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Abstract This paper reports the boundedness and stability of highly nonlinear hybrid neutral stochastic

differential delay equations (NSDDEs) with multiple delays. Without imposing linear growth condition, the

boundedness and exponential stability of the exact solution are investigated by Lyapunov functional method.

In particular, using the M-matrix technique, the mean square exponential stability is obtained. Finally, three

examples are presented to verify our results.
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1 Introduction

Since continuous-time Markov chains were introduced to describe stochastic systems which undergo

abrupt changes in their parameters and structures, hybrid stochastic differential equations (SDEs) have

been widely used in engineering and science. Moreover, stochastic differential delay equations (SDDEs)

are often used to investigate systems whose evolution depends on not only the present state but also

the past state [1–5]. Boundedness and stability are two of the most basic issues in analyzing hybrid

SDDEs. However, most of the papers in this field only considered systems whose coefficients are bounded

by linear functions [6–11]. Recently, some significant results are obtained for highly nonlinear stochastic

delay systems. For example, Hu et al. [12] investigated the boundedness and stability of hybrid SDDEs

without the linear growth condition, while Hu et al. [13] studied the robust stability and boundedness of

nonlinear hybrid SDDEs by the method of M-matrix. Fei et al. [14] established delay dependent criteria

for highly nonlinear hybrid SDDEs under the polynomial growth condition. Moreover, Fei et al. [15]

discussed structured robust stability and boundedness under highly nonlinear condition by introducing a

new Lyapunov function.

Many stochastic systems which not only depend on present and past states but also involve derivatives

with delays are modeled by neutral stochastic differential delay equations (NSDDEs). Although extensive

literature can be found in this area, we mention a few of them herein [16–23]. Also, many researchers

have made efforts in regard to the stability of highly nonlinear neutral stochastic systems. For example,

Luo et al. [24] established criteria for exponential stability of neutral SDEs that exhibit a time-dependent

delay. Furthermore, Song and Shen [25] investigated stability criteria that not only covers a large class
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of highly nonlinear neutral stochastic functional differential equations but also handles general stability

issues. Moreover, the stability of NSDDEs with Markov switching, also known as hybrid NSDDEs, is

studied by many researchers. For example, Kolmanovskii et al. [26] established a fundamental theory for

hybrid NSDDEs and discussed the boundedness and stability of the systems. Mao et al. [27] investigated

almost sure stability of a class hybrid NSDDEs. Furthermore, Li and Deng [28] established a criterion for

general decay rate of almost sure stability of hybrid NSDDEs with lévy noise using Lyapunov functional

and M-matrix techniques. However, all the functions V (x, t, i) in these references are required to have the

same degree for each i ∈ S, which may not be satisfied by hybrid NSDDEs that have different structures

in different modes. Moreover, neutral stochastic systems may not depend only on single delay. Zhao et

al. [29] provided motivation with regards to the study of stability of linear neutral systems with multiple

delays. Chen et al. [30] investigated delay dependent exponential stability of multiple time-varying

delays neutral stochastic systems. For more information on the stability of neutral systems with multiple

delays, we refer the reader to [31–33]. However, it is crucial to observe that all the multiple time delays

systems discussed in these papers are linear systems. Considering [12,24,25,28,30], herein, we extend the

linear multiple delays neutral stochastic systems to highly nonlinear hybrid NSDDEs. By applying the

Lyapunov functional technique, a sufficient condition for the stability of highly nonlinear NSDDEs with

multiple delays is established under mild conditions. In particular, mean square exponential stability is

investigated using M-matrix method.

The important features of this paper are as follows:

• In establishing the theory on the boundedness and stability of hybrid NSDDEs with highly nonlinear

coefficients, multiple delays are taken into consideration.

• New mathematical techniques are developed to handle multiple delays NSDDEs under highly non-

linear growth condition. For example, a general Lyapunov function is introduced.

• H∞ stability and almost sure exponential stability are discussed.

