
SCIENCE CHINA
Information Sciences

November 2019, Vol. 62 212104:1–212104:11

https://doi.org/10.1007/s11432-019-9881-0

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. RESEARCH PAPER .

Accelerating MUS enumeration by inconsistency

graph partitioning

Jie LUO* & Shaofan LIU

State Key Laboratory of Software Development Environment, School of Computer Science and Engineering,
Beihang University, Beijing 100191, China

Received 11 January 2019/Revised 29 March 2019/Accepted 19 April 2019/Published online 9 October 2019

Abstract The problem of finding minimal unsatisfiable subsets (MUSes) has been studied frequently be-

cause of its theoretical importance and wide range of applications in domains such as electronic design

automation, software, and integrated circuit verification. In this paper, a method for accelerating the enu-

meration of MUSes based on inconsistency graph partitioning is proposed. First, an inconsistency graph of a

set of clauses is constructed by extracting the inconsistency relations between literals of different clauses. In

this paper, we show that by partitioning the inconsistency graph into small connected components through

a vertex cut, the enumeration of MUSes in different components becomes independent and it is possible to

compute them separately. Moreover, the MUSes of the original clause set can be constructed by merging the

unit clauses in the MUSes of these connected components back into the clauses in the vertex cut. Experiments

show that by integrating the acceleration method into the MARCO MUSes enumerator, there is a 2–3 times

improvement in the average runtime of solved instances for randomly generated benchmarks. By integrating

the acceleration method into itself as an MUS enumerator, there is another 3–4 times improvement when

compared with the accelerated MARCO.

Keywords minimal unsatisfiable subsets, inconsistency graph, graph partition, SAT, UNSAT

Citation Luo J, Liu S F. Accelerating MUS enumeration by inconsistency graph partitioning. Sci China Inf Sci,

2019, 62(11): 212104, https://doi.org/10.1007/s11432-019-9881-0

1 Introduction

For a given unsatisfiable set of formulas, a minimal unsatisfiable subset (MUS) is a subset that itself is

unsatisfiable, but the removal of any element of the subset will make the remaining set satisfiable. The

enumeration of MUSes is a significant and technically challenging issue in application domains such as the

model checking of software and hardware [1] and debugging type errors [2] as well as in many subfields of

artificial intelligence, such as task decomposition [3], automated reasoning [4], and belief revision [5–7].

The minimal unsatisfiable set problem is a classic problem that has been studied for decades. In 1988,

its decision problem in propositional logic (whether a set of propositions is a minimal unsatisfiable set)

was proved to be Dp-complete [8], i.e., it is both NP-complete and coNP-complete. It is even harder

to enumerate all MUSes. To efficiently enumerate all or some MUSes, different classes of algorithms

have been proposed [9–11]. One class of algorithms is based on subset enumeration [2, 12], in which the

power set of the input is enumerated in a tree structure and every subset is checked for satisfiability to

identify MUSes based on the definition of an MUS. Another class of algorithms [13–15] relies on hitting set

duality. First, all minimal correction subsets (MCSes) are computed. Then, the MUSes are obtained by

computing the minimal hitting sets of these MCSes. Compute all minimal unsatisfiable subsets (CAMUS)

*Corresponding author (email: luojie@nlsde.buaa.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-9881-0&domain=pdf&date_stamp=2019-10-9
https://doi.org/10.1007/s11432-019-9881-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-9881-0
https://doi.org/10.1007/s11432-019-9881-0

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:2

is one state-of-the-art algorithm for computing all MUSes in this class. Recently, algorithms [16, 17] for

partial MUS enumeration have been proposed. These algorithms are designed to output the first MUS

as quickly and early as possible and then incrementally output the following MUSes. If the algorithms

terminate before reaching the timeout point, all MUSes are enumerated. Mapping regions of constraint

sets (MARCO) [16] is a state-of-the-art partial MUS enumeration algorithm that can even outperform

CAMUS in some instances.

In this paper, we consider the problem of accelerating the enumeration of all MUSes of a set of clauses,

each of which consists of a disjunction of literals, i.e., propositions or the negation of propositions. First,

the concept of an inconsistency graph is introduced to describe the inconsistency relationship between

the literals of different clauses. Then, the relationship between MUSes and their inconsistency graph is

investigated. Three important properties of MUSes are proved. The first is that the inconsistency graph

of an MUS is connected. Hence, an MUS can only occur in the connected components of an inconsistency

graph. The second is that by partitioning an inconsistency graph into distinct connected components

using a vertex cut, the MUSes can be computed using a divide-and-conquer approach. The third is

that an MUS must have balanced positive and negative propositions. Based on these three properties,

a partition algorithm used for dividing the input is proposed to cut the inconsistency graph into pieces

by finding the vertices that are the key to connecting different components of the graph. An algorithm

to compute MUSes by applying the decomposition-and-merge tactic on a graph partition is proposed. It

can be used to accelerate existing MUS enumerators or as an effective MUS enumerator itself.

2 Properties of MUSes

To improve the computation of MUSes, we first present the properties of MUSes. Let us first introduce

a few notations.

Definition 1 (Minimal subset operator). Let A be a set and A∗ be the power set of A. Suppose that

B ⊆ A∗; we define

MS(B) = {A′ | A′ ∈ B and there does not exist any A′′ ∈ B such that A′′ ⊂ A′}.

