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Dear editor,
In the past several decades, stability analysis and
synthesis of Itô stochastic systems have gradually
become the important areas of focus owing to their
applications in many real-world systems, such as
nuclear, thermal, chemical process, biological, so-
cioeconomic, and immunological systems [1–5]. In
addition, nonlinearities exist in real plants, which
always have more complex analyses than general
linear systems. Moreover, the Takagi-Sugeno (T-
S) fuzzy systems, which are described by a set
of fuzzy IF-THEN rules and local linear systems,
are widely accepted as convenient tools to address
nonlinearities in the systems [6,7]. However, most
of these studies have utilized non-stochastic T-S
fuzzy systems.

Owing to the merits of small size, high speed,
low price, and relatively high accuracy, digital con-
trollers have been widely applied to industrial con-
trol processes and communication systems. In or-
der to deal with the discrete feedback problem,
Fridman et al. [8] proposed the input time delay
method. In this method, the discrete feedback
was equivalently replaced by a delayed feedback.
Therefore, many results that use the Lyapunov
functional method were obtained. However, if the
delay is time-varying, the Lyapunov function has
to always be chosen as a complex function.

The contribution of this study can be summa-
rized as follows: (1) A digital controller with ape-
riodic sampling is considered for replacement of
the traditional continuous feedback. (2) The Lya-

punov function method is considered as a replace-
ment to the general method to address the time-
delay problem; moreover, the necessary condition
λM (P )/λm(P ) which is included in the Razumikin
technique can be relaxed in our method. (3) The
time-delays are not only considered as distur-
bances but also have certain positive effects on the
stabilization of the systems.

Let us first consider the global Itô stochastic T-
S fuzzy system that is transformed into a nonlinear
stochastic system

dx(t) =

r∑

i=1

hi(θ(t)){fi(x(t))dt + Cix(t)}dw(t),

x(0) = x0, (1)

where fi(x(t)) = Aix(t)+Biu(t), i = l denotes the
l-th fuzzy rule, r is the number of IF-THEN rules,
θ(t) = [θ1(t), . . . , θg(t)]

T, and F i
j is the fuzzy set of

the j-th premise variable θj(t) under the i-th rule.
hi(θ) = wi(θ)/

∑r
i=1 wi(θ), wi(θ) =

∏g
j=1 F

i
j(θj),

and
∑r

i=1 hi(θ) = 1, where F i
j(θj) is the grade of

membership of θj(t) in F i
j . For the convenience of

narration, we use hi to represent hi(θ). The state
vector x ∈ R

n, control input u ∈ R
m, and Ai, Bi,

and Ci are matrices with appropriate dimensions.
According to the property of a digital controller

with a zero-order hold and a PDC scheme, the
fuzzy controller can be depicted as follows:

u(t) =

r∑

j=1

hk
jKjx(tk), t ∈ [tk, tk+1). (2)
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With the input delay method, let τk(t) = t− tk,
t ∈ [tk, tk+1), and 0 6 τk(t) 6 τ , where τ is the
maximum sampling period; then, x(tk) = x(t −
τk(t)). Substituting (2) into (1), for ∀t ∈ [tk, tk+1),
we get

dx(t) =
r∑

i=1

r∑

j=1

hih
k
j {f̄ijdt+ Cix(t)dw(t)},

x(t) = x0, t ∈ [−τ, 0], (3)

where f̄ij = Aix(t) + BiKjx(t − τk(t)). Before
we present our final results, we define some useful
relations.

LFij = ‖Ai‖+‖BiKj‖+‖Aj‖+‖BjKi‖, (i < j);
LFii = ‖Ai‖ + ‖BiKi‖; LGij = ‖Ci‖

2 + ‖Cj‖
2,

(i < j); LGii = ‖Ci‖
2; Υij = 2LFij+LGij , (i < j);

Υii = 2LFii + LGii; Υ = maxi,i<j{Υij ,Υii};

