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Appendix A Preliminaries

Appendix A.1 Polar Codes

Polar codes are linear block code with generator matrix GN = BNF
⊗log2N
2 , where N is code length and BN denotes bit-

reverse permutation matrix [1]. F2 = [ 1 0
1 1 ]. In this paper, aN

1 is used to denote row vector (a1, ..., aN ). With this notation,

the encoding process can be expressed as xN
1 = uN

1 GN , where xN
1 = (x1, ..., xN ) is codeword and uN

1 = (u1, ..., uN ) is

source bit sequence. uN
1 includes both information bits and frozen bits. Frozen bits are fixed to zero in this appendix. This

work focuses on how to choose the index set of information bits in uN
1 under higher order modulation.

Denote W a binary-input memoryless symmetric channel with input alphabet X = {0, 1} and output alphabet Y.

W (y|x) is the transition probability of W , where x ∈ X and y ∈ Y. The Bhattacharyya parameter of W defined in [1] is

Z(W ) =
∑

y∈Y
√

W (y|0)W (y|1).
DenoteW

(i)
N the i-th synthesized channel in a length-N polar code with channel transition probabilityW

(i)
N (yN

1 ,ui−1
1 |ui) =

1
2N−1

∑
uN
i+1

∏N
i=1 W (yi|xi). If the two underlying channels for F2 are different, the Bhattacharyya parameters of W

(1)
2

and W
(2)
2 are [10]:

Z(W
(1)
2 ) 6 Z(W1) + Z(W2)− Z(W1)Z(W2), Z(W

(2)
2 ) = Z(W1)Z(W2), (A1)

where Z(W1) and Z(W2) are Bhattacharyya parameters of the two underlying channels with transition probabilityW1(y1|x1)

and W2(y2|x2), respectively. The equality holds if W1 and W2 are both BECs.

Above Bhattacharyya parameters and their bounds can be used to construct polar code. Besides, as suggested in [1],

Monte Carlo simulation can be used to construct polar codes via repeatedly running SC decoder to obtain the expectation of

Bhattacharyya parameter for each polarized channel. However, Monte Carlo method requires numerous repeated SC decod-

ing processes, which results in very high complexity O(TN logN) (T is usually of the order 106). Gaussian approximation [2]

is also a popular algorithm to construct polar code, but it may involve numerical calculation to deal with ϕ(x) and ϕ−1(x),

where ϕ(x) = 1− 1√
4πx

∫+∞
−∞ tanh(µ

2
)exp(− (µ−x)2

4x
)dµ. Therefore, polar code construction using Bhattacharyya parameter

has lower complexity, and in this appendix, we focus on polar code construction based on Bhattacharyya parameter.

Appendix A.2 Multi-level Coded Modulation

MLC is a coded modulation scheme that can achieve the coded modulation capacity under multi-stage decoding (MSD) [12].

MSD uses the decoding results of former component codes as feedback to demodulate and decode the remaining component

codes.

Let C denote a 2m-ary constellation. For any constellation point ci ∈ C, there exists a unique bit label corresponding to ci,

i.e., ci ↔ (b
(i)
1 , ..., b

(i)
m ), where b

(i)
j ∈ {0, 1} , j = 1, ...,m and the subscript 1, ...,m is called bit level. The channel that b

(i)
j ob-

serves with transition probability P (b
(i)
1 , ..., b

(i)
j−1, yi|b

(i)
j ) is called equivalent bit level channel j in MLC category, where yi is

channel output when ci is the input. In the rest of this appendix, it is assumed that every ci ∈ C has equiprobability and thus

mutual information equals capacity. The channel capacity under MLC scheme is CMLC = I(Bm
1 ;Y ) =

∑m
i=1 I(Bi;Y |Bi−1

1 ),

where Bm
1 , Bi ∈ {0, 1} is the set of bit label of constellation points and Y is channel output. I(Bi;Y |Bi−1

1 ) is the capacity

of the i-th bit level and it can be calculated as [12]:
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Figure A1 Bit level capacity under 4-ASK and 16-ASK. Figure A2 Bit level Bhattacharyya parameter under 16-

ASK and 64-QAM.

I(Bi;Y |Bi−1
1 ) = I(Bm

i ;Y |Bi−1
1 )− I(Bm

i+1;Y |Bi
1) =

∑
bi
1,y

p(y,bi
1)log2

p(y|bi
1)

p(y|bi−1
1 )

, (A2)

Examples of bit level capacity under 4-ASK and 16-ASK with set partitioning (SP) labeling are shown in Figure A1,

where Es/N0 denotes the SNR in terms of average symbol energy.

Under MLC scheme, each bit level i has its own component code and the code rates among component codes are in

general different. The code rate of a given component code in bit level i mainly relies on the capacity of this level, i.e.,

I(Bi;Y |Bi−1
1 ). In order to achieve better performance under MLC scheme, the bit labeling rule should be SP labeling [4,5]

because SP labeling ensures larger differences between bit level capacities, which results in a better modulation polarization.