Set MS(B) is the set of all subsets in B that are minimal under the inclusion relation.

From Definition 1, it is easy to see that MS has the following property and can be used to select MUSes

from a set of inconsistent subsets.

Lemma 1. Suppose that Λ is a set of clauses and N is a set of unsatisfiable subsets of Λ. If N contains

all MUSes of Λ, then MS(N) is the set of all MUSes of Λ.

For any inconsistent set, Lemma 2 holds.

Lemma 2. If Γ is an unsatisfiable set of clauses, then there exists an MUS Γ′ of Γ.

Based on Lemma 2, Theorem 1 about MUS construction can be proved.

Theorem 1. If Φ is an MUS of Γ and clause A = L1∨· · ·∨Ln ∈ Φ, then there exist n MUSes Φ1, . . . ,Φn

of (Γ− {A}) ∪ {L1, . . . , Ln} such that Li ∈ Φi, Φi − {Li} ⊆ Γ− {A} for 1 6 i 6 n, and

Φ =

n
⋃

i=1

(Φi − {Li}) ∪ {A}.

Proof. Because Φ is an unsatisfiable set and A ∈ Φ, (Φ − {A}) ∪ {L1}, . . . , (Φ − {A}) ∪ {Ln} are all

unsatisfiable sets. According to Lemma 2, there exists an MUS Φi of (Φ−{A})∪{Li} for each 1 6 i 6 n. It

can be proved that Li ∈ Φi. Otherwise, if there exists an i0 such that Li0 /∈ Φi0 , then Φi0 is an unsatisfiable

set and Φi0 ⊆ Φ− {A}, which contradicts the assertion that Φ is an MUS. Because Φ− {A} ⊆ Γ− {A},

Φi0 ⊆ Γ−{A}. According to the semantics of ∨, (Φ1−{L1})∪· · ·∪ (Φn−{Ln})∪{A} is an unsatisfiable

set. Because
⋃n

i=1(Φi − {Li}) ∪ {A} ⊆ Φ, by the definition of an MUS, Φ =
⋃n

i=1(Φi − {Li}) ∪ {A}.

Let Γ be a set of clauses, A = L1 ∨ · · · ∨ Ln ∈ Γ, and M be the set of all MUSes of (Γ − {A}) ∪

{L1, . . . , Ln}. If we denote MUS(M,Γ, A) = MS({
⋃n

i=1(Φi − {Li}) ∪ {A} | Φi ∈ M such that Li ∈

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:3

Φi and Φi − {Li} ⊆ Γ− {A}, where 1 6 i 6 n}) ∪ {Φ | Φ ∈ M and Φ ∩ {L1, . . . , Ln} = ∅}, according to

Theorem 1 and Lemma 1, Corollary 1 can be derived directly.

Corollary 1. Let Γ be a set of clauses and A = L1 ∨ · · · ∨ Ln ∈ Γ. If M is the set of all MUSes of

(Γ− {A}) ∪ {L1, . . . , Ln}, then MUS(M,Γ, A) is the set of all MUSes of Γ.

This theorem tells us that an MUS can be constructed by a series of MUSes that contain strictly fewer

non-unit clauses. Hence, by applying it repeatedly until all clauses in the MUSes became unit clauses

(literals), a bottom-up decomposition tree is built, in which each clause is decomposed into literals.

Hence, an MUS is constructed from a series of MUSes that consist of only literals in different clauses

by reversing the process of decomposition. Thus, the inconsistency relations between literals in different

clauses reflect the minimal unsatisfiable relation among clauses, which can be described by the following

inconsistency graph.

Let us denote the complemental literal L of L as follows:

L =

{

¬Pj , if L is an proposition Pj ,

Pj , if L is ¬Pj .

Definition 2 (Inconsistency graph). Let Γ = A1, . . . , An be a set of clauses,

E = {(i, j) | there exists literal L in Ai and L in Aj , i 6= j},

V = {i | there exists a j s.t. (i, j) ∈ E or (j, i) ∈ E}.

Graph G = (V,E) is called the inconsistency graph of Γ. The corresponding clause set of a subgraph

G1 = (V1, E1) of G is defined as {Ai | i ∈ V1 and Ai ∈ Γ}. The corresponding subgraph of a subset Γ1 of

Γ is defined as G1 = (V1, E1), where V1 = {i | Ai ∈ Γ1} and E1 = {(i, j) | (i, j) ∈ E and i, j ∈ V1}.

A vertex cut S of graph G = (V,E) is a subset of V such that if S is removed together with any

incident edges in G, the remaining graph is disconnected.

It can be proved that there is a connection between the connectivity of graphs and MUSes. Let us

define the rank of a set of clauses Γ = {A1, . . . , Am} as follows:

rank(Γ) =

m
∑

i=1

(ni − 1),

where Ai is of the form Li
1 ∨ · · · ∨ Li

ni
.

Lemma 3. Let Φ be an MUS and ΦL ⊆ Φ be a set of unit clauses. The inconsistency graph G of Φ is

connected, and if ΦL 6= Φ, the inconsistency graph G′ of Φ− ΦL is connected.

Proof. We prove Lemma 3 by induction on the rank of Φ.

