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Dear editor,

Modern aircrafts have been increasingly demanded
to extend the flight envelop to high incidences.
The super maneuverability at post-stall angles of
attack has become the dominated design goal for
advanced combat aircrafts. In this case, the aero-
dynamic response will present strong nonlinearity
and unsteadiness. The conventional aerodynamic
derivative model could not be applicable any more.
The modeling and identification of nonlinear un-
steady aerodynamics has become a realistic chal-
lenge and the accurate modeling is of great value
for aircraft control law design and flight simula-
tion. There are mainly four models for unsteady
aerodynamics: indicial response [1, 2], state-
space [3], differential equation [4,5], and artificial
intelligence [6, 7].

In this study, a small-scale model of advanced
combat aircraft is investigated on its modeling and
identification of lateral nonlinear unsteady aero-
dynamics. We first apply Harmonic analysis [1]
to recognize the degree of nonlinearity and un-
steadiness of aerodynamic responses. Then, a sim-
pler model is modified from [5] to describe lateral
nonlinear unsteady aerodynamics by using a first-
order differential equation with characteristic time
constant and high order polynomials. Finally, we
propose an improved optimization algorithm to
identify unknown model parameters, which com-
bines the Gauss-Newton (GN) and Quasi-Newton
methods for the maximum likelihood estimator.
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Wind tunnel tests and harmonic analysis. Static
tests and large amplitude yawing harmonic os-
cillation tests were conducted in a 3.5 m X
2.5 m, low speed wind tunnel called FL-8 at AVIC
Aerodynamics Research Institute. Static tests
were designed at a wide range of nominal pitch-
ing angles 6 from 0° to 80°. In every fixed 6,
a set of static tests were conducted every four
degrees of the varying nominal yawing angle 1
from —40° to 40°. In the same 6, yawing har-
monic forced oscillation tests were performed with
an initial yawing angle 1y = 0°, large amplitude
14 = 30° and four different oscillation frequencies
f=1{0.2 Hz,0.4 Hz,0.6 Hz,1.0 Hz}. The nominal
yawing angle has the form ¢ = 4 sin(wt) where
w=27f.

Before aerodynamic modeling, harmonic analy-
sis is used to help understand the characteristics
of aerodynamic responses. Compared with [1], the
static response here is removed from the aerody-
namics in advance to simplify the analysis. The
result shows that the aerodynamic response can
be divided into four regions, which are the linear
steady case (0° < 6 < 20°), the nonlinear un-
steady case (25° < 0 < 45°), the linear unsteady
case (50° < 6 < 60°) and the linear steady case
(70° < 6 < 80°). This study focuses on the nonlin-
ear unsteady case which is the most complicated.

Lateral nonlinear unsteady modeling. Consider-
ing a fixed pitching angle and all zero control sur-
face deflections in wind tunnel tests, a simplified
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model can be constructed according to the differ-
ential equation model for longitudinal motion in [5]
and modified for lateral aerodynamics. The model
can be formulated as

rb

Ca - Caatt (ﬂ) + Oa'r' (ﬂ)ﬁ + Cadyn (t), (1)

where Cy,,, (8) is the term associated with the at-
tached flow, C,, () represents the term combin-
ing the dependencies on yawing angular velocity r
and derivative of sideslip angle 3, and C, ayn (1) de-
scribes the unsteady response which is related to
the time history. In this study, a first-order differ-
ential equation with a characteristic time constant
is used to represent this dynamic process in time
lag and it can be expressed as

dC

-

Adyn

dt

where 7 is the characteristic time constant var-
ied according to different pitching angles. C, dyn
stands for the steady value of Cy, , when the un-
steady adjustment is finished. Considering a static

Adyn

case where —** = 0 and r = 0, we can obtain
the expression of static aerodynamic response by
substituting them into (1) and (2) as follows:

Cast = Caact (6) + CHVflclyn' (3)

As C,,, can be solved from static tests di-
rectly, the right side of (2) can be replaced by
Ca., — Cq... (8), which can avoid the identification
of Cy dyn

To capture the nonlinearities in aerodynamic re-
sponses, the terms C,_,, (8) and Cy, (8) in (1) can
be assumed to have nonlinear dependencies on the
sideslip angle. High order polynomials are appro-
priate to characterize these two terms and third-

order is adequate as follows:

Caatt (ﬂ) =ap + alﬂ + a2ﬂ2 + a3ﬂ3a (4)
Ca, (B) = bo + b1 8 + b2 + b3 3%, (5)

where aj, b; (j = 0,1,2,3) are the unknown pa-
rameters along with the characteristic time con-
stant 7 to be estimated.
Only three terms Cl,,, (8), Ca, (3) and 7 need to
be identified with just nine unknown parameters,
which has a considerable small amount of calcula-
tion. Besides, a clear physical explanation can be
given by the characteristic time constant in this
model to measure the unsteady flow adjustment
process in time lag. For yawing forced oscillation
tests in wind tunnel, the characteristic time con-
stant only depends on the pitching angle.