Appendix A.3 Bit-interleaved Coded Modulation

Under 2m-ary BICM scheme, each bit level i is treated independently when calculating the channel reliability metric, i.e.,

log-likelihood ratios (LLRs), at the demodulator [13]. Therefore, the channel with transition probability W (y|c), c ∈ C can

be considered as m parallel bit channels as follows:

W (y|c) → {W (y|b1), ...,W (y|bm)} . (A3)

Under BICM, channel with transition probability W (y|bi) is called equivalent bit level channel i. Let li(c) denote the

i-th bit in a constellation point c and Ci
b represents all points in the constellation such that li(c) = b, i.e., Ci

b =
{
c|li(c) = b

}
,

where b ∈ {0, 1}. The transition probability of W (y|bi) is:

W (y|bi = b) =
1

2m−1

∑
c∈Ci

b

W (y|c). (A4)

The Bhattacharyya parameter of W (y|bi) is:

Z(W (y|bi)) =
1

2m−1

∑
y

√√√√ ∑
c0∈Ci

0

W (y|c0)
∑

c1∈Ci
1

W (y|c1). (A5)

Examples of bit level Bhattacharyya parameter under 16-ASK and 64-QAM with Gray labeling are shown in Figure A2.

For 64-QAM, Z(W (y|bi)) = Z(W (y|bi+1)), i = 1, 3, 5.

Since each bit level channel is treated independently when demodulating, the bit labeling rule is usually Gray labeling

that makes the bits in bit label uncorrelated [4].

Appendix B Polar code construction for MLC scheme

For MLC scheme, by considering the differences between bit level capacities as modulation polarization and regarding the

bit level channels as equivalent BECs, a low complexity polar code construction based on Bhattacharyya parameter is

proposed. Next, an adaptive list decoding scheme is proposed to efficiently decode polar codes under MLC.

Appendix B.1 Relationship between Code and Modulation Polarization

The relationship between code and modulation polarization is shown in Figure B1 and Figure B2.

Figure B1 illustrates the common code polarization assuming that the underlying channels are BECs with capacity 0.5.

The red line represents the first half polar code based on synthesized BECs with capacity 0.25 after the first polarization

stage, while the black line denotes the second half polar code based on synthesized BECs with capacity 0.75.
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Figure B1 Polar code polarization based on BEC with

capacity 0.5.

Figure B2 Combine code polarization with modulation

polarization.
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Figure B3 Polar coded 4-ASK MLC modulation.

In Figure B2, the first polarization stage is replaced with modulation polarization, where the blocks in the right-most

column represent symbols in 4-ary modulation. C1 and C2 denote the first and second bit level capacity respectively under

MLC scheme, i.e., C1 = I(Y ;B1), C2 = I(Y ;B2|B1). s1, ..., s4 represent the modulated symbols. x(1) = (x
(1)
1 , ..., x

(1)
4 )

and x(2) = (x
(2)
1 , ..., x

(2)
4 ) denote polar encoded bits of u(1) = (u

(1)
1 , ..., u

(1)
4 ) and u(2) = (u

(2)
1 , ..., u

(2)
4 ), respectively. The

red line corresponds to the first component polar code x(1) that will be mapped to the first bit level while the black line

corresponds to the second component polar code x(2) that will be mapped to the second bit level.

It can be observed that Figure B1 and Figure B2 are identical except the first stage of polarization. In Figure B2, the

first stage of polarization is caused by the 4-ary modulation. The two resulting MLC bit level channels have capacity C1

and C2, while in Figure B1 the first polarization stage produces two channels with capacity 0.25 and 0.75. This implies that

under MLC scheme, after the first modulation polarization stage, the construction of polar codes can be implemented just

as in binary modulation scheme, i.e., in Figure B2 bit level channel with capacity C1 is used to construct the first length-4

polar code (red line) and bit level channel with capacity C2 is used to construct the second length-4 polar code (black line).

In Figure B2, even if the underlying channel that transmits 4-ary symbols is AWGN channel, the two resulting bit

level channels whose capacities are C1 and C2 are in general not AWGN channel, which makes polar code construction

difficult. However, if we consider the two resulting bit level channels as BECs with Bhattacharyya parameters Z1 and Z2,

i.e., Z1 = 1−C1 and Z2 = 1−C2, then (A1) can be used to calculate the Bhattacharyya parameter of the synthesized bit

channels, thus completing the polar code construction.

Appendix B.2 Proposed Polar Code Construction for MLC Scheme

The proposed polar code construction scheme under 2m-ary MLC modulation includes three steps.

(I) Calculate the bit level capacities, i.e., Ci = I(Y ;Bi|Bi−1
1 ), 1 6 i 6 m, which is based on (A2).

(II) Virtualize the m bit level channels as equivalent BECs with Zi = 1− Ci, 1 6 i 6 m. Then recursively calculate the

Bhattacharyya parameter of synthesized bit channels according to (A1).

(III) Select K synthesized bit channels with K smallest Bhattacharyya parameters to transmit information bits while

the remaining mN −K bit channels are used to carry frozen bits, where N is the length of one component polar code and

m is the modulation order.

An example of the proposed code construction approach is shown in Figure B3, where 4-ASK and polar codes with

length 8 are considered. In Figure B3, the first row represents the first component polar coded bits x1 = (x
(1)
1 , ..., x

(1)
8 ) and

the second row represents the second polar coded bits x2 = (x
(2)
1 , ..., x

(2)
8 ). The first component polar code is constructed

by virtualizing the first bit level channel as a BEC with capacity C1. The second component polar code is constructed by

virtualizing the second bit level channel as a BEC with capacity C2. The bit pair (x
(1)
i , x

(2)
i ) is mapped to a 4-ASK symbol.