The remaining sections of this paper are structured as follows. In Section 2, some preliminary def-

initions, assumptions and a key lemma are presented. Section 3 mainly discusses the existence and

uniqueness of solutions of highly nonlinear NSDDEs with multiple delays. Also, using the Lyapunov

functional and M-matrix methods, the boundedness and stability criteria for hybrid NSDDEs are dis-

cussed. In Section 4, three examples are given to illustrate the applicability of our results. Finally, a

conclusion is drawn in Section 5.

2 Preliminary

Let B(t) = (B1(t), . . . , Bd(t))
T be a d-dimensional Brownian motion defined on the probability space

(Ω,F , {Ft}t>0, P ), where the filtration {Ft}t>0 satisfies the usual conditions (i.e., it is right continuous

and F0 contains all P -null sets). Let {r(t), t > 0} be a right-continuous Markov chain on the probability

space taking values in a finite state space S = {1, 2, . . . , N} with generator Γ = (γij)N×N . (For the detail

of Γ we refer the reader to [5, page 47].) With regard to what follows, we assume that the Markov chain

r(·) is independent of the Brownian motion B(·).

Let C(Rn × [−τ,∞);R+) denote the family of all continuous functions from R
n × [−τ,∞) to R+. Let

f : Rn × · · · × R
n × S × R+ → R

n and g : Rn × · · · × R
n × S × R+ → R

n×d

be Borel measurable functions. Let δl : R+ → [0, τl], l = 1, . . . ,m denote the variable time delay such

that δ̇l(t) := dδl(t)/dt 6 δ̄l < 1 for all t > 0.

Herein, we consider the following neutral hybrid NSDDE with multiple delays:

d[X(t)− Λ(X(t− δ1(t)), r(t), t)] = f(X(t), X(t− δ1(t)), . . . , X(t− δm(t)), r(t), t)dt

+ g(X(t), X(t− δ1(t)), . . . , X(t− δm(t)), r(t), t)dB(t) (1)

on t > 0 with initial data

{X(t) : −τ 6 t 6 0} = ξ ∈ C([−τ, 0];Rn) and r(0) = i0 ∈ S, (2)
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where τ = max{τl : l = 1, . . . ,m}, Λ : Rn × S × R+ → R
n, and C([−τ, 0];Rn) denotes the family of

continuous functions ξ from [−τ, 0] → R
n with the norm ‖ξ‖ = sup−τ6s60 |ξ(s)|. We also assume that

f(0, . . . , 0, i, t) = g(0, . . . , 0, i, t) = Λ(0, i, t) = 0.

Let C2,1(Rn×S×R+;R+) denote the family of nonnegative functions V (x, i, t) on R
n×S×R+, which

are continuously twice differentiable in x and once in t, and define an operator LV : Rn×· · ·×R
n×S×R+

→ R by

LV (x− Λ(y1, i, t), y1, . . . , ym, i, t)

= Vt(x − Λ(y1, i, t), i, t) + Vx(x− Λ(y1, i, t), i, t)f(x, y1, . . . , ym, i, t)

+
1

2
trace

[

gT(x, y1, . . . , ym, i, t)Vxx(x− Λ(y1, i, t), i, t)g(x, y1, . . . , ym, i, t)
]

+

N
∑

j=1

γijV (x− Λ(y1, i, t), j, t),

where Vt(x, i, t) =
∂V (x,i,t)

∂t
, Vx(x, i, t) =

(

∂V (x,i,t)
∂x1

, . . . , ∂V (x,i,t)
∂xn

)

, and Vxx(x, i, t) =
(

∂2V (x,i,t)
∂xk∂xl

)

n×n
.

Assumption 1. For each integer H > 1, we assume there exists a positive constant K̄H such that

|f(x, y1, . . . , ym, i, t)− f(ȳ, ȳ1, . . . , ȳm, i, t)|2 ∨ |g(x, y1, . . . , ym, i, t)− g(x̄, ȳ1, . . . , ȳm, i, t)|2

6 K̄H

(

|x− x̄|2 +
m
∑

l=1

|yl − ȳl|
2

)

for those x, x̄, yl, ȳl ∈ R
n with |x| ∨ |x̄| ∨ |yl| ∨ |ȳl| 6 H and all (i, t) ∈ S × R+.

