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Abstract Recently, positioning services have received considerable attention. The primary source of the

positioning error is non-line-of-sight (NLOS) propagation. To address this problem, we propose a novel NLOS

mitigation scheme, in which the geometric relationship between a base station and a mobile station is used.

This makes it possible to identify range measurements corrupted by NLOS errors, and the mobile station can

then estimate its position through line-of-sight (LOS) measurements. Moreover, the threshold of the NLOS

detector is derived via a hybrid method using both the analytical derivation and computer simulation, which

significantly reduces the difficulty of identifying thresholds. After identifying the NLOS measurements, a

two-step weighted-least-squares algorithm is used to obtain the localization, in which both range and angle

measurements are considered. The simulation results reveal that the proposed algorithm yields a high

identification probability of NLOS measurements, which results in improved localization performance.
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1 Introduction

Recently, mobile communication has witnessed rapid developments, and 5G as well as multiple-input and

multiple-output (MIMO) antenna technology have received considerable attention from researchers [1–3].

Moreover, accurate location-based services (LBS), such as emergency road assistance, location-based

advertisements, location-based messaging and route navigation [4, 5], have become popular topics of

research. Note that primary localization methods can be classified into satellite localization and terrestrial

wireless localization. The former is useful for active applications in an outdoor environment, such as global

position system (GPS)-based navigation, where non-military users can achieve a positioning error less

than 10 m [6]; however, it is difficult to use GPS in indoor environments. Moreover, in certain passive

applications, such as the safety and security applications like E-911, it is impossible to obtain the GPS

locations of hostile targets. However, these positions can be obtained via a wireless signal, such as the

cellular signal of the target. Thus, in this study, we focus on terrestrial wireless localization.

Terrestrial wireless localization methods can be classified into two groups: the range-free method and

the range-based method. Generally, the former method maintains acceptable performance in a large-scale

network that has a high base station density. However, the actual network scale and base station density

may considerably vary. Moreover, the propagation environment may be variable such as indoor, urban
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and suburban areas. Therefore, in this study, we focus on range-based localization because it is more

robust to deal with the above mentioned variabilities.

Ranged-based localization depends on the measurement of localization parameters, such as the time of

arrival (TOA) [7], received signal strength (RSS) [8], time difference of arrival (TDOA) [9, 10] and angle

of arrival (AOA) [11, 12]. Furthermore, the range-based localization suffers from two types of non-ideal

factors: Gaussian measurement noises and non-line-of-sight (NLOS) errors [11]. Generally, an NLOS

error occurs when the direct path between the mobile station (MS) and base station (BS) is blocked

by an obstacle. Gaussian noise has been extensively studied and greatly improved in previous studies;

however, additional studies are required on the corruption of localization by NLOS errors. Note that

NLOS propagation causes a long excess path delay, which leads to significant biases in TOA and AOA

measurements [13,14]. In this study, the NLOS error is assumed to be larger than the measurement noise;

this assumption is consistent with many previous studies [15, 16].

The NLOS problem of cellular localization was studied in [11], in which Wang et al. indicated that

the typical ranging error introduced by NLOS propagation was approximately half of the cell radius. To

solve this problem, several NLOS mitigation techniques have been proposed. Yan et al. [17] attempted

to solve the NLOS problem by first identifying the NLOS BSs, and then using the predetermined NLOS

statistical information to calibrate the NLOS measurements. However, a reliable statistical model of

NLOS information is difficult to obtain because of the complicated and variable wireless propagation

environments; thus, in most situations, the above algorithm is not expected to be effective. Moreover,

the absence of a reliable statistical model of NLOS error makes it difficult to theoretically analyze the

positioning performance; thus, researchers usually analyze NLOS-corrupted localization via simulations.

Certain researchers have improved localization performance by properly weighting line-of-sight (LOS)

and NLOS measurements, where the weighting factors are derived from the localization geometries or the

range residuals [17,18]. These algorithms always improve the NLOS localization to some extents, however,

the NLOS error cannot be completely eliminated, and the optimal weighting factors are not achievable.

Thus, these estimates may not always be reliable. Shu et al. [19] proposed a weighted localization

algorithm based on geographical constraints. In [20–22], to improve position estimation, the researchers

pre-constructed several specified scattering models; however, the rapid-changing urban environment (i.e.,

appearance and disappearance of buildings) made it difficult to identify an accurate scattering model.

