus, the time cost of the

conversion is O(JKM). It taks the time cost O(JKM) to prepare Euser,t,j for computing the posterior

distributions needs. The matrix exponential and matrix logarithm have simple algorithm in the time

complexity of O(J3). The posterior distributions α, β and ξ need O(J2M) and γ needs O(JM). The

updates of π, A and p need O(J), O(J2M) and O(JKM), respectively. The time cost for the tasks of

items is the same as those of users, except exchanging J and K. Therefore, the total time cost for an
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Table 3 The experiment datasets with different sizes

Dataset User Item Rating Density(%)

MLK (MovieLens100k) [56] 944 1683 100000 6.29

MLM (MovieLens1M) 6040 3706 1000209 4.47

Ep (Epinions) [57, 58] 2874 2624 122361 1.62

EpEx (Epinions extended) [59] 11201 109520 5449415 0.44

updating is O(JKM +J3M +K3M). Because J , K, M are all fixed, the time cost for an updating has a

constant limit. The algorithms will not increase time cost after the system running for a long time. This

is an advantage of our algorithms especially with consideration of online recommendation for big data.

4.2 Prediction

The prediction works when a query (user, item, t) is asked. We compute r̂n = P (Ruser,item,t = n | Rating)

in Algorithm 2. If the last rating of user is at time T , after the system updated, P (Xuser,T = j | Rating)

is known and stored in xuser,T,j . The distributions in time (t− T ) are easy to find by

P (Xuser,t = j | Rating) =
J
∑

i=1

P (Xuser,T = i | Rating) exp(Q(t− T ))i,j . (25)

In the same way, we compute P (Yitem,t = k | Rating). The predicted rating is calculated according to

(1) as

P (Ruser,item,t = l | Rating)

=

J
∑

j=1

K
∑

k=1

P (Xuser,t = j | Rating)P (Yitem,t = k | Rating)Pr(l − 1;N − 1, pj,k).
(26)

Algorithm 2 Prediction

1: function Predict((user, item, t));

2: (user, item1, T1, l1)← RecRating(user).back();

3: for j = 1, . . . , J do

4: x̂user,t,j ←
∑J

i=1
xuser,T1,i exp(A(t − T1))i,j ;

5: end for

6: (user2, item, T2, l2)← RecRating(item).back();

7: for k = 1, . . . ,K do

8: ŷitem,t,k ←
∑K

m=1
yitem,T2,l exp(B(t − T2))m,k ;

9: end for

10: for n = 1, . . . , N do

11: r̂n ←
∑J

j=1

∑K
k=1

x̂user,t,j ŷitem,t,k Pr(n− 1;N − 1, pj,k);

12: end for

13: return r̂;

5 Experiments

We did experiment on four datasets with different sizes as illustrated in Table 3 [56–59]. The ratings of

the datasets are 1–5 levels. We made clean-up preprocess to produce 20-core datasets for Ep and EpEx.

The density is the number of ratings divided by the sum of numbers of users and items. Note that EpEx

is a sparse dataset.

We denote RT as the algorithm of implementing our model and compare RT with the following state-

of-the-art time-aware recommendation algorithms:

• Streaming recommender systems (SRec) [48]: handled data as streams for effective recommendations

and used a continuous-time random process to capture dynamics of both users and items. It provided an

online algorithm for real-time updating and making recommendations.
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Table 4 The scores of precision

Setting Classical Time-ordered

Dataset MLK MLM Ep EpEx MLK MLM Ep EpEx

SRec 0.698 0.728 0.796 0.953 0.662 0.703 0.788 0.943

TCARS 0.717 0.750 0.783 0.951 0.702 0.724 0.746 0.940

GRU4Rec 0.652 0.654 0.715 0.936 0.613 0.622 0.705 0.939

RRN 0.665 0.730 0.740 0.938 0.684 0.702 0.734 0.936

RT 0.717 0.745 0.831 0.954 0.730 0.717 0.792 0.945

• Time- and community-aware recommendation system (TCARS) [38]: calculated the similarity of

users by both rating-based and time-weighted methods and identified the overlapping community struc-

ture among users by the similarity. It took time-weighted associative rule mining on the overlapping

communities to make top-N recommendations.

• Session-based recommendations with RNN (GRU4Rec) [53]: concentrated on session-based data to

provide accurate recommendations and used customized GRU model to analyze the sequence generated

by a user in a session.

• Recurrent recommender networks (RRN) [51]: used an LSTM model to capture dynamics of both

users and items in addition to a traditional low-rank factorization to describe the stationary components.

We make two kinds of experiments to validate the performance of the algorithms in the datasets.

• Classical experiment. The ratings in the datasets are randomly divided into the training set

(80%) and the test set (20%).

• Time-ordered experiment. The ratings in the datasets are reordered according to the time they

are generated. We take the former 80% as the training set and the remainder 20% as the test set. This

is a reasonable setup for time-aware recommender systems for it ensures that the algorithms predict the

future by the past.

The test ratings that the users or items have no ratings in the training set are not counted in the

evaluation scores. In this case, the parameters of some algorithms for the users or items are not defined

or initialized by small random values.