Assumption 2. We assume there exist constants κi ∈ (0, 1) such that

|Λ(a, i, t)− Λ(b, i, t)| 6 κi|a− b| (3)

for all a, b ∈ R
n, and Λ(0, i, t) = 0. Furthermore, we assume that κ = max{κi, i = 1, . . . , N}.

We now state Lemma 1 which plays crucial role in this paper.

Lemma 1. Define the quasi polynomial function U(x) = ah|x|βh + · · ·+a1|x|β1 , x ∈ R
n, where |x| is the

Euclidean norm of x, ai > 0, i = 1, . . . , h−1, βh > βh−1 > · · · > β1 > 0 and ah > 0. Let τ > 0 and δ be a

differentiable function from R+ → [0, τ ] such that dδ(t)/dt 6 δ̄ < 1. Assume |Λ(X(t), r(t), t)| 6 κ|X(t)|,

X(t) : [−τ,∞) → R
n is a continuous function, and r(t) is a Markov chain on the state space S, where

X(t) = ξ(t), t ∈ [−τ, 0], 0 < κ < 1. Fixing ε > 0 arbitrarily, we have the following conclusions:

(i)

∫ T

0

eεtU(X(t− δ(t)))dt 6
eετ

1− δ̄

∫ 0

−τ

U(ξ(t))dt+
eετ

1− δ̄

∫ T

0

eεtU(X(t))dt, ∀T > 0; (4)

(ii)

∫ T

0

eεtU(X(t)− Λ(X(t− δ(t)), r(t), t))dt 6
eετ

1− δ̄

∫ 0

−τ

U(ξ(t))dt+ Cτ

∫ T

0

eεtU(X(t))dt, ∀T > 0,

where Cτ = max{κeετ

1−δ̄
+ (1− κ)1−βh , eετ

1−δ̄
+ 1}.

Proof. For p > 0, it is easy to show that

∫ T

0

eεt|X(t− δ(t))|pdt 6 eετ
∫ T

0

eε(t−δ(t))|X(t− δ(t))|pdt

6
eετ

1− δ̄

∫ T

−τ

eεs|X(s)|pds

6
eετ

1− δ̄

∫ 0

−τ

|ξ(s)|pds+
eετ

1− δ̄

∫ T

0

eεs|X(s)|pds. (5)
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By the definition of U(x), we obtain

∫ T

0

eεtU(X(t− δ(t)))dt

=

∫ T

0

eεt(ah|X(t− δ(t))|βh + · · ·+ a1|X(t− δ(t))|β1)dt

6
eετ

1− δ̄

∫ 0

−τ

ah|ξ(s)|
βh + · · ·+ a1|ξ(s)|

β1ds+
eετ

1− δ̄

∫ T

0

eεs(ah|X(s)|βh + · · ·+ a1|X(s)|β1)ds

=
eετ

1− δ̄

∫ 0

−τ

U(ξ(s))ds +
eετ

1− δ̄

∫ T

0

eεsU(X(s))ds,

establishing (i). Next, we establish the assertion (ii). For p > 1, we apply the inequality

(u+ v)p 6 (1 +̟)p−1(up +̟1−pvp) ∀u, v > 0, p > 1, ̟ > 0,

it is easy to see that

|X(t)− Λ(X(t− δ(t)), r(t), t)|p 6 (1 +̟)p−1(|X(t)|p +̟1−p|Λ(X(t− δ(t)), r(t), t)|p).