In [23], the angle of departure (AOD) was used to identify the NLOS measurement as long as there were

sufficient single reflected NLOS paths or the AOD could be measured at the MS. Theoretically, AOD

methods can effectively mitigate the NLOS error; however, the single-reflection propagation model is not

consistent with practical environments, and the AOD measurement in the MS does not have sufficient

accuracy due to the array size limitation. Consequently, the AOD method does not perform well in

real-world scenarios.

In addition to the above-mentioned methods, some researchers have attempted to perform identifying

LOS measurements and estimating position using only LOS measurements. The identification criteria

originated from the time-history-based hypothesis test [24], probabilistic model [23], maximum likelihood

detection [25], and residual test [26]. The disadvantages of these methods are that the number of LOS

BSs must be no less than three, and the probability of a false alarm must be low. Marano et al. [27]

and Zhang et al. [28] proposed using multipath channel information to identify NLOS measurements, in

which the statistics of a channel, such as kurtosis, were analyzed according to the channel measurements.

However, these two position estimators may be sensitive to the scattering environment as was observed

in [28]; moreover, they may require a large number of real-world measurements to cover a wide range of

environments in the cellular network. Therefore, it is preferable to investigate NLOS mitigation using an

analytical method rather than a measurement method. Yu and Dutkiewicz [29] collected multiple range

estimates in the time domain to identify NLOS measurements in which the diversity gain in the time

domain significantly increased identification probability. However, in addition to its complex processing

and excellent performance, latency is incurred during the collection of range estimates to establish a

history, and the NLOS status must be invariant over such durations, which limits its application in a

changing environment. In addition to the above-mentioned recognition algorithm, some researchers have
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proposed optimization algorithms to solve positioning problems at the cost of higher complexities. Shu

et al. [30] proposed using the Lagrangian method to transform the constrained TDOA problem into the

identification of a set of polynomials in the Lagrangian multiplier. Wang et al. [9] proposed transforming

the positioning problem into a semi-definite programming problem.

To address above-mentioned insufficiencies, Hua et al. [31] proposed detecting the LOS-BS by algorithm-

residuals and thereby estimating the MS position, where temporary position estimation was required to

construct the residual, resulting in increased computation. Moreover, the method of [31] experiences per-

formance degradation in the case of two LOS BSs. Unlike [31], in this study we used the ranging-residual

to detect the LOS BS because this type of residual is more popular and useful for researchers. In partic-

ular, we first exploit the geometric relationship between the MS and BS to identify the LOS BS, where

both TOA and AOA measurements are included. Second, we employ a two-step weighted-least-squares

(TS-WLS) method to estimate the MS position using only LOS BSs. Unlike traditional methods, the

proposed algorithm performs well for only two LOS BSs; thus, it is suitable for practical applications. In

this study, we evaluate the proposed algorithm by Monte Carlo simulations that use randomly generated

NLOS errors and MS positions. The results reveal that the proposed method has a higher detection

probability and better localization performance.

The remainder of this study is organized as follows. In Section 2, we introduce the localization model

and the conventional localization algorithms. In Section 3, we propose a LOS identification algorithm

and a semi-analytical threshold determining method. In Section 4, the numerical results are provided

and analyzed. Finally, in Section 5, the conclusion of this study is provided.

2 Preliminaries

The actual range between the MS and the i-th BS can be expressed as follows [28]:

ri =
√

(x − xi)2 + (y − yi)2, (1)

where (x, y) and (xi, yi) denote the actual MS position and the ith BS coordinate, respectively. Because

of the existence of measurement noise and NLOS error, the range measurement can be modeled as follows:

r̂i = ri + ei + ni, (2)

where r̂i, ei, and ni denote the range measurement, measurement noise, and NLOS error, respectively.

If the propagation path is the LOS, then ni = 0; otherwise, ni is usually much larger than ei. Moreover,

the actual range is usually much larger than the measurement noise.

The tangent of the AOA at the ith BS without any disturbance can be written as follows:

tan(θi) =
y − yi
x− xi

. (3)

Because the AOAmeasurement is corrupted by measurement noise and NLOS error, it should be rewritten

as follows:

θ̂i = θi + αi + βi, (4)

where αi and βi denote the measurement noise and NLOS error in the AOA measurement, respectively.

Generally, the direct path may be blocked a majority of the time, and the NLOS error of the AOA may

be very large.