The hyperparameters of the algorithms are decided by grid search. Each hyperparameter is selected

from a set of candidates to produce the best performance. For example, λ1 and λ2 of our model, the

learning rate and regularization of RRN are selected from {1, 0.1, 0.01, 0.001, 0.0001}. The hyperparame-

ters of comparison algorithms are selected from similar sets according to the literature. The latent vector

length (for RT, SRec and RRNs) is directly related to the costs of time and space and set as 10 for every

algorithm for the sake of fairness.

We compare the accuracy of the algorithms by the scores of Precision, NDCG and MRR [60]. Precision

is the ratio of the positive ratings (levels 4 and 5) to the sum of positive ratings and negative ratings

(levels 1–3). NDCG is normalized DCG (discounted cumulative gain), which evaluates the usefulness

of an item based on its rank in a recommended list. We convert the levels 1–5 to the relevancy {0,

0.25, 0.5, 0.75, 1} for computing NDCG. MRR (mean reciprocal rank) is the average of the reciprocal

ranks of the recommendation list for all users. We demonstrate the experiment results of the accuracy

by the scores of Precision, NDCG and MRR in Tables 4–6, respectively. For the results, our RT has

better performance on most experiments (16 of 24 scores). In other 8 scores, RT also has competitive

performance in the nearly second place. TCARS has better scores for it adds the user community-aware

detection beyond time-aware recommendation. In general, RT has the improvement performance if the

data is time-ordered, because it gradually updates the recommendation by the distinction between the

recent and early data. The results show that our model makes use of the time information in a proper

way.

In addition, we experiment our RT on online learning and cold-start recommendation. In online

experiment, the ratings in the datasets are reordered by the time that they are generated and imported

one by one to the algorithm. For every rating, the algorithm first gives predicted rating and then updates

the parameters when it receives new coming rating. The online performance is judged by RMSE (root
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Table 5 Normalized discounted cumulative gain

Setting Classical Time-ordered

Dataset MLK MLM Ep EpEx MLK MLM Ep EpEx

SRec 0.924 0.933 0.945 0.984 0.938 0.933 0.954 0.979

TCARS 0.931 0.941 0.936 0.979 0.939 0.940 0.938 0.978

GRU4Rec 0.903 0.904 0.905 0.974 0.916 0.908 0.923 0.976

RRN 0.914 0.932 0.915 0.971 0.933 0.933 0.927 0.976

RT 0.930 0.938 0.956 0.984 0.946 0.939 0.954 0.980

Table 6 Mean reciprocal rank

Setting Classical Time-ordered

Dataset MLK MLM Ep EpEx MLK MLM Ep EpEx

SRec 0.855 0.897 0.919 0.980 0.850 0.872 0.897 0.971

TCARS 0.854 0.910 0.880 0.955 0.794 0.876 0.831 0.964

GRU4Rec 0.797 0.839 0.835 0.969 0.765 0.837 0.815 0.966

RRN 0.828 0.892 0.843 0.953 0.833 0.875 0.843 0.964

RT 0.867 0.903 0.939 0.978 0.853 0.884 0.898 0.970
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mean square error) score of the predicted ratings and true ratings. We compare RT with the online

SRec to show the performance in cold-start situation. To do so, we collect the cold-start RMSE on the

sequence of ratings of each user. The user cold-start RMSE is close to the overall RMSE means that the

algorithm can provide new users more accurate recommendation. We illustrate the online learning and

the cold-start performances of SRec and RT on MLM and Ep in Figure 1 (the coordinate axes are the

items and the RMSE, respectively). The user cold-start RMSE of RT is very close to the overall RMSE

than the one of SRec. Thus, RT has better cold-start performance than SRec.

Finally, we illustrate the running time curve of RT on larger datasets MLM and EpEx in Figure 2

(the coordinate axes are the percentage of data and the running time per 1% data, respectively). The

running time of RT converges quickly. The algorithm does not increase time cost after running for a

period of about 15% data, because the time cost for an updating has a constant limit. This makes our

model specially useful for online recommendation with large scale data.
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6 Conclusion

We proposed a probabilistic model that captures temporal dynamics of recommender systems. The model

makes the distinction between the recent and early data in principle. For collaborative filtering, the early

ratings are used to indicate the overall prior distribution of the random variable of both users and items.

The recent ratings are used in the hidden Markov model to capture the change of the preferences of both

the users and items over time. The model has a fast algorithm that updates every time it receives new

coming data. The time cost of updating is independent to total numbers of ratings of the related users

or items. The algorithm is suitable for larger scale online recommendation tasks. The experiments show

that our model outperforms the existing temporal and online models for recommender systems.

Furthermore, our model can be applied to various time-aware recommender systems other than collab-

orative filtering. In our model, the numbers of the user types and the item types are given as hyperpa-

rameters. Because there are no suggestions about how to decide these numbers, we have to make a try

to find a proper number. There would be a way to make the model adjustable for the numbers of the

types of both users and items automatically. Besides, it is useful to consider the influences among users

in our model. For example, friends influence interests each other. This consideration needs the variables

of users not to be independent. We considered the evaluation metrics on accuracy to validate our model.

The other metrics, such as diversity and novelty, are usually contrary to the accuracy. It is interesting

to improve our algorithm for a trade-off among accuracy, diversity and novelty. The application of our

model in a larger scale industrial online recommendation task is under investigation.
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