Setting ̟ = κ
1−κ

, we derive

|X(t)− Λ(X(t− δ(t)), r(t), t)|p 6 (1− κ)1−p|X(t)|p + κ1−p|Λ(X(t− δ(t)), r(t), t)|p

6 (1− κ)1−p|X(t)|p + κ|X(t− δ(t))|p, (6)

which, together with (5), shows that

∫ T

0

eεt|X(t)− Λ(X(t− δ(t)), r(t), t)|pdt

6 (1 − κ)1−p

∫ T

0

eεt|X(t)|pdt+ κ

∫ T

0

eεt|X(t− δ(t))|pdt

6
κeετ

1− δ̄

∫ 0

−τ

|ξ(t)|pdt+
κeετ

1− δ̄

∫ T

0

eεt|X(t)|pdt+ (1− κ)1−p

∫ T

0

eεt|X(t)|pdt

=
κeετ

1− δ̄

∫ 0

−τ

|ξ(t)|pdt+

[

κeετ

1− δ̄
+ (1 − κ)1−p

]
∫ T

0

eεt|X(t)|pdt. (7)

Noting that 0 < 1− κ < 1 and 1− p 6 0, we have (1− κ)1−p 6 (1− κ)1−βh , ∀p 6 βh. Thus, from (7),

the following inequality holds for all 1 6 p 6 βh:

∫ T

0

eεt|X(t)− Λ(X(t− δ(t)), r(t), t)|pdt

6
κeετ

1− δ̄

∫ 0

−τ

|ξ(t)|pdt+

[

κeετ

1− δ̄
+ (1− κ)1−βh

]
∫ T

0

eεt|X(t)|pdt. (8)

For 0 6 p < 1, by the elementary inequality (u+ v)p 6 up + vp, ∀u, v > 0, we obtain

∫ T

0

eεt|X(t)− Λ(X(t− δ(t)), r(t), t)|pdt 6
κpeετ

1− δ̄

∫ 0

−τ

|ξ(t)|pdt+

(

κpeετ

1 − δ̄
+ 1

)
∫ T

0

eεt|X(t)|pdt

6
eετ

1− δ̄

∫ 0

−τ

|ξ(t)|pdt+

(

eετ

1− δ̄
+ 1

)
∫ T

0

eεt|X(t)|pdt.

Thus, together with (8) and the definition of U(x), we see that

∫ T

0

eεtU(X(t)− Λ(X(t− δ(t)), r(t), t))dt
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=

∫ T

0

eεt(ah|X(t)− Λ(X(t− δ(t)), r(t), t)|βh + · · ·+ a1|X(t)− Λ(X(t− δ(t)), r(t), t)|β1 )dt

6
eετ

1− δ̄

∫ 0

−τ

ah|ξ(t)|
βh + · · ·+ a1|ξ(t)|

β1dt+ Cτ

∫ T

0

eεt(ah|X(t)|βh + · · ·+ a1|X(t)|β1)dt

=
eετ

1− δ̄

∫ 0

−τ

U(ξ(t))dt + Cτ

∫ T

0

eεtU(X(t))dt.

Hence, the proof is complete.

Assumption 3. We assume that there exist three functions V ∈ C2,1(Rn × S × R+;R+), U1, U2 ∈ U ,

as well as nonnegative constants, a1, a2, cl, where l = 1, . . . ,m and a2 >
∑m

l=1 cl, such that

U1(x, t) 6 V (x, i, t) 6 U2(x, t), ∀(x, i, t) ∈ R
n × S × R+, (9)

and

LV (x− Λ(y1, i, t), y1, . . . , ym, i, t) 6 a1 − a2U2(x, t) +
m
∑

l=1

cl(1− δ̄l)U2(yl, t− δl(t)),

for all x, y1, . . . , ym ∈ R
n and (i, t) ∈ S × R+.

3 Boundedness and stability

Using the notations and assumptions introduced in the previous section, we first establish the existence

and uniqueness of a solution of the system (1) in this section.

Theorem 1. Suppose Assumptions 1–3 hold; then for any initial data given by (2), we have the following

assertions:

(i) There exists a unique global solution X(t) to the the hybrid NSDDE (1) on t ∈ [−τ,∞).