Based on the above-mentioned model, the following linear equation group (N BSs) can be easily derived

according to the following geometric relation:

AX = b, (5)
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where R denotes x2 + y2. Note that the upper halves of A and b are derived from (1), while the lower

halves represent the linear equations between (xi, yi) and (x, y) in (3).

Eq. (5) can be solved using the least square (LS) principle as follows:

X̂ = (ATA)−1ATb, (6)

where (·)T and (·)−1 denote the matrix transpose and inversion, respectively. Finally, the position

estimation of the MS is the former two elements of X̂; this is referred as the TOA-AOA/LS algorithm

in this study.

Because the LS algorithm produces a large bias in MS position estimation, an algorithm called the

two-step WLS (TS-WLS) algorithm, such as that in [9], is introduced.

Assuming that the actual value of measurement noise is small, the position estimation error vector b

resulting from measurement noise can be approximated as follows:

ψ ≈
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, (7)

where ri, ei, and αi are defined in (1), (2), and (4), respectively. In (7), we exploit the following relations:

(x− xi) (tan(θi + αi)− tan(θi)) = (x− xi)
sin(αi)

cos(αi) cos(θi)
≈ x−xi

cos(θi)
αi = riαi,

(ri + ei)
2 − r2i ≈ 2riei.

Then, we can rewrite (7) in the matrix form:

ψ = 2Bz, (8)

where B = 1
2diag{2r1, 2r2, . . . , 2rN , r1, r2, . . . , rN} and z = [e1, e2, . . . , eN , α1, α2, . . . , αN ]T. Here,

diag{v} represents a diagonal matrix with its diagonal elements equal to vector v.

Because the elements of B are unknown in practice, they can only be approximated by range mea-

surements. Accordingly, the covariance matrix of ψ can be expressed as follows:

Ψ = E
[

ψψT
]

= 4BQB, (9)

where Q = diag{σ2
r,1, . . . , σ

2
r,N , σ

2
α,1, . . . , σ

2
α,N}. Moreover, σ2

r,i and σ
2
α,j denote the variances of the ith

range measurement and the jth AOA measurement, respectively. Eq. (5) can then be solved by the WLS

method as follows [6]:

X̂WLS = (ATΨ−1A)−1ATΨ−1b. (10)

Eqs. (8)–(10) are iteratively performed, i.e., B is recalculated by an older estimation of (10), which

leads to a new position estimation. This iteration is stopped when the previous MS position estimation
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slightly differs from the most recent MS position estimation. Then, the covariance matrix of X̂WLS can

be obtained as follows [6]:

cov(X̂WLS) = (ATΨ−1A)−1. (11)

The estimation of (10) requires independent elements in X̂WLS; however, the elements are not truly

independent. Therefore, another WLS process should be used to refine the position estimation, which is

also performed in [6]. First, we assume that the errors of x, y, and R are s1, s2, and s3, respectively.

Thus, X̂WLS can be expanded as follows:

X̂WLS =








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
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

. (12)

Second, we define another error vector as follows:

ψ′ = b′ −A′X′, (13)

where
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can be computed according to X̂WLS. From (13), by assuming that residual estimation errors are small,

we can derive
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Thus, the covariance matrix of ψ′ is formulated as follows:

Ψ′ = E
[

ψ′ψ′T] = 4B′cov(X̂WLS)B
′ (15)

with B′ = diag {x, y, 0.5}. Finally, X ′ can be solved by another WLS process as follows [6]:

X̂ ′
WLS = (A′TΨ′−1A′)−1A′TΨ′−1b′. (16)

Using (16), MS position estimation is straightforward.

3 Identification of NLOS and LOS range measurement

Similar to many conventional localization algorithms, both the TOA-AOA/LS and TOA-AOA/TS-WLS

algorithms suffer greatly from NLOS propagation. Thus, in this section we investigate how to identify

NLOS and LOS range measurements. Then, the detected LOS measurements are used in the localization

algorithm, which explicitly mitigates the influence of NLOS. Moreover, it is difficult to analyze the

proposed NLOS detector in theory because a reliable model for statistical NLOS information is absent in

our study and the existing literature. Thus, we present detailed simulations in Section 4 to analyze the

proposed algorithm.
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Figure 1 Example of NLOS and LOS propagation.

