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Dear editor,
Many research results show that, for equivalent bit
length, short nonbinary LDPC codes outperform
binary LDPC codes by about 1 dB [1–3]. More-
over, nonbinary LDPC codes have lower error-
floor, fast iterative decoding convergence, and
strong ability of correcting burst errors. But the
roadblock to their application is the high decod-
ing complexity. Recently, significant studies on
the low-complexity decoding algorithms of nonbi-
nary LDPC codes have been done [4]. It is no-
ticeable that these low-complexity algorithms are
under the frame of iterative decoding. Hence, it is
interesting to design nonbinary LDPC codes with
large minimum distance and suitable for the iter-
ative algorithms.

For a given block length, nonbinary LDPC codes
perform better and better with the increase of
their finite field size. When the finite field size
is sufficiently large, the increased coding gain be-
comes negligible, and then the column weight in
the parity-check matrices of the best nonbinary
LDPC codes tends to 2. In order to facilitate
the hardware implementation, quasi-cyclic (QC)
structure should be considered. In this study, we
study a class of binary QC-LDPC codes with col-
umn weight 2 and row weight ρ. Notice that
this class of codes is referred to as (2, ρ)-regular
QC-LDPC cycle codes. By replacing 1’s in the
parity-check matrices of QC-LDPC cycle codes
with nonzero elements of nonbinary finite fields,

nonbinary LDPC cycle codes are obtained. It can
be seen from [5] that the fully-connected (2, ρ)-
regular QC-LDPC codes have girths 4, 8, and 12.
The cycles of length 4 degrade the performance
of the iterative decoding algorithms employed by
LDPC codes. Hence, we construct two classes of
QC-LDPC cycle codes, i.e., ones with girths 8 and
12, respectively. It is noticeable that the Gallager
lower bound on the code length of the proposed
codes is tight, and it is useful for constructing non-
binary LDPC cycle codes with large girths [6].

Binary QC-LDPC cycle codes and their short

cycles. Based on isomorphism theory [5,7], we con-
sider a binary QC-LDPC cycle code C of length ρL

whose exponent matrix is

P =

[

0 0 0 · · · 0

p0(= 0) p1 p2 · · · pρ−1

]

, (1)

where p0 = 0 and 1 6 ps 6 L−1 for 1 6 s 6 ρ−1.
The lifting size (or lifting degree) is L.

According to [5], a cycle of length 2i, called 2i-
cycle, in the Tanner graph of C can be represented
by a sequence of CPMs, i.e.,

I(0), I(pk1
), I(pk2

), I(0), . . . , I(pki−1
), I(pki

), I(0)

with 0 6 ks 6 ρ − 1 and ks 6= ks+1. The type of
this 2i-cycle is denoted by (pk1

, pk2
, . . . , pki

).

According to [5], the Tanner graph of C con-
tains a 4-cycle if and only if the following equation
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is satisfied:

1
∑

s=0

(−1)s(0− pks
) = pk1

− pk0
= 0 (mod L) (2)

with k0 6= k1. Furthermore, an 8-cycle exists in
the Tanner graph of C with girth 8 if and only if

3
∑

s=0

(−1)s(0− pks
) = 0 (mod L) (3)

with for 0 6 s 6 3, ks 6= ks+1 and k0 = k4.
Gallager lower bound. A lower bound, called

Gallager lower bound, on the code length N of
(γ, ρ)-regular QC-LDPC codes was given in [8].
When γ = 2, the next theorem follows.

Theorem 1. For a (2, ρ)-regular QC-LDPC cy-
cle code of length N = ρL whose exponent matrix
is given by (1) and lifting size is L, the Gallager
lower bound becomes

N >

{

ρ2, g = 8,

ρ(ρ− 1)2 + ρ(ρ− 1) + ρ, g = 12,

where g is the girth value.