(ii) The solution obtained in (i) has the property that

lim sup
t→∞

1

t

∫ t

0

EU2(X(s), s)ds 6
a1

a2 −
∑m

l=1 cl
. (10)

Proof. As the coefficients of the hybrid NSDDE (1) are locally Lipschitz continuous, it follows that

for any given initial data (2) and r0 ∈ S arbitrarily, there exists a unique maximal local solution X(t)

on t ∈ [−τ, τ̄e) (e.g., [5, Theorem 7.12]), where τ̄e is the explosion time. Defining Z(t) = X(t) −

Λ(X(t − δ1(t)), r(t), t), it is easy to show that |Z(0)| 6 ‖ξ‖ + |Λ(ξ, r(0), 0)| 6 (1 + κ)‖ξ‖. Let k0 > 0

be a sufficiently large integer such that ‖ξ‖ < k0. For each integer k > k0, we define the stopping

time σk = inf{t ∈ [0, τ̄e) : |X(t)| > k} and inf ∅ = ∞. Clearly, σk is increasing as k → ∞, and

σ̄∞ = limk→∞ σk 6 τ̄e. Hence, the assertion (i) will follow if we can show that σ̄∞ = ∞ a.s.

By the generalized Itô formula (e.g., [5, Theorem 1.45]) and Assumption 3, we obtain

EV (Z(t ∧ σk), r(t ∧ σk), t ∧ σk)

= V (Z(0)) + E

∫ t∧σk

0

LV (X(s), X(s− δ1(s)), . . . , X(s− δm(s)), r(s), s)ds

6 V (Z(0)) + a1t− a2E

∫ t∧σk

0

U2(X(s), s)ds

+
m
∑

l=1

cl(1− δ̄l)E

∫ t∧σk

0

U2(X(s− δl(s)), s− δl(s))ds, (11)

but
∫ t∧σk

0

U2(X(s− δl(s)), s− δl(s))ds 6
1

1− δ̄l

∫ 0

−τl

U2(X(s), s)ds+
1

1− δ̄l

∫ t∧σk

0

U2(X(s), s)ds.
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Thus, we have

EV (Z(t ∧ σk), r(t ∧ σk), t ∧ σk) 6 K1 + a1t−

(

a2 −
m
∑

l=1

cl

)

E

∫ t∧σk

0

U2(X(s), s)ds,

where K1 = V (Z(0))+
∑m

l=1 cl
∫ 0

−τl
U2(X(s), s)ds. Using the hypothesis a2 >

∑m

l=1 cl and Assumption 3,

we have

EU1(Z(t ∧ σk), t ∧ σk) 6 K1 + a1t.

Now, we define νk = inf |z|>(1−κ)k,t>0 U1(z, t). Then, by (3), we have

|X(σk)− Λ(X(σk − δ1(σk)), r(σk), σk)|I{σk6t} > (k − |Λ(X(σk − δ1(σk)), r(σk), σk)|)I{σk6t}

> (k − κ|X(σk − δ1(σk))|)I{σk6t} > (1− κ)kI{σk6t}.

By the definition of U1(z, t) and σk, we can obtain

K1 + a1t >E[U1(Z(t ∧ σk), t ∧ σk)I{σk6t}]

>E

[

inf
|z|>(1−κ)k,t>0

U1(z, t)I{σk6t}

]

= νkP{σk 6 t}.

Note that νk → ∞ as k → ∞. Then, letting k → ∞ in the last inequality, we have that P{σ̄∞ 6 t} = 0,

which implies σ̄∞ > t a.s. Also, letting t → ∞, we get that σ̄∞ = ∞ a.s, which implies the assertion (i).

We now show the assertion (ii). From (11), it follows that
(

a2 −
m
∑

l=1

cl

)

E

∫ t∧σk

0

U2(X(s), s)ds 6 K1 + a1t.