3.1 Localization geometry between MS and BSs

Figure 1 presents an example of NLOS and LOS propagation, where A, B, and C denote BS-A, BS-B, and

the MS, respectively. Figure 1 illustrates that the propagation channel between C and A is blocked by

an obstacle D, leading to an NLOS-corrupted range measurement b and angle measurement θ1. Because

there is no obstacle in the channel (C → B), the range measurement a and angle measurement θ2 are

LOS measurements, i.e., they are only affected by measurement noise and are close to their actual values.

Because the spatial locations of BSs are invariant, the distance between A and B can be predetermined

and denoted c. Now, the range (distance) between A and C can be obtained using the law of cosine:

b′ =
√

a2 + c2 − 2ac cos θ2. (17)

Moreover, if the channel between A and C is LOS, the range from C to B can be computed as follows:

a′ =
√

b2 + c2 − 2bc cos θ1. (18)

Next, we can define residuals as follows:

δ1 = |a− a′| , δ2 = |b− b′| . (19)

From Figure 1 and (17)–(19), it can be seen that if there is no NLOS channel, the measured a and b

must be close to the calculated a′ and b′, i.e., the residual must be small. Otherwise, at least a or bmust be

corrupted by the NLOS error; consequently, the residual must be much larger than that of the LOS case

with a high probability. Next, this geometric characteristic is used to design a high-performance detector

to distinguish NLOS and LOS measurements. This requires only two LOS measurements, although

conventional methods requires at least three. To clearly explain NLOS/LOS identification, we briefly

introduce the parameters used in this subsection as follows.

• a, b: BS-MS distance directly computed by TOA measurements;

• a′, b′: BS-MS distance computed by the cosine law, in which both TOA and AOA measurements are

employed;

• a0, b0: actual BS-MS distance;

• ∆a,∆b: measurement noise of {a, b};
• ∆a′,∆b′: calculation error of {a′, b′} in (17) and (18);

• θ1, θ2: AOA measurements;

• θ1,0, θ2,0: actual AOAs;

• ∆θ1,∆θ2: measurement noise of {θ1, θ2}.

3.2 Identification strategy

Based on the above discussion, the identification of LOS/NLOS measurements can be achieved by a

process of threshold detection; specifically, if the residuals in (19) are smaller than the threshold, both
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BS-A and BS-B are considered as LOS BSs, and a, b, θ1, and θ2 are then LOS measurements. Otherwise,

there is at least one NLOS BS. Finally, the proposed identification scheme is structured as follows:

(1) Assume that there are N BSs, and the measured range and AOA are r̂i and θ̂i, respectively.

(2) Divide all BSs into several groups with two BSs per group, which produces C2
N groups for N BSs.

(3) Calculate the residuals of a group using (17)–(19) and compare the residuals with a certain thresh-

old. If the residual is smaller than the threshold, the range and AOA measurements of this group are

estimated from LOS environments, which can later be used to localize the MS. Otherwise, the measure-

ments are questionable.

(4) Repeat step (3) C2
N times until each group has been addressed.

(5) Compare and analyze all threshold detection results and identify all LOS measurements.

Based on the identification result of each group, all LOS measurements can be determined. Then,

all of the identified LOS measurements, which may have been identified by different groups, are used to

determine the location of the MS using the TS-WLS method.

Naturally, the group number depends on the value of N , i.e., a larger N leads to larger group number

and therefore higher computation. Generally, conventional studies use N = 5 or 7, which produces an

acceptable group number.

3.3 Threshold derivation

Because it is difficult to develop a reliable and universal statistical model for NLOS error, it is challenging

to theoretically determine the threshold mentioned in Subsection 4.2. Moreover, it is impossible to

determine this threshold by an exhaustive search. Therefore, in this subsection, we propose a semi-

analytical method that combines analytical and simulated approaches to address this challenge. First,

a perturbation analysis is performed to determine the relation between the residual and localization

parameter. Second, a targeted simulation is performed to identify the optimal thresholds in various

scenarios. Finally, a comprehensive analysis of these thresholds is performed to determine an appropriate

threshold that can account for the varying propagation environment. Note that the selected threshold is

not optimal for all scenarios; however, it always leads to an acceptable performance.

By exploiting the above hybrid simulation/derivation strategy, the threshold can be determined in

an averaged sense. Therefore, although the simulation stage only covers limited scenario parameters,

such as network topology, MS position, TOA precision, AOA precision, and maximum NLOS error, the

determined threshold yields acceptable performance for a wide range of scenarios. Next, we demonstrate

that the threshold can be connected with the propagation environment by introducing the standard

deviation of measurement noise.