The red blocks denote the synthesized bit channels with lowest Bhattacharyya parameters and thus they are used to carry

information bits. The remaining blocks carry frozen bits. The modulated symbols are transmitted and at the receiver side,

MSD [12] is used to sequentially demodulate and decode each component code. This example has rate R = 6/16.
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Figure B4 BLER of the proposed 4-ASK MLC codes. Figure B5 BLER of the proposed 16-ASK MLC codes.

Note that there is no need to design rate allocation rules for each component polar code under the proposed method.

Given some Es/N0, m bit level capacities (C1, ..., Cm) are obtained via (A2), and (Z1, ..., Zm) = (1 − C1, ..., 1 − Cm) is

also obtained. Then Zi is used to calculate Bhattacharyya parameters Zi = (Z1,i, ..., ZN,i) for polarized channels in the

i-th component code according to (A1). Next, a length-mN vector Ztotal = (Z1, ...,Zm) is obtained by sequentially placing

Zi, 1 6 i 6 m. Once Ztotal is obtained, K information bits are automatically allocated to each component codes by selecting

K smallest elements in Ztotal, which is exactly the step (III) of the proposed scheme. Therefore, once Es/N0 is given, Ztotal

and subsequently polar code construction are obtained.

The implementation procedure of the proposed MLC polar code construction algorithm is similar to polar code construc-

tion procedure based on Bhattacharyya parameters in binary modulation case [10], except that under MLC scheme there

are totally m component codes that need to be constructed. Polar code construction based on Bhattacharyya parameters

in binary modulation case has complexity O(N logN) [10], where N is the codeword length. Therefore, the time complexity

of the proposed code construction scheme is O(mN logN), where m is the modulation order. Note that Gaussian approx-

imation (GA) [2] has the same asymptotic complexity, but the unit complexity of GA is much higher than that of the

proposed method because GA has to deal with ϕ(x) and ϕ−1(x), either through numerical calculations or table look-up. If

the channel up/degrading method in [3] is used under MLC, the complexity is O(mNµ2logµ), where µ = (logN)2 is sug-

gested in Theorem 1 of [17] to guarantee good approximations. For Monte Carlo construction, the complexity is obviously

O(TmN logN), where T is the number of repeated simulations for code construction, usually with the order 106. A brief

complexity comparison between the proposed method and existing methods under MLC scheme is shown in Table B1.

Appendix B.3 Effectiveness of the Proposed Method

In this section, we show the effectiveness of the proposed code construction method under SC decoding by comparisons

with simulation-based Monte Carlo approach.

The BLER performance comparison with Monte Carlo method is shown in Figures B4 and B5 for 4-ASK and 16-ASK,

respectively. For 4-ASK, there are 2 component polar codes with N = 512, while for 16-ASK, there are 4 component

codes with N = 256. The code rate is 0.5 and labeling rule is SP for both schemes. Modulation symbols are transmitted

through AWGN channel and SC decoder is used. It can be seen that by adjusting the Es/N0 at which polar codes

are constructed, the BLER of proposed method can be very close to that of Monte Carlo method under 4-ASK. The

BLER gap between the proposed and Monte Carlo method is around 0.2dB under 16-ASK. Above results indicate the

effectiveness of the proposed construction method. More detailed information is as follows. For 4-ASK, codes constructed

at Es/N0 = 5dB with rate allocation 0.1797/0.8203 yield best BLER. The Monte Carlo construction for 4-ASK is training

at Es/N0 = 4.5dB with rate allocation 0.1758/0.8242. For 16-ASK, codes constructed at Es/N0 = 12dB with rate

allocation 0.0039063/0.18359/0.83984/0.97266 yield best BLER. The Monte Carlo construction for 16-ASK is training at

Es/N0 = 12dB with rate allocation 0.0039063/0.16796875/0.828125/1.

Appendix B.4 Adaptive CA-SCL decoder in Polar Coded MLC scheme

In this section, we point out that under MLC, polar code constructed for SC decoder may not be suitable for SCL de-

coder [18]. This phenomenon makes the design of decoder closely related to code construction. Therefore, we propose an

adaptive list decoding scheme for polar coded MLC based on the observation of the following simulation results.

Table B1 Polar code construction complexity comparisons under MLC scheme

Construction methods Asymptotic complexity

the proposed method O(mN logN), where O(1) represents one time real number multiplication

Gaussian approximation [2] O(mN logN), where O(1) represents one time computation of ϕ(x) and ϕ−1(x)

Channel up/degrading [3] [17] O(2mN(logN)4(loglogN))

Monte Carlo construction O(TmN logN) with T of the order 106



Yu Y R, et al. Sci China Inf Sci 5

8.5 9 9.5 10 10.5 11
E

b
/N

0
 (dB)

10-3

10-2

10-1
B

L
E

R

L=16
error rate of the 1st component code when L=16
L=8
error rate of the 1st component code when L=8

6 6.5 7 7.5 8 8.5 9 9.5
E

b
/N

0
 (dB)

10-4

10-3

10-2

10-1

100

B
L

E
R

L=16
L=8
L=4
Bit level 1

Figure B6 BLER of 16-ASKMLC polar codes under CA-

SCL with L = 8 and 16. Each component code is concate-

nated with 8 bits CRC.

Figure B7 BLER of 16-ASKMLC polar codes under CA-

SCL with different list size. The first component polar code

is decoded by SC.