Dividing both sides of the last inequality by a2 −
∑m

l=1 cl, we then have

E

∫ t∧σk

0

U2(X(s), s)ds 6
K1

a2 −
∑m

l=1 cl
+

a1t

a2 −
∑m

l=1 cl
.

Letting k → ∞ and using the well-known Fubini theorem, we obtain
∫ t

0

EU2(X(s), s)ds 6
K1

a2 −
∑m

l=1 cl
+

a1t

a2 −
∑m

l=1 cl
. (12)

Dividing both sides of inequality (12) by t and letting t → ∞, we obtain (10). Thus, the proof is

complete.

Next, we establish the criteria for the stability of the solution obtained in Theorem 1.

Theorem 2. Suppose Assumptions 1–3 hold; then for any given initial data (2), the unique global

solution to (1) has the property that

lim sup
t→∞

EU1(X(t)− Λ(X(t− δ1(t)), r(t), t), t) <
a1
ε
, (13)

where 0 < ε < 1 is sufficiently small such that

a2 − εCτ1 −
m
∑

l=1

cle
ετl > 0, (14)

where Cτ1 = max{κeετ1

1−δ̄1
+ (1− κ)1−βh , eετ1

1−δ̄1
+ 1}. Moreover, if a1 = 0, then the solution satisfies

lim sup
t→∞

logU1(X(t)− Λ(X(t− δ1(t)), r(t), t), t)

t
6 −ε a.s., (15)

and
∫ ∞

0

U2(X(t), t)dt < ∞ a.s. (16)
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Proof. Applying the generalized Itô formula to eε(t∧σk)V (Z(t ∧ σk), r(t ∧ σk), t ∧ σk), we obtain

Eeε(t∧σk)V (Z(t ∧ σk), r(t ∧ σk), t ∧ σk)

= V (Z(0), r(0), 0) + E

∫ t∧σk

0

εeεsV (Z(s), r(s), s)ds

+ E

∫ t∧σk

0

eεsLV (Z(s), X(s− δ1(s)), . . . , X(s− δm(s)), r(s), s)ds.

Also, from Assumption 3, we have

Eeε(t∧σk)U1(Z(t ∧ σk))

6 V (Z(0), r0, 0) + εE

∫ t∧σk

0

eεsU2(Z(s), s)ds+
a1
ε
eεt

− a2E

∫ t∧σk

0

eεsU2(X(s), s)ds+

m
∑

l=1

cl(1− δ̄l)E

∫ t∧σk

0

eεsU2(X(s− δl(s)), s− δl(s))ds.

Noting that

∫ t∧σk

0

eεsU2(X(s− δl(s)), s− δl(s))ds

6 eετl
∫ t∧σk

0

eε(s−δl(s))U2(X(s− δl(s)), s− δl(s))ds

6
eετl

1− δ̄l

∫ 0

−τl

U2(X(s), s)ds+
eετl

1− δ̄l

∫ t∧σk

0

eεsU2(X(s), s)ds,

and by Lemma 1, we obtain

Eeε(t∧σk)U1(Z(t ∧ σk), (t ∧ σk)) 6 K2 +
a1
ε
eεt + εCτ1E

∫ t∧σk

0

eεsU2(X(s), s)ds

− a2E

∫ t∧σk

0

eεsU2(X(s), s)ds+

m
∑

j=1

cle
ετlE

∫ t∧σk

0

eεsU2(X(s), s)ds,

where K2 = V (Z(0), r0, 0) +
εeετ1

1−δ̄

∫ 0

−τ1
U2(ξ(s), s)ds +

∑m

l=1 cle
ετl
∫ 0

−τl
U2(ξ(s), s)ds. By condition (14)

and letting k → ∞, we have

EeεtU1(Z(t), t) 6 K2 +
a1
ε
eεt, (17)

which shows that

lim sup
t→∞

EU1(X(t)− Λ(X(t− δ1(t)), r(t), t), t) <
a1
ε
,

and

lim sup
06t<∞

EU1(X(t)− Λ(X(t− δ1(t)), r(t), t), t) < ∞.