If the propagation channels (C→A) and (C→B) are both LOS, the residual must be small, and the

measured a, b, θ1, and θ2 in (17) and (18) contain measurement noise. Thus, we have

a = a0 +∆a, b = b0 +∆b,

θ1 = θ1,0 +∆θ1, θ2 = θ2,0 +∆θ2,
(20)

where a0, b0, θ1,0 as well as θ2,0 represent the corresponding real values, and ∆a, ∆b, ∆θ1 as well as ∆θ2
represent the measurement noise.

Similarly, the calculated ranges can be formulated as

a′ = a0 +∆a′, b′ = b0 +∆b′, (21)

where ∆a′ and ∆b′ denote calculation errors. We then substitute (20) and (21) into (17) and square both

sides. Eq. (17) can then be reformulated as

(b0 +∆b′)2 = a2 + c2 − 2ac cos θ2 = (a0 +∆a)2 + c2 − 2(a0 +∆a)c cos(θ2,0 +∆θ2) . (22)

By expanding both sides of (22), we obtain

b20 + 2b0∆b
′ +∆b′2 = a20 + 2a0∆a+∆a2 + c2 − 2(a0 +∆a)c(cos θ2,0 cos∆θ2 − sin θ2,0 sin∆θ2) . (23)
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Because the value of ∆θ2 is very small in LOS environments, we have

cos∆θ2 ≈ 1, sin∆θ2 ≈ ∆θ2.

By ignoring the second-order term of the measurement noise and calculation error in (23), we obtain

b20 + 2b0∆b
′ ≈ a20 + 2a0∆a+ c2 − 2(a0 +∆a)c(cos θ2,0 cos∆θ2 − sin θ2,0 sin∆θ2)

= a20 + c2 − 2a0c cos θ2,0 + 2a0∆a− 2(−a0c sin θ2,0∆θ2 +∆ac cos θ2,0 −∆ac∆θ2 sin θ2,0).
(24)

Note that the value of b20 is equal to

b20 = a20 + c2 − 2a0c cos θ2,0. (25)

Eq. (24) can then be further simplified as follows:

2b0∆b
′ ≈ 2a0∆a+ 2a0c sin θ2,0∆θ2 − 2∆ac cos θ2,0 + 2∆ac∆θ2 sin θ2,0. (26)

Thus, ∆b′ is given by

∆b′ ≈ (a0∆a+ a0c sin θ2,0∆θ2 −∆ac cos θ2,0 +∆ac∆θ2 sin θ2,0)/b0. (27)

Considering

|b− b′| = |b0 +∆b − b0 −∆b′| = |∆b−∆b′| 6 |∆b′|+ |∆b| , (28)

we can then define the threshold as follows:

TH2 = |∆b′|+ |∆b| . (29)

By denoting σr and σa as the standard deviation of the range measurement and AOA measurement,

respectively, we obtain the following approximations:

|∆b′| 6 λ

b0

∣

∣

∣

∣

∣

a0σr + a0cσa sin θ2,0−
σrc cos θ2,0 + σrcλσa sin θ2,0

∣

∣

∣

∣

∣

, (30a)

|∆b| 6 λ |σr| , (30b)

where λ determines the confidence interval of a Gaussian variable. Note that the above inequality

is reliable with a high probability if a suitable λ is selected, and an appropriate λ is determined in

subsequent simulations. The above expressions are more complex than the threshold derivation in [31].

However, the proposed residual is more robust than the residual of [31] because the proposed residual

introduces more NLOS-dependent variables in the threshold calculation. Therefore, it is more sensitive

to NLOS errors. In particular, when there are only two LOS BSs, the advantage is clear, as demonstrated

in Subsection 4.2.