Two classes of QC-LDPC cycle codes approach-

ing Gallager lower bound. In this section, we will
construct two classes of QC-LDPC cycle codes ap-
proaching Gallager lower bound, i.e., codes with
girths 8 and 12, respectively. It can be observed
that the Gallager lower bound N > ρ2, in fact,
is tight for g = 8. For (ρ − 1) being a power of
a prime and g = 12, the Gallager lower bound
N > ρ(ρ − 1)2 + ρ(ρ − 1) + ρ is also tight. For
the other QC-LDPC cycle codes with girth 12, the
tight lower bound on the block length N is un-
known.

First, we can directly construct a QC-LDPC cy-
cle code C8 of length ρL based on the following
exponent matrix:

P8 =

[

0 0 0 · · · 0

0 1 2 · · · ρ− 1

]

,

where the lifting size is L for L > ρ and ρ > 3.
We can see from (2) that the Tanner graph of the
constructed code C8 is free of 4-cycles. That is, the
code C8 has girth at least 8. In the Tanner graph
of C8, there exist L 8-cycles of type (0, 1, 2, 1) [5].
Therefore, the girth of C8 is 8 for L > ρ and ρ > 3.

Next, we will construct another class of QC-
LDPC cycle codes with girth 12 based on differ-
ence sets. As a subclass of difference sets, Singer
perfect difference sets had been used to construct
QC-LDPC cycle codes [8]. We first give some def-
initions and notations about difference sets.

Definition 1. Let G be an additive group of or-
der υ. For a given positive integer λ, a k-subset
D of G is a (υ, k, λ)-difference set if every nonzero
element of G can be precisely represented by λ

differences x − y with x, y ∈ D. If the group G

is abelian (or cyclic), we say the k-subset D is a
(υ, k, λ)-cyclic difference set. The difference sets
with λ = 1 are called planar difference sets.

In order to facilitate a better understanding of
difference sets, some examples are provided in Ap-
pendix A. In combinatorial mathematics, the next
theorem follows.

Theorem 2. For q being a prime power, there
exists a (q2 + q + 1, q + 1, 1)-planar difference set.

Consider an additive groupG of order ((ρ−1)2+
(ρ− 1)+1) where (ρ− 1) is a prime power. Under
Theorem 2, let the ρ-subsetD = {d1, d2, . . . , dρ} of
G be a ((ρ−1)2+(ρ−1)+1, ρ, 1)-planar difference
set. We employ the following exponent matrix

P =

[

0 0 0 · · · 0

d1 d2 d3 · · · dρ

]

to construct a QC-LDPC cycle code C12 with lift-
ing size ((ρ − 1)2 + (ρ− 1) + 1). In the following,
we will prove that the girth of C12 is 12.

Firstly, we show that the elements d1, d2, . . . , dρ
are different from each other. Suppose that, for
1 6 i 6= j 6 ρ, there are two elements di, dj ∈ D

such that di = dj . For any element dk ∈ D such
that dk 6= di (6= dj), there exists a nonzero element
x = (dk − di) of G. It can be expressed as a dif-
ference at least twice, i.e., (dk − di) and (dk − dj).
This contradicts the definition of the planar differ-
ence set. Hence, for 1 6 i 6= j 6 ρ, di 6= dj . Based
on (2), it can be proved that the Tanner graph of
C12 is free of 4-cycles.

Secondly, we prove that there is no 8-cycle in
the Tanner graph of C12. For any nonzero element
x of G, there are two elements da, db ∈ D such
that x = da − db, and then −x = db − da. Since
λ = 1, there is not a pair (ds, dt) (ds, dt ∈ D)
apart from (db, da) such that −x = ds − dt. That
is, for two different pairs (da, db) and (ds, dt) (i.e.,
(ds, dt) 6= (db, da)), the equation da−db+ds−dt =
0 is not satisfied. Because of the random selection
of da, db, ds, dt, we can see that, based on (3), the
Tanner graph of C12 does not contain 8-cycles.