(1) If rank(Φ) = 0, then Φ is a set of unit clauses. Because Φ is an MUS, Φ is of the form {P,¬P}.

Thus, by Definition 2, G is connected. Moreover, G′ consists of a single vertex and is also connected.

(2) Suppose that this lemma holds for any MUS whose rank is less than k. For Φ with rank k (k > 1),

there exists a clause A = L1∨· · ·∨Ln ∈ Φ such that n > 1. Because Φ is an MUS, according to the proof

of Lemma 1, there exist n MUSes Φ1, . . . ,Φn such that Li ∈ Φi, Φi − {Li} ⊆ Φ − {A} for 1 6 i 6 n,

and Φ =
⋃n

i=1(Φi − {Li}) ∪ {A}. Hence, rank(Φi) 6 k − (n − 1) < k for 1 6 i 6 n. According to

the induction hypothesis, the inconsistency graphs of Φi, Φi − {Li}, Φi − ΦL, and Φi − ΦL − {Li} are

connected for 1 6 i 6 n. Because Li ∈ Φi and Φi − {Li} ⊆ Φ− {A} for 1 6 i 6 n, by Definition 2, the

inconsistency graph Gi of Φi − {Li} is a subgraph of G and the corresponding vertex of A is connected

to Gi for 1 6 i 6 n. Because Φ =
⋃n

i=1(Φi − {Li}) ∪ {A}, all these connected subgraphs Gi together

with the edges connecting Gi and vertex of A constitute G. Thus, G is connected.

Similarly, we have Li ∈ Φi−ΦL and Φi−ΦL−{Li} ⊆ Φ−ΦL−{A}. By Definition 2, the inconsistency

graph G′
i of Φi−ΦL−{Li} is a subgraph of G′ and the corresponding vertex of A is connected to G′

i, for

1 6 i 6 n. Because Φ − ΦL =
⋃n

i=1(Φi − ΦL − {Li}) ∪ {A}, all these connected subgraphs G′
i together

with edges connecting G′
i and vertex of A constitute G′. Thus, G′ is connected.

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:4

After the above preparation, Theorem 2 about the divide-and-conquer construction of MUSes can be

proved. Suppose that ∆ and Λ are sets of clauses. Let L(Λ) = {Li
1, . . . , L

i
ni

| Li
1 ∨ · · · ∨ Li

ni
∈ Λ} denote

the set of all literals that occur in Λ. In addition, let C(∆,Λ) = {L | L ∈ L(Λ) such that L ∈ L(∆)}

denote the set of unit clauses constituted of literals that occur in Λ whose complementary literals also

occur in ∆.

Theorem 2. Let G = (V,E) be the inconsistency graph of Γ. It can be partitioned into k distinct

connected components Gi = (Vi, Ei) (1 6 i 6 k) by a vertex cut S ⊂ V . Suppose that the corresponding

clause sets of Gi is Γi and that of S is ΓS = {A1, . . . , Am}. If Mi is the set of all MUSes of Γi∪C(Γi,ΓS)

that contain at least one clause in Γi (1 6 i 6 k), MS is the set of all MUSes of L(ΓS), and

Σ0 = (Γ− ΓS) ∪ L(ΓS), Σi = Σi−1 ∪ {Ai} − L({Ai}) (1 6 i 6 m),

O1 = MUS

((

k
⋃

i=1

Mi

)

∪MS ,Σ1, A1

)

, Oi = MUS(Oi−1,Σi, Ai) (1 < i 6 m),

then Om is the set of all MUSes of Γ.

Proof. According to the definition of Oi and Corollary 1, if the set of all MUSes of (Γ− ΓS) ∪ L(ΓS)

is M′ and O1 = MUS(M′,Σ1, A1), then Om is the set of all MUSes of Σm = Γ. Hence, we only need

to prove that M′ = (
⋃k

i=1 Mi) ∪ MS . On one hand, because Γi ⊆ Γ − ΓS and C(Γi,ΓS) ⊆ L(ΓS),
⋃k

i=1(Γi ∪ C(Γi,ΓS)) ⊆ (Γ − ΓS) ∪ L(ΓS). Thus, M′ ⊇ (
⋃k

i=1 Mi) ∪MS . On the other hand, because

G1, . . . , Gk consist of all the distinct connected components after removing vertex cut S from G, the

corresponding clause sets Γ1, . . . ,Γk do not intersect with each other and their union
⋃k

i=1 Γi = Γ− ΓS .

Hence, the set of all MUSes of (Γ − ΓS) ∪ L(ΓS) can be divided into two sets: one is the set of MUSes

that intersect with Γ − ΓS ; the other is the set of MUSes that contain only clauses in L(ΓS), i.e., MS.

As a result, we only need to prove that {Φ | Φ ∈ M′ and Φ ∩ (Γ− ΓS) 6= ∅} ⊆
⋃k

i=1 Mi.