If a1 = 0, Eq. (17) yields

EeεtU1(Z(t), t) 6 K2, (18)

which implies that

lim sup
t→∞

logEU1(X(t)− Λ(X(t− δ1(t)), r(t), t), t)

t
6 −ε.

Moreover, if a1 = 0, from (12) we can then obtain that

∫ t

0

EU2(X(s), s)ds 6
K1

a2 −
∑m

l=1 cl
.
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By letting t → ∞ in the last inequality, we obtain
∫ ∞

0

EU2(X(s), s)ds 6
K1

a2 −
∑m

l=1 cl
. (19)

Furthermore, using the well-known Fubini theorem, we have

E

∫ ∞

0

U2(X(s), s)ds 6
K1

a2 −
∑m

l=1 cl
,

which implies (16). Finally, we show that (15) holds. By the generalized Itô formula (e.g., [5, Theo-

rem 1.45]), we have that for any t > 0,

eεtV (Z(t), r(t), t) = V (Z(0), r0, 0) +

∫ t

0

εeεsV (Z(s), r(s), s)ds

+

∫ t

0

eεsLV (Z(s), X(s− δ1(s)), . . . , X(s− δm(s)), r(s), s)ds +M(t),

where M(t) is a local martingale with the initial value M(0) = 0. For a1 = 0, by the same argument as

before, we obtain

eεtU1(Z(t), t) 6 K2 +M(t).

Using the nonnegative semimartingale convergence theorem (e.g., [8, Theorem 1.3.9]), we immediately

obtain that

lim sup
t→∞

eεtU1(Z(t), t) < ∞ a.s.

Therefore, there exists a finite positive random variable η such that

sup
06t<∞

eεtU1(Z(t), t) < ς a.s., (20)

which implies that

lim sup
t→∞

logU1(Z(t), t)

t
< −ε a.s.

Hence, the assertion (15) can be obtained. Thus, the proof is complete.

Remark 1. It is important to note that Theorems 1 and 2 are not only applicable in handling NSDDEs

that have different parameters in different modes, but can also be applied to NSDDEs that have different

structures in different modes. This will be illustrated in Examples 1 and 2.

Remark 2. We also remark that Theorems 1 and 2 are extendable to more general class of equations

with neutral parts that include more than one delay.

Corollary 1. Suppose all the conditions of Theorem 2 hold. If there is a pair of positive constants λ

and p > 1 such that

λ|x|p 6 U1(x, t), (x, t) ∈ R
d × R+, (21)

then the solution satisfies

lim sup
t→∞

E|X(t)|p < ∞.

Moreover, if a1 = 0 and κ1e
ετ1 < 1, then we have

∫ ∞

0

E|X(t)|pdt < ∞, (22)

lim sup
t→∞

log(E|X(t)|p)

t
< −ε, (23)

and

lim sup
t→∞

log |X(t)|

t
< −

ε

p
a.s. (24)
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Proof. The proof is similar to the proof of (6). We have that for any t > τ ,

sup
06s6t

E|X(s)|p 6 sup
06s6t

(1− κ1)
1−pE|Z(s)|p + sup

06s6t

κ1E|X(s− δ1(s))|
p

6 sup
06s6t

(1− κ1)
1−pE|Z(s)|p + κ1‖ξ‖

p + sup
06s6t

κ1E|X(s)|p. (25)

Thus, we obtain

(1− κ1) sup
06s6t

E|X(s)|p 6 (1− κ1)
1−p sup

06s6t

E|Z(s)|p + κ1‖ξ‖
p.

Letting t → ∞, we have

(1 − κ1) sup
06s<∞

E|X(s)|p 6 (1− κ1)
1−p sup

06s<∞
E|Z(s)|p + κ1‖ξ‖

p, (26)

which, with (13) and (21), shows that

lim sup
t→∞

E|X(t)|p 6
1

λ(1 − κ1)p
lim sup
t→∞

EU1(Z(t), t) +
κ1

λ(1 − κ1)
‖ξ‖p < ∞.