L̂Fij = ‖Ai‖+eǫτ/2‖BiKj‖+‖Aj‖+eǫτ/2‖BjKi‖+

ǫ, (i < j); L̂Fii = ‖Ai‖+eǫτ/2‖BiKi‖+ ǫ/2; Υ̂ij =

2L̂Fij + LGij , (i < j); Υ̂ii = 2L̂Fii + LGii; Υ(ǫ) =

maxi,i<j{Υ̂ij , Υ̂ii}; ϕ1 = maxi,i<j{LFij , LFii};
ϕ =

∑r
m=1

∑r
n=1 hmhk

nϕ1; φij = τ(‖BiKj‖ +
‖BjKi‖)ϕ, (i < j); φii = τ‖BiKi‖ϕ; aij =
λm(Qij+Qji), (i < j); aii = λm(Qii). Here λm(Q)
and λM (Q) are the minimum and maximum eigen-
values of matrix Q, respectively.

âij = aij−2ǫλm(P ), (i < j); âii = aii−ǫλm(P );
bij = 2φij‖P‖, (i < j); bii = 2φii‖P‖; b =

maxi,i<j{bij , bii}; cij = aij −
bij

1−2τΥ , (i < j); cii =

aii −
bii

1−2τΥ ; ĉij = âij −
e2ǫτ

1−2τe2ǫτΥ(ǫ)bij , (i < j);

ĉii = âii − e2ǫτ

1−2τe2ǫτΥ(ǫ)bii; C0 = 4τ2e2ǫτ bΥ(ǫ)
1−2τe2ǫτΥ(ǫ) ;

C = λM (P )+C0

λm(P ) ; f̄ij = f̂ij + f̃ij , f̂ij = (Ai +BiKj)

·x(t), f̃ij = BiKj(x(t− τk(t))−x(t)), f̃1ij = BiKj

·
∫ t−τk(t)

t

∑r
m=1

∑r
n=1 hm(s)hk

n(s){f̄mn}ds, f̃2ij =

BiKj

∫ t−τk(t)

t

∑r
m=1

∑r
n=1 hm(s)hk

n(s) {Cmx(s) }

dw(s), γ1 = 2xT(t)P f̂ij + ǫV (x(t)), γ2 = 2xT(t)

·P f̃ij , γ3 =
∑r

i=1

∑r
m=1 hihl{x

T(t)CT
i PClx(t)}.

Theorem 1. For given positive definite matrix
Qij ∈ R

n×n, where i, j = 1, 2, . . . , r and R ∈
R

m×m, if there exists a positive definite solution
P ∈ R

n×n to the following Riccati equations:

Πi −Θii = −Qii,

Πi +Πj −Θij −Θji = −Qij −Qji, i < j, (4)

and the delay 0 6 τ < 1/(2Υ) such that cij > 0,
then, the system (3) is mean-square stable with Ki

= − 1
2R

−1BT
i P , where Πi = PAi+AT

i P+CT
i PCi,

Θii = PBiR
−1BT

i P , Θij = 1
2 (PBiR

−1BT
j P+

PBjR
−1BT

i P ), (i < j).

Proof. We choose the Lyapunov function V (x) =
xTPx. Next, another auxiliary function is defined

as W (t, x) = eǫtV (x); using the Itô formula, we
obtain

LW (t, x(t)) =

r∑

i=1

r∑

j=1

hih
k
j {γ1 + γ2}+ γ3. (5)

According to Lemma 2 in [3] and the fact that
E2xT(t)P f̃2ij = 0, we know Eγ2 6 2(φii +
φij)‖P‖E|xt|

2
2τ , Eγ3 6

∑r
i=1 hix

T(t)CT
i PCix(t).

Therefore, we get

ELW (t, x(t))

6 eǫt
r∑

i=1

r∑

j>i

hih
k
j {−âijE‖x(t)‖2 + bijE|xt|

2
2τ}

+ eǫt
r∑

i=1

h2
i {−âiiE‖x(t)‖2 + biiE|xt|

2
2τ}. (6)