This is equivalent to proving that for any MUS Φ ∈ M′ such that Φ ∩ (Γ − ΓS) 6= ∅, there exists an

i0 such that Φ ∈ Mi0 . Because
⋃k

i=1 Γi = Γ − ΓS , there exists an i0 such that Φ ∩ Γi0 6= ∅. According

to Lemma 3, the inconsistency graph of Φ is connected. Because Φ ∩ Γi0 6= ∅ and Gi0 is a connected

component, the corresponding vertices of clauses in Φ are all connected to Gi0 . Because G1, . . . , Gk are

distinct connected components in the inconsistency graph of Γ−ΓS, there are no edges directly connecting

Gi0 and the other Gi (i 6= i0) in the inconsistency graph of (Γ − ΓS) ∪ L(ΓS). Moreover, the only way

to connect Gi (i 6= i0) with Gi0 is through the vertices corresponding to literals in L(ΓS). By definition,

C(Γi0 ,ΓS) is the set of all clauses in (Γ−ΓS)∪L(ΓS) whose corresponding vertices are directly connected

to Gi0 . It can be proved that Φ does not contain any literals in L(ΓS)− C(Γi0 ,ΓS). Suppose that there

is a literal L ∈ L(ΓS) − C(Γi0 ,ΓS) such that L ∈ Φ. The corresponding vertex of L can only connect

to Gi0 through a literal L ∈ C(Γi0 ,ΓS). Hence L should also be in Φ. Because {L,L} is an MUS and

{L,L} ⊂ Φ, this contradicts the fact that Φ is an MUS. Hence, Φ ⊆ (Γ− ΓS) ∪ C(Γi0 ,ΓS).

Next, we prove that Φ ⊆ Γi0 ∪ C(Γi0 ,ΓS) by contradiction. Suppose that Γi1 , . . . ,Γit are all sets in

Γ1, . . . ,Γk that intersect Φ. Because G1, . . . , Gk are not connected to each other in the inconsistency

graph G′ of Γ − ΓS , the inconsistency graphs of Φ ∩ Γi0 , . . . ,Φ ∩ Γit are also not connected to each

other in G′. According to Lemma 3, the inconsistency graph of Φ − C(Γi0 ,ΓS) is connected. Because

Φ− C(Γi0 ,ΓS) = Φ ∩ (Γ− ΓS) =
⋃t

j=1(Φ ∩ Γij), this contradicts the supposition that the inconsistency

graphs of Φ ∩ Γi0 , . . . ,Φ ∩ Γit are not connected to each other in G′. Thus, Φ ⊆ Γi0 ∪ C(Γi0 ,ΓS), i.e.,

Φ ∈ Mi.

3 Acceleration algorithm for MUS enumeration

Based on Theorem 2, if the inconsistency graph G of a clause set Γ is partitioned into k connected

components whose corresponding clause sets are Γ1, . . . ,Γk by a vertex cut whose corresponding clause set

is ΓS , then the graph based propositional minimal unsatisfiable subsets (GPMUS) acceleration algorithm

listed in Algorithm 1 can be used to compute all MUSes of Γ. Especially when Γ1 = · · · = Γk = ∅,

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:5

GPMUS computes all the MUSes of ΓS . Thus, it can be used not only for accelerating MUS enumeration

but also for MUS enumeration itself.

Algorithm 1 GPMUS(ΓS , {Γ1, . . . ,Γk})

Input: Γ is a clause set whose inconsistency graph is G;

ΓS = {A1, . . . , Am} is a subset of Γ whose corresponding vertex set is a cut of G;

{Γ1, . . . ,Γk} is the set of corresponding clause sets of connected components after a cut.

Output: The set of all MUSes of Γ.

1: for i = 1 to k do

2: Compute the set Mi of all MUSes of Γi ∪ C(Γi,ΓS);

3: end for

4: Compute the set MS of all MUSes of L(ΓS);

5: M0 := (
⋃k

i=1
Mi) ∪MS ;

6: for i = 1 to m do

7: if Ai is not a unit clause then

8: Mi := Merge(Mi−1, Ai);

9: else

10: Mi := Mi−1;

11: end if

12: end for

13: return Mm.

Lines 1–4 of GPMUS are used for computing the MUSes for Γ1 ∪ C(Γ1,ΓS), . . . ,Γk ∪ C(Γk,ΓS) and

L(ΓS), which can be achieved by calling an external MUS enumerator or by recursively calling GPMUS

itself as an MUS enumerator. Then, all the MUSes are collected together to form the initial candidate

set M0 for merging clauses in ΓS in line 5. Lines 6–12 form the main loop for merging. If Ai ∈ ΓS is

a unit clause (i.e., a literal), then there is no need for further merging and the candidate set remains

unchanged. If Ai ∈ ΓS is not a unit clause, then the merge algorithm is called to merge the literals of Ai

in the previous candidate set Mi−1 back into Ai itself to form a new candidate set Mi. After the loop

terminates, the final candidate set Mm contains all the MUSes of Γ.

The merge algorithm is designed based on Corollary 1 and its pseudocode is listed in Algorithm 2.