For more accurate NLOS identification, the value of λ is determined by targeted simulations, and the

detecting threshold is then computed according to (29) and (30). In practice, the actual a0 and b0 are

unknown; therefore, they can only be replaced by the measured a and b. This indicates that it is necessary

to search for an appropriate λ with the help of simulations. Similarly, the actual value of θ2,0 is also

unavailable and may deviate from its measurement to a large degree. Moreover, the range measurement

is more stable than the angle measurement in the NLOS environment; thus, we can make an alternate

approximation of θ2,0 using the cosine law as follows:

cos(θ2,0) ≈ (a2 + c2 − b2)/(2ac),

sin(θ2,0) ≈
√

1− cos2(θ2,0).
(31)

Now, using (29)–(31), the threshold TH2 can be easily computed. Similarly, the threshold of |a− a′| can
be formulated as follows:

TH1 = |∆a′|+ |∆a| , (32)
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Figure 2 (Color online) Influence of λ on the probability of correct identification. Comparison of different (a) LOS BS

numbers and (b) MS locations.

where

|∆a′| 6 λ

a0

∣

∣

∣

∣

∣

b0σr + b0cσa sin(θ1,0)−
σrc cos θ1,0 + σrcλσa sin θ1,0

∣

∣

∣

∣

∣

and |∆a| 6 λ |σr|. Given the above-mentioned thresholds, the NLOS detector can be defined as follows:

{

δ1 < TH1 and δ2 < TH2 → Both LOS BSs,

δ1 > TH1 or δ2 < TH2 → at least one NLOS BS existed.
(33)

It can be seen in (29) and (32) that the threshold depends on the standard deviation of the range

measurement (SDR) and the standard deviation of the angle measurement (SDA). Estimating these two

parameters from the range and angle measurements is beyond the scope of this study and is left for future

work. In this study, we assume that these two parameters are already known.

4 Simulations and analysis

Without loss of generality, we construct a classic base station topology with five BSs located at (0,

0), (1000, 1000), (−1000, −1000), (1000, −1000), and (−1000, 1000), where the measurement unit is

‘meter’. Moreover, both range measurement noise and angle measurement noise are modeled as zero-

mean Gaussian variables. However, the NLOS error of the range measurement is modeled as a uniform

distributed random variable. It takes a value of 50–500 m, which is used throughout this paper; moreover,

because NLOS effects on AOA measurements can be very large, in this study we assume that the NLOS

error of AOA is uniformly distributed from −π to π, which represents a highly-poor measurement result.

4.1 Determination of λ

As demonstrated in the above Subsection 3.3, the selection of λ plays an important role in NLOS identifi-

cation. Therefore, a tradeoff should be made between the false alarm probability and missing probability.

Here, under the guidance of the analytical study presented in Subsection 3.3, targeted simulations are

performed to determine an appropriate λ and the detecting thresholds. Note that each simulation runs

independently 2000 times. Moreover, the standard deviation of the zero-mean Gaussian measurement

noise is 10 m for the range measurement and 1◦ for the angle measurement.

Figure 2(a) shows the probability of correct identification with different λ, where the dotted curve

nLOS/real signifies that the real values of a0, b0, θ2,0, and θ1,0 are used in (29) and (32). The measured

variables are used in the solid curve nLOS/measured, and the coordinate position of the MS is (58.5,
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Figure 3 (Color online) Probability of correct detection with different λ, SDR, and SDA. (a) SDR = 5 m, SDA = 0.5◦;

(b) SDR = 4 m, SDA = 1◦; (c) SDR = 16 m, SDA = 1◦; (d) SDR = 10 m, SDA = 2◦.

0). Note that nLOS means that there are n LOS measurements. Figure 2(a) demonstrates that both

the measured variable value and real variable value produce almost identical curves, which confirms

the validity of the analytical derivation in Subsection 4.3. Moreover, because a large number of LOS

measurements may result in a larger probability of false alarms when the value of λ is small, it is much

easier to identify NLOS measurements when there are only two LOS measurements, as can be seen in

Figure 2(a). This may be because when λ is small, there are more opportunities to identify the LOS group

as an NLOS group, and a higher number of LOS groups leads to a higher probability of error. Figure 2(b)

shows the relationship between λ and the detection probability when the MS is in different positions.

The resulting simulation reveals that, although different MS positions lead to fluctuations in detection

performance, they are still acceptable within a certain range of λ values. Generally, the probability of

correct detection (identification) is high when λ decreases into the range of 2.5–4.5. Yet, this area must

be thoroughly searched to achieve an appropriate selection of λ.

Next, with different SDA and SDR setups, the probability of correct identification is presented for

several λ, and the result is helpful in determining λ for a wide and common range of SDA and SDR

values.