Let y(t) = eǫt/2x(t); clearly, y0 = x0, thus,
dy(t) =

∑r
i=1

∑r
j=1 hih

k
j {[(Ai + ǫI/2)y(t) +

eǫτ(t)/2BiKjy(t − τ(t))]dt + Ciy(t)dw(t)}. The
inequality (6) is thus derived as ELW 6∑r

i=1

∑r
j>i hih

k
j [−âijE‖y(t)‖2 + e2ǫτbijE|yt|

2
2τ ] +∑r

i=1 h
2
i [−âiiE‖y(t)‖2+e2ǫτbiiE|yt|

2
2τ ]. Similar to

the Lemma 2 in [1], we get E|yt|
2
2τ 6 E‖y(t)‖2+

Υ(ǫ)
∫ t

t−2τ
E|ys|

2
2τds; therefore, EW (t, x(t)) −

EW (0, x0) 6
∫ t

0
{
∑r

i=1

∑r
j=1 hih

k
j [−ĉijE‖y(s)‖2]

+
∑r

i=1 h
2
i [−ĉiiE‖y(s)‖2]}ds + C0E‖y0‖

2} 6

C0E‖y0‖
2, where C0 = 4τ2e2ǫτbΥ(ǫ)/(1 −

2τe2ǫτΥ(ǫ)). Here, we use the relationships
ĉij > 0, (i < j) and ĉii > 0. Next, there ex-
ists a scalar ǫ0 > 0 such that ĉij > 0 and ĉii > 0;
clearly, for any 0 6 ǫ 6 ǫ0, ĉij > 0 and ĉii > 0
hold. Thus, we have E‖x(t)‖2 6 Ce−ǫtE‖x0‖

2,
where C = (λM (P ) + C0)/(λm(P )). From the
above, we know that (3) is mean-square stable.
The proof is complete.

Remark 1. We use the Lyapunov function
method instead of the complex functional to deal
with the input delay feedback problem. Unlike the
Razumikhin technique, our result (4) does not in-
clude λM (P )/λm(P ) = cond(P ). However, if the
value of cond(P ) is large, the obtained results are
more conservative. At that point, our result is
more effective.

Remark 2. Our results are described as Ricatti
matrix equations rather than LMIs. While ad-
dressing the delay term, we take full advantage
of the information of Eq. (3) itself instead of us-
ing the inequality directly. In other words, in our
method, the delay is not only the disturbance term
but it also has certain positive effects on the sta-
bility of system (3).
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Figure 1 State response of the closed-loop system.

Next, we present a numerical example to vali-
date our result. Consider a fuzzy system defined
by the following rules:

Rule1 If x1(t) is M1,

then dx(t) = f1dt+ C1x(t)dw(t);

Rule2 If x1(t) is M2,

then dx(t) = f2dt+ C2x(t)dw(t),

where A1 = ( 0.2 0.1

0.1 −0.1
); B1 = ( 2

0
); C1 = ( 0.2 0

0 0.2
);

A2 = ( 0.3 0.2

0.1 −0.1
); B2 = ( 1

0
); C2 = ( 0.1 0

0 0.1
).

The membership functions are given as h1 =

h̄1/h̄ and h2 = h̄2/h̄, where h̄1 = exp(−(x1+1)2

0.82 ),

h̄2 = exp(−(x1−1)2

0.82 ), and h̄ = h̄1 + h̄2.
For simplicity, we consider the periodic sam-

pling case, and the sampling period is taken as
0.05, i.e., τ = 0.05. The initial state is given as
x(0) = [2; 1]T. W (t) is considered as a scalar
standard Weiner process. We then set R = [1],

Q11 = ( 0.7600 0.0860

0.0860 0.1000
); Q12 = ( 0.2600 −0.0140

−0.0140 0.0800
), Q21 =

( 0.2750 −0.1010

−0.1010 0.1550
); Q22 = ( 0.1500 −0.1260

−0.1260 0.1500
). Accord-

ing to Theorem 1, we then get P = ( 0.5 0.1

0.1 0.5
),

K1 = [−0.5,−0.1], and K2 = [−0.25,−0.05] for
τ < 1/(2Υ). Moreover, c11 = 0.1958 > 0,
c12 = 0.2297 > 0, c21 = 0.2610 > 0, and c22 =
0.1293 > 0. Thus, we see that (3) is mean-square
stable. Figure 1 shows the state response of (3);
from the figure, we clearly see that system (3) is
stable.
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