Lines 2 and 3 split the set of all MUSes of Σi−1 into two parts based on whether an MUS contains literals

of Ai or not. For the MUSes that contain literals of Ai, they are further selected to form an ni tuple

(Φi
1, . . . ,Φ

i
ni
) such that each MUS Φi

j contains a literal Li
j of Ai. MUSes in these tuples are merged

together based on the description in Theorem 1 in lines 4–8. As an additional constraint on the MUSes

to be merged, literals in
⋃ni

j=1(Φ
i
j − {Li

j}) must all be from different clauses. This constraint has the

same effect as the conditions Li ∈ Φi and Φi − {Li} ⊆ Γ− {A} used in Theorem 1, which means that if

A is in an MUS, then Φi can only contain a single unit clause constituted by literal Li from A. This is

true for an arbitrary clause A in an MUS. Thus, for any clause set Φi that can be used to construct an

MUS, there do not exist two unit clauses in Φi whose literals come from the same clause. A side effect of

this constraint is that it can filter out MUSes that cannot be used for merging very early, which reduces

the size of the intermediate candidate sets and increases the performance of GPMUS. In line 10, the

minimal set operator MS takes a set of subsets of a given set as input and outputs a set of subsets that

are not a superset of any subset. It is implemented by a quadratic algorithm that iteratively compares

any combination of two subsets in the input set. Operator MS is applied to the candidate set to further

eliminate sets that are not MUSes.

4 Inconsistency graph partitioning

Graph partitioning is a classic problem that has been studied for decades because of its theoretical

properties and applications in many domains such as VLSI design [18], scientific simulation [19], and

social networks [20]. Many approaches have been developed for graph partitioning, which are mostly

focused on partitioning by edge cuts. In contrast, in this paper, we need to perform a vertex cut for the

inconsistency graph of clause sets. Hence, an edge cut is performed first to take advantage of existing

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:6

Algorithm 2 Merge(Mi−1, Ai)

Input: Mi−1 is the set of all MUSes of Σi−1;

Ai = Li
1
∨ · · · ∨ Li

ni
is a clause.

Output: The set of all MUSes of Σi.

1: M ′

i := ∅;

2: Ni := {Φ | Φ ∈ Mi−1 and Φ ∩ {Li
1
, . . . , Li

ni
} = ∅};

3: Si := {(Φi
1
, . . . ,Φi

ni
) | Φi

j ∈ Mi−1, L
i
j ∈ Φi

j , 1 6 j 6 ni};

4: for all (Φi
1
, . . . ,Φi

ni
) ∈ Si do

5: Φ′ :=
⋃ni

j=1
(Φi

j − {Li
j});

6: if literals in Φ′ are all from different clauses then

7: M ′

i := M ′

i ∪ {{Ai} ∪ Φ′};

8: end if

9: end for

10: Mi := MS(Ni ∪M ′

i);

11: return Mi.

mature approaches. Then, the edge cut is converted to a vertex cut as we require. Besides, compared

to general graph partitioning, there are some special properties of inconsistency graphs and MUSes that

also need to be considered during partitioning to make the computation of MUSes more efficient. Let us

present two of these properties first.

Each proposition that occurs in a clause either occurs in the form of a positive literal (proposition)

or negative literal (negation of proposition). For convenience, the set of positive (negative) literals of a

clause C is denoted as S(C) (S¬(C)) and the set of positive (negative) literals of a clause set Γ is denoted

as S(Γ) (S¬(Γ)).

As is well-known, the sets of positive and negative literals of an MUS are always the same.

Property 1. If Φ is an MUS, then S(Φ) = S¬(Φ).

From this property, it can be concluded that only sets that have balanced positive and negative literals

can be MUSes. This can be used to guide the partitioning of an inconsistency graph such that the clause

sets corresponding to the vertex cut and these connected components after the cut are balanced whenever

possible.

It is also well-known that a clause that contains pure literals cannot be part of any MUS and can be

removed before partitioning.

Property 2. Let Γ be a set of clauses. If C ∈ Γ contains a pure literal P , i.e., P 6∈ S(Γ) ∩ S¬(Γ), then

C is not a part of any MUS of Γ.

For the graph partitioning, we choose the Louvain algorithm [21], which is a community detection

algorithm based on maximizing the modularity [22, 23] of a graph partition. For a graph partition, the

modularity is defined as the fraction of the edges within connected components minus the fraction that

would be expected if the edges were distributed randomly. Let aij be an element of the adjacency matrix

of a graph G, which denotes the number of edges between vertices i and j, ci be the index of the connected

component to which vertex i belongs, and δ(x, y) be the Kronecker delta function, whose value is 1 if

x = y and 0 otherwise. Then, the degree of vertex i is denoted as di =
∑

j aij , the total number of edges

is m = 1
2

∑

i di, and the expected number of edges between two vertices i and j under uniform random

selection is
didj

2m . The modularity Q is defined as

Q =
1

2m

∑

ij

[

aij −
didj
2m

]

δ(ci, cj).

Based on the above properties and the Louvain algorithm, we present Algorithm 3 for inconsistency

graph partitioning. The edge vertices in this algorithm refer to the vertices in each connected component

that have edges connecting to other components.

The aim of line 3 is to optimize the enumeration of the MUSes. Because every MUS is a balanced set

that can be represented as the union of several smallest balanced sets, it is natural to try to make the

clauses from the same smallest balanced set group together. Hence, we put all clauses from the same

balanced set into the vertex cut if one of them has to be put into the vertex cut.

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:7

Algorithm 3 Partition(G)

Input: G is the inconsistency graph of Γ;

Output: A vertex cut of G.