4 5 6 7 8 9 10
E

b
/N

0
 (dB)

10-4

10-2

100

B
L

E
R

16-ASK 2nd component code
16-ASK 3rd component code
16-ASK 4th component code

Figure B8 BLER of last three component codes in 16-ASK polar coded MLC.

In last subsection, under 16-ASK, code constructed at Es/N0 = 12dB has best BLER under SC. However, the first

component code only has 0.0039× 256 = 1 information bit (so does Monte Carlo construction), which makes it not suitable

to concatenate with CRC bits. This can be verified by Figure B6, where each component polar code is concatenated with

8 bit CRC g(x) = x8 + x6 + x3 + x2 + 1 [16], and decoded by list size L = 8 and 16. Other simulation configurations

in Figure B6 are the same as in Figure B5. It can be observed that although CA-SCL scheme is employed, the BLER is

even worse than SC decoder shown in Figure B5. The reason is that the error rate of the whole code is dominated by the

first component code because we use 8 bits CRC to protect only one information bit, which increases the rate of the first

component polar code from 1/N to 9/N , degrading the error correction performance.

One may argue that since there is only one information bit in the first component code, SC decoder is exactly the

maximum likelihood decoder. Thus SC can be employed to decode the first component code, and the remaining three

component codes are still decoded by CA-SCL. However, we will show such scheme yields the same phenomenon as in

Figure B6. In Figure B7, the first component code is decoded by SC and the remaining three component codes are decoded

by CA-SCL with list size L = 4, 8 and 16. The BLER performances of the whole code and only the first code are both

given. It can be seen that although we can increase the list size for the last three sub-codes, the BLER is dominated by

the error rate of the first component code, i.e., once the decoding of the first component code is wrong, the decoding of

the whole code will fail. Figures B6 and B7 imply that polar codes constructed for SC decoder may be inappropriate for

CA-SCL decoder at least under 16-ASK MLC scheme.

To overcome this, for 16-ASK, we suggest to select an Es/N0 that results in a totally frozen first component code, i.e.,

the rate of the first component code is 0. There are two advantages to do so. On the one hand, since the first component

code consists of frozen bits, the decoder knows the codeword and there is no need to decode the first component code.

On the other hand, the BLER of the whole code will not be limited by the first component code (this code observes bit

channel with lowest capacity). Set Es/N0 = 13dB and the corresponding rate allocation is 0/0.19922/0.83984/0.96094. We

then observe the BLER for the last three component codes in Figure B8, where simulation configuration is the same as

in Figure B7 except that: no error propagation exists in MSD/the decoder is SC. Obviously, it can be concluded that the

second and third component codes have much higher BLER, which indicates that once the decoding of whole code fails, it

is very likely that the error occurs at the second or the third code. Therefore, these two sub-codes require larger list size to

protect them. Based on this observation, an adaptive CA-SCL scheme for polar coded MLC system is proposed.

With some modification, adaptive CA-SCL decoder in [14] can be extended to polar coded MLC. [14] focuses on binary

modulation (only one code in one frame) so maximum allowed list size Lmax is fixed. Here, maximum allowed list size

Lmax,i is assigned for the i-th component polar code, i.e., component code with higher error rate may require larger Lmax.

When decoding the i-th code, at first, SC (with list size 1) is used. If decoding result passes CRC check, the decoding of i-th

component code is successfully finished. If not, list size doubles and CA-SCL is employed. One advantage of such adaptive

scheme is that the decoding automatically stops when CRC is satisfied (the minimum required list size is automatically

found), which avoids complex analysis between list size and BLER for every component code. Another advantage is that
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Algorithm B1 Adaptive CA-SCL for Polar coded MLC

Input: yN
1 , {Lmax,1, ..., Lmax,m}

Output: x̂N
1,1, ..., x̂

N
1,m

1: for i← 1 : m do

2: llrN1 ← MLC demodulator(yN
1 , x̂N

1,1, ..., x̂
N
1,i−1), L← 1, x̂N

1,i ← SC(llrN1 )

3: while x̂N
1,i does not pass CRC do

4: L← 2L

5: if L > Lmax,i then

6: Decoding fails

7: else

8: x̂N
1,i ← CA-SCL(llrN1 , L)

9: end if

10: end while

11: end for

when the list size for decoding i-th component code reaches Lmax,i and the decoding result still does not pass CRC, then

the decoding of the i-th component code fails. This brings early termination criterion for polar coded MLC scheme. Once

the decoding of a certain component code fails, the decoder immediately reports decoding failure, which further reduces

decoding latency. This adaptive scheme can be described by Algorithm 1.

In Algorithm 1, the inputs are received signal yN
1 and maximum decoding list size {Lmax,1, ..., Lmax,m} for each com-

ponent code. The outputs x̂N
1,1, ..., x̂

N
1,m are the estimates for each component code. Line 1 means that there are totally m

component polar codes to be demodulated and decoded. For each component code, line 2 shows that after demodulation,

SC decoder is first employed to decode each component code. Once the decoding result of SC decoder does not satisfy CRC,

lines 4-8 are activated. The list size L is doubled and CA-SCL decoder with L is used until there exists one decoding path

passing CRC check (decoding successes) or a predetermined Lmax is reached (decoding fails). The decoding complexity of

Algorithm 1 is given in the following proposition.

Proposition 1. Algorithm 1 has worst case complexity O([
∑m

i=1 1 + Pe,i(2Lmax,i − 2)]N logN), where Pe,i is the BLER

of the i-th componet polar code. This worst case complexity is obtained without consideration of above stated early

termination criterion.