Hence, the girth of the code C12 is 12. It is clear
that the code length of C12 achieves the Gallager
lower bound. In the following, we will discuss all
girth-12 QC-LDPC cycle codes whose code lengths
achieve the Gallager lower bound.

Theorem 3. Let C be a girth-12 QC-LDPC cycle
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code of length ρυ whose exponent matrix is

P12 =

[

0 0 0 · · · 0

p1 p2 p3 · · · pρ

]

.

The lifting size of this code is υ = (ρ− 1)2 + (ρ−
1) + 1. For a group G = Zυ under modulo-υ ad-
dition, the ρ-subset D = {p1, p2, . . . , pρ} of G is a
(υ, ρ, 1)-difference set (or (υ, ρ, 1)-planar difference
set).
Proof. Based on (2), we can see that the Tan-
ner graph of the code C does not contain 4-cycles,
since p1, p2, . . . , pρ are different from each other.
There also do not exist 8-cycles of type (a, b, c, d)
in the Tanner graph of C with a, b, c, d ∈ D. That
is, the following equation is not satisfied:

a− b+ c− d = 0 (mod υ).

Assume that D is not a (υ, ρ, 1)-planar difference
set. There exist 2 ·

(

ρ

2

)

= ρ(ρ − 1) nonzero differ-
ences x − y with x, y ∈ D. If these ρ(ρ − 1) dif-
ferences are different from each other, then they
can form the group G by adding the element 0.
According to the definition of difference set, the
ρ-subset D of G is a (υ, ρ, 1)-planar difference
set. This contradicts the assumption. There-
fore, there are at least two same differences such
that pk1

− pk2
= pk4

− pk3
6= 0 with (pk1

, pk2
) 6=

(pk4
, pk3

) and 1 6 k1, k2, k3, k4 6 ρ. Hence, the
following equation holds:

pk1
− pk2

+ pk3
− pk4

= 0 (mod υ). (4)

It is clear that k1 6= k2 and k3 6= k4. We consider
the following three cases.

Case 1: k2 = k3. Then pk2
= pk3

. Eq. (4)
becomes pk1

= pk4
. This contradicts the fact that

(pk1
, pk2

) 6= (pk4
, pk3

).
Case 2: k1 = k4. Then pk1

= pk4
. Eq. (4)

becomes pk2
= pk3

, contradicting the fact that
(pk1

, pk2
) 6= (pk4

, pk3
).

Case 3: k2 6= k3 and k1 6= k4. Let pk1
=

a, pk2
= b, pk3

= c, and pk4
= d. Based on (3)

and (4), we can see that there exist 8-cycles of
type (pk1

, pk2
, pk3

, pk4
) in the Tanner graph of C,

clearly a contradiction.
This completes the proof. So the ρ-subset D of

G is a (υ, ρ, 1)-planar difference set.

From Theorem 3, we can see that, for υ =
((ρ− 1)2 + (ρ− 1) + 1) and (ρ− 1) being a prime
power, all girth-12 QC-LDPC cycle codes of length
ρυ whose exponent matrices are given by (1) are

(or isomorphic to) the proposed ones constructed
based on (υ, ρ, 1)-planar difference sets. That is,
there exists only one isomorphic QC-LDPC cycle
code with girth 12, i.e., the proposed codes [7].
Notice that Theorems 2 and 3 can be also proved
based on the difference matrices in [9].

Conclusion. In this study, we studied two
classes of QC-LDPC cycle codes approaching Gal-
lager lower bound, i.e., codes with girths 8 and 12,
respectively. Numerical simulation results in Ap-
pendix B show that the proposed nonbinary LDPC
cycle codes perform well over the AWGN channel
under iterative decoding. Furthermore, according
to these two classes of QC-LDPC cycle codes, some
tight lower bounds on code length (or lifting size)
of QC-LDPC cycle codes are given in Appendix C,
and it will be helpful for constructing nonbinary
LDPC cycle codes with large girths.
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