Model parameters estimation. The maximum
likelihood method [4] is applicable to estimate the

+ Cadyn == éadyna (2)
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unknown parameters of the proposed model. The
negative log-likelihood function can be expressed
as follows:

where Cseq is the observation sequence of N aero-
dynamic measurements and © is the vector of un-
known parameters. v(i) = C,,.. (1) — Co(i) is
the observation noise which has a normal distri-
bution with zero mean value. Cy,,, (7) denotes the
measurement from wind tunnel tests. Therefore,
the likelihood function {(Cseq; ©) is only correlated
with the second term in the right side of (6). We
can formulate the cost function as follows:

N

J(©) = NZ [Comen (i) = Ca ", (7)

To maximize the likelihood function, the cost
function should get to the minimum. It is obvi-
ously a nonlinear optimizing problem. The GN
is generally used to solve this problem in aerody-
namic modeling. It has a quick descent in the cost
function. However, it is easy to get a local conver-
gent or even divergent result which strongly de-
pends on the initial vector of unknown parameters
O¢. Only when O is close to the optimal solution,
the GN is likely to reach a satisfying convergent
result. Unfortunately, it is impractical to have an
ideal initial vector of unknown parameters in ad-
vance. To overcome this problem, an improved
nonlinear optimization algorithm is proposed here,
which combines the GN and Quasi-Newton with
Davidon-Fletcher-Powell (DFP) equation method
(QN-DFP). The QN-DFP is proposed by Davidon
at first and improved by Fletcher and Powell later.
It has the property of quadratic convergence which
means it can always keep a descent in cost func-
tion. But the descent can be slow and it is likely
to get trapped into a local convergence. Thus, it is
reasonable to combine the GN and QN-DFP not
only to avoid divergence, but also to have a fast
convergence speed.

Figure 1(a) depicts the block diagram of the pro-
posed optimization algorithm procedure. Firstly,
the initial values of a;, b; (j = 0,1,2,3) can be
estimated by the least square method (LS) from
wind tunnel test data, assuming the unsteady term
Cuayy, (t) is zero. The remaining parameter 7 is
given a random positive number which is less than
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Figure 1 (Color online) (a) Block diagram of the pro-
posed optimization algorithm process; (b) comparisons be-
tween wind tunnel tests and identified model outputs when
0 = 45°.

1 as its initial value. In every step of optimiza-
tion iterations, the GN is first used to obtain the
parameter variation AGgyn. The multiple correla-
tion coefficient R? is chosen as a measure to decide
whether the optimization result is divergent. If it
is not more than zero, a divergent result can be ex-
pected and the QN-DFP is then used to get a new
parameter variation A©Oqn. We can get the up-
dated parameters ©;4, by adding A©gn or AOqgn
to the current parameters ©;. Note that the char-
acteristic time constant 7 should be kept positive
during the optimization iteration process on ac-
count of its physical meaning. If the updated ;41
is not more than zero, it will be replaced by the
current 7;,. The next iteration step continues by
updating the unknown parameters ©;,; as a new
input. The optimization algorithm stops iterating
when R? no longer changes.

Modeling and identification results. The large
amplitude yawing oscillation tests at a fixed pitch-
ing angle 6 = 45° with four different oscillation fre-
quencies f = {0.2 Hz,0.4 Hz,0.6 Hz, 1.0 Hz} are
applied to the modeling of yawing moment coef-
ficient. The iteration process of the proposed op-
timization algorithm compared with the GN and
QN-DFP can be found in Appendix A. The GN
starts to diverge at the fifth iteration step. The
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QN-DFP reaches a convergent result R? = 0.9700
at the seventh step. The proposed algorithm also
approaches convergence at the seventh step, but it
has a higher value of R?> = 0.9895 which is more
closer to 1. Obviously, the proposed optimiza-
tion algorithm can get a more satisfying conver-
gent result in few iteration steps. In Figure 1(b),
the dash lines represent the tests which are used
to identify the proposed aerodynamic model and
the dot lines stand for the test applied to the
verification of identified model. Model outputs
are portrayed by the solid lines which are in re-
markable accordance with all corresponding test
data. The similar results for other pitching an-
gles § = 25°,30°,35°,40° which are also nonlinear
unsteady cases can be found in Appendix A.
Conclusion. The results strongly indicate the
validity of the proposed aerodynamic model and
optimization algorithm, which not only has an ex-
cellent capacity of model fitting but also provides
accurate model predictions. In the future, the de-
pendence on pitching angles will be explored.

Supporting information Appendix A. The support-
ing information is available online at info.scichina.com and
link.springer.com. The supporting materials are published
as submitted, without typesetting or editing. The respon-
sibility for scientific accuracy and content remains entirely
with the authors.
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