Proof. Csc = O(N logN) represents the complexity of SC decoder and CA-SCL decoder with list size L approximately

has complexity LCsc. Assume that µ polar coded MLC blocks are transmitted and consider the i-th, 1 6 i 6 m, component

code. Denote νi the number of i-th component code that cannot be correctly decoded by SC decoder. Lk
i is the list size

when adaptive CA-SCL decoder stops for the k-th, 1 6 k 6 νi, received MLC block, where the i-th component polar code

cannot be correctly decoded by SC decoder. Then the average complexity Ci for decoding i-th component code can be

expressed as:

Ci =
µ+

∑νi
k=1(2 + 4 + ...+ Lk

i )

µ
Csc =

µ+
∑νi

k=1(2L
k
i − 2)

µ
Csc

6 µ+ νi(2Lmax,i − 2)

µ
Csc = [1 + Pe,i(2Lmax,i − 2)]Csc.

(B1)

Since there are totally m component codes that need to be decoded, the total worst case complexity can be obtained by

adding (B1).

Appendix C Polar code construction for BICM scheme

In this section, a novel channel mapping scheme is introduced, through which polar codes are constructed for BICM scheme.

First, for a better understanding of the proposed channel mapping and code construction scheme, the system model of our

BICM scheme is given. Next, a general channel mapping and construction algorithm is proposed. Then, we take 16-ASK

and 64-QAM as examples to further illustrate the application of the general construction algorithm.

Appendix C.1 Polar Coded BICM System Model

In general, as stated in [6, 9], if we want to get optimized polar codes for BICM, there are totally N !/((N/m)!)m different

channel mappings that match coded bits to a certain modulation bit level, where N is code length and m denotes modulation

order. N !/((N/m)!)m is too large to be studied. Hence, in this appendix we employ a suboptimal model. BICM model

in [11] is adopted and a novel channel mapping method is proposed in this section. One may be interested in how far the

suboptimal scheme is from the optimal one. This can be achieved by making comparisons with Monte Carlo-based polar

code construction, which can be considered as optimal with sufficiently large times of repeated running. Such comparisons

are done in Appendix D, where simulation results are given. The BICM system model [11] is shown in Figure C1.
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Figure C1 BICM system model.

uN
1 = (u1, ..., uN ) denotes the source bits before encoding and xN

1 = (x1, ..., xN ) represents the polar coded bits. The

reshaping process of xN
1 puts (x1, ..., xm) in the first row, (xm+1, ..., x2m) in the second row, and so on, where m is

modulation order. The channel mapping procedure is a column permutation of the reshaped version of xN
1 . The first row

of the output of the channel mapping is denoted by (xπ(1), ..., xπ(m)), the second row is denoted by (xπ(m+1), ..., xπ(2m)),

and so on. Note that in this model channel mapping is simplified to a column permutation such that π(km + i) =

π((k − 1)m + i) + m. The meaning of the channel mapping process is to better combine polar codes with the 2m-ary

modulation. After column-wise random interleaving, each row that consists of m bits is mapped to a constellation symbol.

The receiver performs demodulating, deinterleaving, de-channel mapping, and decoding.

Appendix C.2 Channel Mapping and Code Construction Scheme

In this subsection, channel mapping and code construction scheme are proposed for BICM. Bhattacharyya parameters in

(A1) and (A5) are used to analyze the polarization phenomenon caused by polar codes as well as modulation.

In Figure C1, the rows of the output of interleaver module will be mapped to constellation symbols. In order to better

combine polar codes with the 2m-ary modulation, we first design polar codes with length m (typically very short) to adapt

to the modulation polarization caused by the 2m-ary modulation (The reason why doing so will be explained in the following

several paragraphs). This is achieved by solving the following problem:

minimize
π{1,...,m}

∑m

i=m/2+1
Z(W

(i)
m ),

s.t. Z(Wi) = Z(W (y|bπ(i))),

i = 1, ...,m.

(C1)

where m is the modulation order. W
(i)
m is the i-th synthesized bit channel of a length-m polar code. W (y|bπ(i)) is the π(i)-th

equivalent bit channel and Wi transmits the i-th coded bit. The search space of the optimization problem is π {1, 2, ...,m},
which represents all permutations of integer set {1, 2, ...,m}. Thus, the search space contains m! elements. π is called

channel mapping in this appendix.

Z(W
(i)
m ) in (C1) is obtained via (A1). The recursive calculation in (A1) starts from the following equation, i.e., using

(C2) to initialize the recursive construction process:

Z(Wi) = Z(W (y|bπ(i))), 1 6 i 6 m, (C2)

where Z(W (y|bπ(i))) is obtained by using π to permute the Bhattacharyya parameter Z(W (y|bi)) of i-th modulation bit

level. The value of Z(W (y|bi)) can be found in Figure A2 when Es/N0 is given.

Equation (C2) means that the Bhattacharyya parameter of the underlying channel, i.e., Z(Wi), is obtained by permuting

the Bhattacharyya parameter of modulation bit level channels, i.e., Z(W (y|bi)). Figure C2 is a simple example (solid line

box part) to illustrate (C1) when m = 4. Note that there are two identical π, which represents the coded bits are partitioned

into N/m blocks and the same permutation is implemented for each block. This finishes the channel mapping process for

the whole N coded bits.