1: S := ∅;

2: Filter out all clauses in Γ that contain pure literals;

3: Group vertices of G such that each group is a smallest balanced set;

4: Partition G using the Louvain algorithm and obtain connected components K1, . . . ,Ks;

5: while there exist Ki and Kj that are connected in G do

6: Compute the number N of components that intersect with the corresponding group of each edge vertex;

7: Select all groups that have the maximal number N as C;

8: if |C| = 1 then

9: Let the unique group in C be Φ;

10: else

11: Compute the number of edges (degree) connecting vertices in each group of C to other components;

12: Select a group Φ with the maximal degree;

13: end if

14: Delete all edges in G connect to vertices in Φ;

15: S := S ∪ Φ;

16: end while

17: return S.

From the definition of modularity, a high modularity indicates that there are denser connections in-

side each connected component, whereas the connections between connected components are less dense.

Hence, in line 4 the Louvain algorithm tries to partition the inconsistency graph based on its natural

structure. Its aim is to keep subgraphs with large connectivities together and cut the vertices connecting

different densely connected subgraphs.

The purpose of lines 5–16 of Algorithm 3 is to convert an edge cut into a vertex cut. At the same time,

it takes into consideration the smallest balanced sets constructed by the grouping in line 3. The group

that connects more subgraphs (constructed by the partitioning algorithm) is put into the vertex cut first

and all edges connecting this group with other subgraphs are deleted. By repeating this process until

all subgraphs become unconnected, a vertex cut on the graph is constructed that puts clauses from the

same balanced set together. However, it does not guarantee that the vertices of the inconsistency graph

are evenly distributed in all these subgraphs, which may affect the ability of the GPMUS algorithm to

accelerate the MUSes computation.

5 Experiments and evaluation

To evaluate the effectiveness of the GPMUS acceleration algorithm, we implemented it as a mixture

of Python and C++. A series of experiments were performed to compare the runtime of several MUS

enumeration methods before and after adopting the GPMUS acceleration algorithm. The platform for

conducting these experiments was a Ubuntu 16.04 LTS Linux server with an Intel Xeon E5-4607 v2

2.6 GHz CPU and 15 GB main memory. Timeout was set to 300 s for all test cases.

To evaluate whether the inconsistency graphs of real world UNSAT instances can be effectively par-

titioned, we collected 239 industrial UNSAT instances from the SAT competitions 2002–2011. The

distribution of modularity over the inconsistency graphs of these UNSAT instances is shown in Figure 1.

It is easy to see that more than 73% of these inconsistency graphs can be partitioned with a modularity

higher than 0.8. This means that the inconsistency graphs of many real world UNSAT instances have

graph structures that can be naturally divided into densely connected subgraphs by breaking only a

relatively small number of inconsistency relations. Thus, it is possible to partition inconsistency graphs

of real-world instances such that the GPMUS acceleration algorithm is applicable.

The randomly generated benchmarks were divided into classes such that all instances in each class had

the same the number of clauses. Each class contains 200 unsatisfiable clause sets, denoted using the form

“musx”, where x stands for the number of clauses of instances in this class. For example, class “mus500”

is composed of instances containing 500 clauses. Although the number of clauses (i.e., x) is fixed in each

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:8

P
er

ce
n
ta

g
e

Modularity

1.00.90.80.70.60.50.40.30.20.1

0.05

0

0.15

0.25

0.20

0.10

0.35

0.40

0.30

Figure 1 (Color online) Modularity of inconsistency graph partitioning.

Table 1 Comparison of MARCO with GPMUS+MARCO

Classes
MARCO GPMUS+MARCO

NTO T−

Ave
TAve NTO T−

Ave
TAve

mus100 12 3.71 21.48 6 1.85 10.79

mus200 76 16.93 124.50 44 4.79 69.74

mus400 182 71.01 279.39 113 20.92 178.60

mus600 200 – 300 161 22.03 245.80

mus800 200 – 300 186 39.76 281.78

mus1000 200 – 300 194 16.02 291.48

class, the number of propositions within clauses can vary, which allows us to simulate as many cases as

possible.

Table 1 shows the experimental results of the original MARCO1) and GPMUS+MARCO (the MARCO

utilizes GPMUS for acceleration) on randomly generated benchmarks. The first column of Table 1

lists the different classes of benchmarks, followed by statistical runtime data for MARCO and GP-

MUS+MARCO. Here, NTO is the number of instances that timed out after 300 s, T−
Ave is the average

runtime (in seconds) of all instances that were solved in time, and TAve is the average runtime of all

instances where the runtime of the timeout instances were treated as 300 s. The symbol “–” indicates

that all instances in this class timed out and there is no valid value for this column. The bold numbers

in each row represent the best results of the different approaches.

It is clear that the GPMUS algorithm accelerates the computation of MUSes for MARCO with respect

to all three metrics, i.e., NTO, T
−
Ave, and TAve. When using MARCO in combination with GPMUS, the

numbers of timeout instances in all five classes decrease, and as the number of clauses increases, the

increase in the number of timeout instances is also slower than when MARCO is used alone. The average

runtime T−
Ave of GPMUS+MARCO is more than 2–3 times shorter than MARCO, which is a substantial

improvement. Because the current implementation of GPMUS performs a sequential computation of

MUSes using MARCO, the performance could be further improved by implementing it in parallel.