Figure 3 shows the probability of correct identification for different values of λ, SDR, and SDA. As

shown in Figure 3(a), to achieve a high detection probability of no less than 95%, we selected the λ region

3.25–4.5 as the candidate are, A1. Similarly, as shown in Figure 3(b), we defined the candidate area A2

as 2.5 6 λ 6 4.5. Furthermore, the candidate area A3, as seen in Figure 3(c), is 3.6 6 λ 6 4.5, and the

candidate area A4, as seen in Figure 3(d), is 2.75 6 λ 6 3.75. Finally, a feasible λ region is as follows:

f = A1 ∩ A2 ∩ A3 ∩ A4 = [3.6, 3.75]. (34)
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Table 1 Detection probability of RT algorithm with SDA= 1◦ and SDR = 9 and 18 m

LOS BS number 7 6 5 4 3 2

SDR = 9 m 0.940 0.947 0.944 0.943 0.847 –

SDR = 18 m 0.932 0.941 0.949 0.927 0.721 –

Table 2 Performance of proposed algorithm with different SDA: SDR = 9 m

LOS BS number 7 6 5 4 3 2

SDA = 0.1 1 1 1 0.999 0.998 0.994

SDA = 0.5 0.995 0.991 0.987 0.985 0.988 0.976

SDA = 1 0.979 0.968 0.951 0.945 0.937 0.935

Table 3 Performance of proposed algorithm for different SDA: SDR = 18 m

LOS BS number 7 6 5 4 3 2

SDA = 0.1 1 1 0.999 0.997 0.996 0.994

SDA = 0.5 0.994 0.990 0.989 0.988 0.982 0.983

SDA = 1 0.985 0.967 0.956 0.938 0.937 0.941

Based on (34), further simulations are run to determine a more appropriate value of λ, and the final

choice is 3.68. Note that the detailed simulation is not provided because of space limitations. Moreover,

simulations are run for different MS positions, and the results are very similar to those of Figures 2 and

3, which signifies that the determination of λ is insensitive to MS position. The following subsections use

random MS positions, and the resulting superior performance demonstrates that the determination of λ

is insensitive to MS position. Moreover, although the simulation setup is specified in this subsection, note

that the determined λ is not sensitive to the specified simulation setup, as the derivation in Section 3

does not require strict constraints on the environmental setup.

4.2 NLOS identification performance

In Subsection 4.1, the selection of λ is determined. Here, we compare the proposed NLOS detection

algorithm with the residual test (RT) algorithm [32]. Moreover, to demonstrate the influence of BS

topologies, the proposed algorithm is tested in another classic BS topology, in which BSs are located

at (0, 0), (
√
3r, 0), (

√
3
2 r,

3
2r), (−

√
3
2 r,

3
2r), (−

√
3r, 0), (−

√
3
2 r,− 3

2r), and (
√
3
2 r,− 3

2 r), where r = 1000 m.

Moreover, the MS position is generated randomly in the topology.

Table 1 shows that the RT algorithm can only deal with the case in which the LOS BS number is no

less than three. However, when there are three LOS BSs, the probability of successful detection cannot

meet the requirements of real-world applications. Tables 2 and 3 show that the probability of successful

detection is higher than 0.93 even if there are two LOS BSs. Moreover, when SDA = 0.1◦, the AOA

estimate is accurate, and the probability of successful detection is at least 99%.

Moreover, we determined via simulation that the final localization performance rapidly degrades with

a detection probability of less than 0.9, which signifies that the proposed method performs well for a

common range of SDA. Previous studies have demonstrated that the AOA estimator of the BS can

limit its SDA within one degree in practice [33]; therefore, the proposed method is effective in real-

world scenarios. Note that a smaller BS number leads to a higher identification probability, i.e., the

identification performance of a five-BS setup is superior to that of a seven-BS setup by a small amount.

The reason for this is as follows:

• For a given LOS measurement number, a larger BS number results in more NLOS measurement

groups, and therefore a higher false alarm probability.

Accordingly, we use a five-BS setup in this study, except in the comparison with the RT algorithm.

Moreover, we recommend that engineers use a five-BS setup for use with our proposed algorithm. This

will be a simple task in a cellular network because an MS is currently capable of constructing links with

multiple remote units.
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Figure 4 (Color online) RMSE performance comparison for different SDR: SDA = 1◦. (a) Case 5/2; (b) case 5/3;

(c) case 5/4.

4.3 Performance of NLOS identification and TS-WLS localization

In this subsection, six algorithms are compared under the same simulation conditions as in Subsection 4.1.