The summation over m/2 + 1 to m is inspired by the polarization figure in [1], which indicates that the second half bit

indices guarantee higher reliability and a large portion of information bits tends to cluster in the second half bit index.

For example, the capacity of synthesized bit channels of (1024, 512) polar codes that are constructed assuming that all

underlying channels are BECs with capacity 0.5 is shown in Figure C3. Among 512 information indices, 385 indices (the

percentage is p = 75.2%) are larger than N/2 = 512. If the code rate is reduced to 0.125, i.e., there are 128 information

bits, above percentage p will increase to 93.75%. This phenomenon inspires that we should minimize the Bhattacharyya

parameter of the second half synthesized bit channels to obtain better BLER performance because a lager portion of

information bit is located in these channels.

In Figure C2 we can see that Bhattacharyya parameters Z1 +Z2 and Z3 +Z4 are minimized through solving (C1). Z1,

Z2, Z3, and Z4 are then used to construct the second half polar code. Since Z1 + Z2 and Z3 + Z4 are minimized, the

reliability of four synthesized bit channels in the dashed line box (the second half synthesized bit channel) is guaranteed.

It can be checked that when N > 8, the second half synthesized bit channel has relatively small Bhattacharyya parameter

due to solving (C1), i.e., the property shown in Figure C2 can be extended to longer polar codes.

Since the modulation order m is relatively small and thus m! is also small, e.g., for 16-ASK, m = 4 and 4! = 24, brute-

force search can be applied to solve (C1). Note that the solution to (C1) may not be unique. This phenomenon is due to

the symmetry in (A1), i.e. even if Z(W1) and Z(W2) are swapped, Z(W
(1)
2 ) and Z(W

(2)
2 ) still remain the same value. This

symmetry property is studied in [9]. According to Theorem 1 in [9], the number of permutations that will result in different
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Figure C2 An example to illustrate (C1). Figure C3 Capacity of synthesized bit channel in polar

code with length 1024.

Algorithm C1 BICM Polar Code Construction

Input: Z = {Z(W (y|bi))}mi=1, K, N

Output: information set A
1: Solving optimization problem (C1) and get π, Zπ ← π(Z)

2: for i← 1 : N do

3: Z(Wi)← Zπ(i mod m)

4: end for

5: recursively calculate Z(W
(i)
N ) using the upper bound in (A1)

6: sort
{
Z(W

(1)
N ), ..., Z(W

(N)
N )

}
7: select the indices of K smallest Z(W

(i)
N ) as information set A

polarized Bhattacharyya parameters is reduced from m! to (m!)/2m−1. Next we will show how polar code construction

complexity is reduced compared with [9].

Denote M the number of permutations that result in different polarized Bhattacharyya parameters, such as M =

(m!)/2m−1 in above discussion. In [9], each permutation among M candidates is employed to construct the corresponding

polar code with length N . The best polar code that has minimum summation of Bhattacharyya parameter at information

index is selected from M candidates. Since one time of Bhattacharyya parameter-based construction has complexity

O(N logN), the total complexity of construction method in [9] is O(MN logN). However, in our proposed method, each

permutation among M candidates is used to construct a sub-polar code with lengthm according to (C1). Therefore, the total

complexity of the proposed method is O(Mmlogm+N logN), where the first term denotes that each permutation is employed

to construct a length m code, and the second term represents that the permutation who satisfies (C1) is selected to run the

construction of the entire length-N code. For example when N = 1024, m = 4, and M = (m!)/2m−1 = 3, the complexity

of method in [9] is around 3 × 1024 × 10 = 30720, while the proposed method has complexity 3 × 4 × 2 + 10240 = 10264.

If m is large when the order of modulation is higher, more complexity reduction can be achieved by the proposed method.

When it comes to comparison with Mote Carlo construction, the complexity of the proposed scheme is still much lower

since Monte Carlo construction has complexity O(TN logN), where T is the time of repeated simulations with the order

of magnitude around 106. A brief complexity comparison between the proposed method and existing methods is given in

Table C1.

After the solution to (C1) is obtained, polar codes under BICM scheme are constructed based on Algorithm 2. In

Algorithm 2, line 1 means that problem (C1) is solved, and the resulting π is used to permute Z = {Z(W (y|bi))}mi=1. Lines

2-4 represent that the permuted version of Z, i.e., Zπ , is used as the Bhattacharyya parameters of the channels that coded

Table C1 Polar code construction complexity comparisons under BICM scheme

Construction methods Asymptotic complexity

the propose method O(Mmlogm+N logN), where M = (m!)/2m−1

Search-space reduced method in [9] O(MN logN), where M = (m!)/2m−1

Monte Carlo construction O(TN logN) with T of the order 106
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Figure C4 Bhattcharyya parameter under F3. Figure C5 The process of calculating objective function

in (C1) under 64-QAM.

bits xN
1 observe. Line 5 is the recursive code construction process using the upper bound in (A1). Lines 6-7 represent that

the reliability of synthesized channels W
(i)
N , 1 6 i 6 N , is sorted and the K synthesized channels with best reliability are

selected as information indices.

In the following subsection, 16-ASK and 64-QAM are taken as examples to illustrate the proposed channel mapping and

code construction scheme.