However, Table 1 also shows that as the number of clauses increases, the relative improvement gained

using GPMUS decreases. A detailed analysis of the log files revealed that for many instances, the program

has already reached the point of timeout before all calls to MARCO have finished. The reason is that the

performance of MARCO is sensitive to the number of MUSes contained in the input. When this number

is relatively small, MARCO enumerates all the MUSes very quickly, but when this number is larger, the

performance of MARCO becomes unstable. It was designed to continually output MUSes as soon as

one is found, but only terminate when all possible MUS candidates have been checked. The number of

candidates that need to be checked can be quite large when there are many MUSes in the input. As a

result, a lot of time is consumed while performing these checks using an SAT solver. Hence, MARCO

may behave quite differently even for inputs of the same size.

1) The version of MARCO used here is v2.01.

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:9

Table 2 Comparison of GPMUS+MARCO with GPMUS+GPMUS

Classes
GPMUS+MARCO GPMUS+GPMUS

NTO T−

Ave
TAve NTO T−

Ave
TAve

mus100 6 1.85 10.79 4 0.48 6.47

mus200 44 4.79 69.74 17 1.58 26.95

mus400 113 20.92 178.60 35 2.21 54.32

mus600 161 22.03 245.80 54 4.98 84.63

mus800 186 39.76 281.78 63 1.55 95.56

mus1000 194 16.02 291.48 69 2.04 104.83

100 200 400 600 800 1000

Classes of benchmarks

0

50

100

150

200

250

300

A
v
er

ag
e

ru
n
ti

m
e

(s
)

w
it

h
 t

im
eo

u
t

in
st

an
ce

s

MARCO
GPMUS+MARCO
GPMUS+GPMUS

100 200 400 600 800 1000
Classes of benchmarks

0

50

100

150

200

T
h
e

n
u
m

b
er

 o
f

ti
m

eo
u
t

in
st

an
ce

s

MARCO
GPMUS+MARCO
GPMUS+GPMUS

100 200 400 600 800 1000
Classes of benchmarks

0

20

40

60

80

100

A
v
er

ag
e

ru
n
ti

m
e

(s
)

w
it

h
o
u
t

ti
m

eo
u
t

in
st

an
ce

s MARCO
GPMUS+MARCO
GPMUS+GPMUS

(a)

(c)

(b)

Figure 2 (Color online) Comparison of MARCO, GPMUS+MARCO, and GPMUS+GPMUS. (a) NTO; (b) T−

Ave
;

(c) TAve.

Because of this, we performed another series of experiments by comparing GPMUS+MARCO with

GPMUS+GPMUS, which uses GPMUS itself as an MUS enumerator. Table 2 shows the experimental

results on randomly generated benchmarks.

Table 2 shows that when using the GPMUS+GPMUS approach, the numbers of timeout instances in

all six classes are less than those when the GPMUS+MARCO method is used. The rate of increase in

the number of timeout instances is also less than that of GPMUS+MARCO. GPMUS+GPMUS obtains

the best average runtime of both T−
Ave and TAve in all classes of benchmarks, with a 3–4 times improve-

ment in T−
Ave and a 2 times improvement in TAve. This demonstrates the effectiveness of the GPMUS

algorithm for computing all MUSes in a divide-and-conquer manner on its own. Figure 2 shows that

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:10

the performance of the GPMUS+GPMUS approach is more stable than that of GPMUS+MARCO for

the different instances in this benchmark. The reason could lie in the fact that GPMUS efficiently deals

with instances that contain multiple MUSes by eliminating the number of possible candidates through

the minimal set operator. Because inputs that contain many MUSes are common in real problems, the

GPMUS+GPMUS approach has the potential to handle them robustly.

Through these experiments, we also discovered some issues with the proposed partitioning and GPMUS

algorithms. The first issue is that the current partitioning algorithm does not have much control over

the sizes of each connected component and the vertex cut during the partition. Hence, the result of

partitioning could be very uneven, which is bad for the computation of the MUSes for each component.

Because the computation for a large input tends to be much more difficult than a small one, the GPMUS

algorithm has to wait until the computation for all components is completed, which negatively impacts

the performance. The second issue is that compared to state-of-the-art MUS enumeration algorithms such

as MARCO, the approach of enumerating MUSes by recursively calling GPMUS is not yet capable of

handling very large and hard instances. Although the experiments have shown the potential of GPMUS,

it still needs more optimization to compete with SAT solver-based approaches when processing hard

instances.

6 Conclusion

In this study, we investigated the properties of MUSes and developed a way to accelerate MUS enu-

meration. First, a new concept called an inconsistency graph was defined to describe the inconsistency

relations between literals in different clauses. Then, we revealed two characteristic properties of MUSes:

The inconsistency graph of an MUS is connected; And if the inconsistency graph of the clause set can be

partitioned into a number of connected components by a vertex cut, then the MUSes of the clause set

can be constructed by recurrently merging the literals in the MUSes of the connected components back

into the clauses in the vertex cut. Based on these MUS properties, we proposed an acceleration method

for computing MUSes that consists of a partitioning algorithm and the GPMUS algorithm. This method

computes MUSes using a divide-and-conquer approach. Although the current GPMUS is a sequential

algorithm, it can also be implemented as a parallel or distributed one, which would enable the MUS

enumeration of larger clause sets by utilizing additional computational powers. The experimental results

show that the proposed acceleration method can be used for accelerating existing MUS enumerators such

as MARCO. Specifically, there is a 2–3 times improvement in the average runtime for solved instances

for MARCO under randomly generated benchmarks. The GPMUS algorithm can also be used as an

MUS enumerator itself, and by integrating the GPMUS accelerating algorithm, it performs 3–4 times

more efficiently than the accelerated MARCO algorithm with respect to the average runtime of solved

instances. Moreover, it is more stable as the number of clauses of the input increases.