The first algorithm is NLOS identification plus the least squares algorithm (NI-LS) [31]; the second

algorithm is the proposed NLOS identification plus the TS-WLS localization algorithm, denoted NI-TS-

WLS; the third algorithm is the residual weighting algorithm (RWGH) [34]; and the final algorithms are

optimization algorithms such as the constrained least square (CLS) algorithm [35], opt-LLOP algorithm

[36], and SDP algorithm [9]. The Cramer-Rao lower bound (CRLB) [37] is presented as a performance

benchmark representing the best achievable performance of the TOA/AOA-based position estimator

without diversity in time or other domains.

As shown in Figure 1, the BS number is five; thus, there are three cases in this subsection, as follows:

• Case 5/2: two measurements are LOS.

• Case 5/3: three measurements are LOS.

• Case 5/4: four measurements are LOS.

Each case runs independently 1000 times, and the root-mean-square-error (RMSE) is then calculated.

Figure 4 shows the influence of SDR on the localization algorithm. This figure demonstrates that the

CLS and RWGH methods produce large estimation errors, while the SDP, NI-LS, and proposed algorithm

NI-TS-WLS display better performance. However, although the SDP algorithm significantly improves

its performance, its performance is poorer than that of the proposed algorithm, e.g., when SDR = 10 m
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Figure 5 (Color online) RMSE performance comparison for different SDA: SDR = 10 m. (a) Case 5/2; (b) case 5/3;

(c) case 5/4.

in case 5/2, the positioning error of the SDP and NI-LS algorithms is 98 and 49 m, respectively, while

it is 33 m for the proposed algorithm. Moreover, the NI-LS method experiences a clear RMSE increase

in case 5/2 because of a low detection probability. Furthermore, with an increasing number of LOS

measurements, the curve of NI-TS-WLS tends to approach the CRLB; this signifies that the proposed

NLOS identification algorithm performs well. Few mistakes occur in the proposed NLOS identification

algorithm even with only two LOS BS measurements. Nevertheless, a large SDR leads to lower localization

accuracy for all algorithms, which may have two causes. First, the increase in SDR leads to more difficult

NLOS identification. Second, even if identification is successful, the larger SDR degrades the accuracy of

the algorithm.

In addition to the SDR study, we investigated of the SDA, as shown in Figure 5. From this figure,

it can be seen that the SDA has a small effect on all algorithms. The CLS method has the poorest

performance, while the RWGH algorithm is significantly improved for a larger number of LOS BSs. Of

the tested methods, the SDP algorithm is relatively stable; however, its performance is poorer than that

of the NI-LS algorithm and proposed NI-TS-WLS algorithm. The proposed NI-TS-WLS algorithm has

the best performance of all tested algorithms, e.g., when there are two LOS BSs and SDR = 10 m and

SDA = 1, the RMSE of the proposed algorithm is 50 m, which is about 5% of the cell radius. Thus, it

can be concluded that the proposed NLOS identification performs well. Note that few mistakes occur in

the proposed NLOS identification even for only two LOS BS measurements (SDA 6 1◦).

We present a more challenging environment to test our proposed algorithm, where we must determine
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Figure 6 (Color online) Cumulated distribution function (CDF) of tested algorithms under harsh environments for two

LOS BSs. (a) SDR = 40 m, SDA = 1◦; (b) SDR = 40 m, SDA = 2◦

that the NLOS error is uniformly distributed within 200–700 m. From this, it can be seen that the

proposed NI-TS-WLS algorithm results in the best performance, e.g., as illustrated in Figure 6(b), the

CDF is about 0.9 when the positioning error is 90 m, which is about 9% of the cell radius. Because

real-world measurements may not be as harsh as those used in the previous figures, this error ratio will

be further reduced.

5 Conclusion

In this study, we present two investigations. First, we propose a novel NLOS identification algorithm

that uses a novel ranging residual, and we then exploit a semi-analytical method to determine the de-

tection threshold. Second, we use a two-step WLS algorithm to estimate the MS position using only

the identified LOS measurements. Simulation results indicate that the proposed algorithm performs well

in identifying NLOS measurements; in particular, the probability of successful detection is greater than

93%. Moreover, the proposed NLOS identification algorithm relaxes the requirements on the number

of LOS measurements, which is more suitable for real-world scenarios. Moreover, the simulation results

demonstrate that the proposed NI-TS-WLS algorithm performs better than conventional methods and

has superior localization accuracy.
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