Appendix C.3 Polar Coded 16-ASK and 64-QAM BICM

Under 16-ASK, Es/N0 = 11dB is selected for channel mapping and code construction. At Es/N0 = 11dB, according to

Figure A2, the bit level Bhattacharyya parameter is (Z(W (y|b1)), ..., Z(W (y|b4))) = (0.92, 0.65, 0.35, 0.18). By solving (C1),

the optimal solution is π = ( 1 2 3 4
4 1 3 2 ). An example of polar coded 16-ASK BICM is shown in Figure C6 when code length

N = 8.

Under 64-QAM, Es/N0 = 12dB is selected for channel mapping and code construction. At Es/N0 = 12dB, according

to Figure A2, the bit level Bhattacharyya parameter is (Z(W (y|b1)), ..., Z(W (y|b6))) = (0.20, 0.20, 0.40, 0.40, 0.71, 0.71).

However, in 64-QAM, a single code word of polar codes based on only 2× 2 kernel matrix cannot be transmitted by integer

number of 64-QAM symbols. Therefore, in order to avoid puncturing as in [11], compound polar codes in [8] are adopted

here by using both 2× 2 and 3× 3 kernel. The optimal 3× 3 kernel is F3 = [
1 0 0
1 1 0
0 1 1

]. F3 is optimal because it has maximum

rate of polarization among all 3× 3 matrices, which can be proved by Theorem 11 in [15].

The generator matrix of compound polar code using F3 is GN = (IN/3⊗F3)Q(I3⊗(BN/3F
⊗log2(N/3)
2 ), where N = 3×2n

and Q is a permutation matrix that acts on a length N vector a. Q maps the element of a in the 3i + j-th index to the

i+N/3× j-th index. The decoding of compound polar codes with such generator matrix is given in [7, 8].

The recursive relationship of Bhattacharyya parameters under F3 is shown in the following lemma.

Lemma 1. Z(W
(1)
3 ), Z(W

(2)
3 ), and Z(W

(3)
3 ) are shorthand for Z(W

(1)
3 (y3

1|u1)), Z(W
(2)
3 (y3

1, u1|u2)) and Z(W
(3)
3 (y3

1,u
2
1|u3)),

respectively. Z(W1), Z(W2), and Z(W3) are shorthand for Z(W1(y1|x1)), Z(W2(y2|x2)) and Z(W3(y3|x3)), respective-

ly. Then we have Z(W
(1)
3 ) 6

∑3
i=1 Z(Wi) +

∏3
i=1 Z(Wi) −

∑3
i=1

∏3
j ̸=i Z(Wj), Z(W

(2)
3 ) 6 Z(W1)[Z(W2) + Z(W3) −

Z(W2)Z(W3)], and Z(W
(3)
3 ) = Z(W2)Z(W3). The equality in Z(W

(1)
3 ) and Z(W

(2)
3 ) holds when W1, W2 and W3 are

BECs.

Proof. Direct calculations for Z(W
(1)
3 ), Z(W

(2)
3 ), and Z(W

(3)
3 ) are relatively complex and let us think it in a different

way. In Figure C4, this 3× 3 matrix is decomposed into two 2× 2 matrices, where the black dot with Z is the bridge that

connects two 2 × 2 matrices. By replacing Z(W1) and Z(W2) in (A1) with Z(W2) and Z(W3), Z(W
(3)
3 ) is immediately

obtained and we have Z = Z(W2) +Z(W3)−Z(W2)Z(W3). Once more, by replacing Z(W2) in (A1) with Z, Z(W
(1)
3 ) and

Z(W
(2)
3 ) are obtained. In (A1) the condition for equality is that W1 and W2 are both BECs. Therefore, in this lemma the

condition for equality is that W1, W2, and W3 are all BECs. This completes the proof.

Since the polarization kernel has changed with F3, the complexity of solving (C1) should be re-analyzed. When m = 6,

the process of calculating the objective function in (C1) is shown in Figure C5.

When calculating the summation of Bhattacharyya parameters in the dashed line box in Figure C5, the upper bounds in

lemma 1 are used, which implies the underlying channels are considered as BECs. It can be checked with the help of lemma

1 that
∑6

i=4 Z(W
(i)
6 (y6

1,u
i−1
1 |ui)) =

∑3
i=1 Z(Wi). Therefore in Figure C5, once Z(W1), Z(W2), and Z(W3) are obtained,

the value of the objective function is obtained by adding them. The search space of (C1) is all permutation π that results

in different value of
∑3

i=1 Z(Wi). In Figure A2 we can see that Z(W (y|bi)) = Z(W (y|bi+1)), i = 1, 3 or 5. This property

will further reduce the number of permutation π that results in different
∑3

i=1 Z(Wi). The counting of π can be divided

into 3 cases (the symmetry in (A1) is also considered).
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Figure C6 BICM 16-ASK with code length N = 8. Figure C7 BICM 64-QAM with code length N = 12.

The first case is that every 2×2 polarization module in Figure C5 is assigned with Z(W (y|bi)) and Z(W (y|bi+1)), i = 1,

3 or 5. Any π that satisfies such condition will produce
∑3

k=1 Z(Wk) =
∑

i=1,3,5 Z(W (y|bi))2. Hence only one permutation

is needed among all such π.

The second case is that only one 2× 2 polarization module is assigned with Z(W (y|bi)) and Z(W (y|bi+1)), i = 1, 3 or 5.