In future work, further improvements to the partitioning algorithm will be one focus. To implement

an efficient parallel or distributed GPMUS algorithm, the partition of inconsistency graph should as even

as possible. The efficiency and scalability of the partitioning algorithm could be improved as well. For

the GPMUS algorithm, the focus will be to improve its ability to handle hard instances.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 61690202,

61502022) and State Key Laboratory of Software Development Environment (Grant No. SKLSDE-2017ZX-17).

References

1 Andraus Z S, Liffiton M H, Sakallah K A. Reveal: a formal verification tool for verilog designs. In: Proceedings of

International Conference on Logic for Programming Artificial Intelligence and Reasoning, 2008. 343–352

2 Banda M G D L, Stuckey P J, Wazny J. Finding all minimal unsatisfiable subsets. In: Proceedings of International

ACM Sigplan Conference on Principles and Practice of Declarative Programming, Uppsala, 2003. 32–43

3 Tong Y X, Chen L, Zhou Z M, et al. SLADE: a smart large-scale task decomposer in crowdsourcing. IEEE Trans

Knowl Data Eng, 2018, 30: 1588–1601

4 Janota M, Marques-Silva J. cmMUS: a tool for circumscription-based mus membership testing. In: Proceedings of

International Conference on Logic Programming and Nonmonotonic Reasoning, 2011. 266–271

https://doi.org/10.1109/TKDE.2018.2797962

Luo J, et al. Sci China Inf Sci November 2019 Vol. 62 212104:11

5 Luo J, Li W. An algorithm to compute maximal contractions for Horn clauses. Sci China Inf Sci, 2011, 54: 244–257

6 Luo J. A general framework for computing maximal contractions. Front Comput Sci, 2013, 7: 83–94

7 Jiang D C, Li W, Luo J, et al. A decomposition based algorithm for maximal contractions. Front Comput Sci, 2013,

7: 801–811

8 Papadimitriou C H, Wolfe D. The complexity of facets resolved. J Comput Syst Sci, 1988, 37: 2–13

9 Bacchus F, Katsirelos G. Finding a collection of MUSes incrementally. In: Integration of AI and OR Techniques in

Constraint Programming. Berlin: Springer, 2016. 35–44

10 Ryvchin V, Strichman O. Faster extraction of high-level minimal unsatisfiable cores. In: Proceedings of International

Conference on Theory and Applications of Satisfiability Testing, Ann Arbor, 2011. 174–187

11 Xiao G H, Ma Y. Inconsistency measurement based on variables in minimal unsatisfiable subsets. In: Proceedings of

the 20th European Conference on Artificial Intelligence, Montpellier, 2012

12 Hou A M. A theory of measurement in diagnosis from first principles. Artif Intell, 1994, 65: 281–328

13 Bailey J, Stuckey P J. Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization.

In: Proceedings of International Workshop on Practical Aspects of Declarative Languages, 2005. 174–186

14 Liffiton M H, Sakallah K A. Algorithms for computing minimal unsatisfiable subsets of constraints. J Autom Reason,

2008, 40: 1–33

15 Stern R, Kalech M, Feldman A, et al. Exploring the duality in conflict-directed model-based diagnosis. In: Proceedings

of the 26th AAAI Conference on Artificial Intelligence, Toronto, 2012

16 Liffiton M H, Previti A, Malik A, et al. Fast, flexible MUS enumeration. Constraints, 2016, 21: 223–250

17 Previti A, Marques-Silva J. Partial MUS enumeration. In: Proceedings of the 27th AAAI Conference on Artificial

Intelligence, 2013

18 Kahng A B, Lienig J, Markov I L, et al. VLSI Physical Design: From Graph Partitioning to Timing Closure. Berlin:

Springer, 2011

19 Schloegel K, Karypis G, Kumar V. Graph partitioning for high-performance scientific simulations. In: Sourcebook of

Parallel Computing. San Francisco: Morgan Kaufmann Publishers, 2003. 491–541

20 Newman M. Networks: An Introduction. Oxford: Oxford University Press, 2010

21 Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks. J Stat Mech, 2008,

2008: 10008

22 Newman M E J, Girvan M. Finding and evaluating community structure in networks. Phys Rev E, 2004, 69: 026113

23 Newman M E J. Modularity and community structure in networks. Proc Natl Acad Sci USA, 2006, 103: 8577–8582

https://doi.org/10.1007/s11432-010-4172-9
https://doi.org/10.1007/s11704-012-2044-8
https://doi.org/10.1007/s11704-013-3089-z
https://doi.org/10.1016/0022-0000(88)90042-6
https://doi.org/10.1016/0004-3702(94)90019-1
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1073/pnas.0601602103

	Introduction
	Properties of MUSes
	Acceleration algorithm for MUS enumeration
	Inconsistency graph partitioning
	Experiments and evaluation
	Conclusion