In this case, assume that Z(W (y|b1)) and Z(W (y|b2)) are assigned to the topside 2× 2 polarization module. Then in order

to be different from circumstance 1, Z(W (y|bi)) and Z(W (y|bi+1)), i = 3, 5 cannot be assigned to one 2 × 2 polarization

module. That is to say the remaining two 2 × 2 polarization modules must have Bhattacharyya parameter pair with

different values. This circumstance produces three different values of
∑3

k=1 Z(Wk) = Z(W (y|bj))2 + 2
∏

l̸=j Z(W (y|bl)),
l, j ∈ {1, 3, 5}. Thus only three permutations are required.

The last case is that none of the three 2 × 2 polarization modules is assigned with two identical Bhattacharyya

parameters. This will produce only one value of
∑3

i=1 Z(Wi) = Z(W (y|b1))Z(W (y|b3)) + Z(W (y|b1))Z(W (y|b5)) +

Z(W (y|b3))Z(W (y|b5)) and hence only one permutation is needed. To summarize, only 5 permutations are required to

solve (C1), which indicates the effectiveness of the proposed channel mapping algorithm.

With the help of lemma 1 and above analysis, (C1) can be solved. The solution is π = ( 1 2 3 4 5 6
6 2 5 1 4 3 ). An example of polar

coded 64-QAM modulation is shown in Figure C7 when code length N = 12.

Appendix D Simulation Results

In this section simulation results of the proposed polar code construction schemes are given. For both MLC and BICM

scheme, the underlying channel that transmits modulation symbols is AWGN channel. The bit labeling rules are SP and

Gray labeling for MLC and BICM, respectively.

Appendix D.1 BLER Performance under proposed MLC Scheme

In this subsection, BLER of the proposed polar code construction under MLC scheme is demonstrated. Polar coded 16-

ASK modulation is considered and simulation results are shown in Figures D1 and D2. Figure D1 depicts BLER, while

Figure D2 shows average decoding complexity for each component code under adaptive CA-SCL approach. Polar codes are

constructed at Es/N0 = 13dB (corresponding Bhattacharyya parameter can be found in Figure A1 using Z = 1 − C) for

16-ASK. Each component code has length 256 and the total code rate is 0.5 with rate allocation 0/0.19922/0.83984/0.96094.

According to this rate allocation, since the first component polar code with rate 0 is entirely frozen, there is no need to

decode it, which reduces decoding latency. The 4-th component polar code has rate 0.96094. This rate is very high and not

suitable to be further concatenated with CRC so it is just decoded by SC decoder. The second and third component polar

codes are decoded by adaptive CA-SCL. Therefore, the maximum allowed list-size vector (LV) under such configuration is

LV = (1, Lmax,2, Lmax,3, 1), where LVi is used for i-th component code. An 8-bit CRC g(x) = x8 + x6 + x3 + x2 + 1 [16]

is used for CA-SCL. In Figure D1, it is assumed that Lmax,2 = Lmax,3 because the 2-nd and 3-rd component codes have

similar error rate according to Figure B8.

As contrary to Figure B7, it is observed that with the increase of Lmax,2 and Lmax,3, the BLER keeps improving. It

can be seen through Figure D2 that the average decoding complexity drops quickly as Eb/N0 increases. The complexity is

defined by the total list sizes one component code uses, i.e., for i-th component code, if SC successes, then complexity is

considered as 1. If adaptive CA-SCL successes with list size L, the complexity is considered as 1+ 2+ 4+ ...+L = 2L− 1.
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Appendix D.2 BLER Performance under BICM Scheme

In this subsection the BLER of the proposed polar code construction under BICM is given. In following context, BPSK

polar code means that polar codes designed for BPSK are directly used in high order modulation without channel mapping.

All BPSK polar codes are constructed using Z(W (y|x)) = 0.3.

We first focus on the BLER of BICM 16-ASK in Figure D3. For 16-ASK, we use polar codes with N = 1024 and R = 0.5

and all schemes in Figure D3 are decoded by SC. It can be observed that the BLER of the proposed polar code construction

matches Monte Carlo scheme that is trained at Es/N0 = 13dB well in low SNR regime (8-9dB). When BLER = 10−2, there

is 0.25dB loss compared with Monte Carlo scheme. The proposed algorithm outperforms polar codes designed for BPSK

modulation about 0.75dB and outperforms the MPP scheme in [6] around 0.5dB at BLER = 10−2. Although the proposed

method does not show obvious advantage over BICM scheme in [11], it should be noted that BICM scheme in [11] needs

puncture when the required code length is not power of 2, while the proposed method does not need puncture by altering

the polarization matrix.

In Figure D4, the proposed BICM 64-QAM algorithm is compared with Monte Carlo scheme in [8], BPSK polar codes,

and polar coded BICM 64-QAM scheme in [7]. For 64-QAM, polar codes with length N = 1536 and rate R = 0.5 are

simulated and the corresponding type of decoder is given in the legend. Compared with BPSK polar codes, the BLER

performance is significantly improved by the proposed algorithm. In the simulation SNR range, the proposed algorithm

matches the performance of compound polar codes that are constructed by Monte Carlo simulation in [8]. This confirms

the effectiveness of the proposed polar code construction under SC. When it comes to CA-SCL decoder, 16-bit CRC

g(x) = (x + 1)(x15 + x + 1) [16] is used. It can be seen that when list size L = 32, the proposed scheme outperforms

algorithms in [7], which confirms that the channel mapping for 64-QAM in this appendix is better than that in [7].
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