For a1 = 0, using (9), (19) and (21), we obtain
∫ ∞

0

E|X(t)|pdt 6
1

λ

∫ ∞

0

EU1(X(t), t)dt 6
1

λ

∫ ∞

0

EU1(X(t), t)dt 6
K1

λ(a2 −
∑m

l=1 cl)
< ∞.

Recalling (18) and (25) we see that for any t > 0,

sup
06s6t

eεsE|X(s)|p 6 (1− κ1)
1−p sup

06s6t

eεsE|Z(s)|p + κ1 sup
06s6t

eεsE|X(s− δ1(s))|
p

6
K2(1 − κ1)

1−p

λ
+ eετ1κ1‖ξ‖

p + eετ1κ1 sup
06s6t

eεsE|X(s)|p,

which implies

sup
06s6t

eεsE|X(s)|p 6
K2(1 − κ1)

1−p

λ(1 − κ1eετ1)
+

eετ1κ1

1− κ1eετ1
‖ξ‖p.

By letting t → ∞, the assertion (23) is obtained. Employing a similar argument as (26), we have

(1− κ1) sup
06t<∞

|X(t)|p 6 (1− κ1)
1−p sup

06t<∞
|Z(t)|p + κ1‖ξ‖

p.

By inequalities (20) and (21), we have

sup
06t<∞

|X(t)|p 6
(1− κ1)

1−p

λ(1− κ1)
sup

06t<∞
U1(Z(t), t) +

κ1

1− κ1
‖ξ‖p < ∞ a.s.

From inequality (20), for any t > τ , we have that

sup
06s6t

eεs|X(s)|p 6 (1− κ1)
1−p sup

06s6t

eεs|Z(s)|p + κ1e
εs sup

06s6t

|X(s− δ1(s))|
p

6
(1− κ1)

1−p

λ
sup

06s<∞
eεtU1(Z(s), s) + eετ1κ1‖ξ‖

p + eετ1κ1 sup
06s<∞

eεs|X(s)|p

6
(1− κ1)

1−p

λ
ς + eετ1κ1‖ξ‖

p + eετ1κ1 sup
06s6t

eεs|X(s)|p,

which implies

sup
06s6t

eεs|X(s)|p 6
ς(1− κ1)

1−p

λ(1 − κ1eετ1)
+

eετ1κ1

1− κ1eετ1
‖ξ‖p < ∞ a.s.

Letting t → ∞ in the last inequality yields the assertion (24). Thus, the proof is complete.

The following criterion is very convenient for the mean square exponential stability because the main

condition is explicitly related to the coefficients f and g. Before we give the criterion, it is necessary to

make Assumptions 4 and 5.
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Assumption 4. We assume that there is a constant q > 2. Assume that there exist αi1 ∈ R, and

αi2l, βi3, βi4l ∈ R+, l = 1, . . . ,m such that

(x− Λ(y1, i, t))
Tf(x, y1, . . . , ym, i, t) +

1

2
|g(x, y1, . . . , ym, i, t)|2

6 βi1|x|
2 +

m
∑

l=1

βi2l|yl|
2 − βi3|x|

q +

m
∑

l=1

βi4l|yl|
q

for each i ∈ S.

Assumption 5. We assume

A = −diag(2β11, . . . , 2βN1)− Γ− Γ̂

is a nonsingular M-matrix, where Γ̂ = (|γij |κi)N×N . Set

(λ1, . . . , λN )T = A−1(1, . . . , 1)T;

then λi > 0 for all i ∈ S.

Theorem 3. Let Assumptions 4 and 5 hold, and let b1=mini∈Sλi, b2=maxi∈Sλi, θ21=maxi∈S{2λiβi21

+
∑

j∈S κi|γij |λj +
∑

j∈S,j 6=i κ
2
i γijλj}, θ2l = maxi∈S{2λiβi2l}, where l = 2, . . . ,m, θ3 = mini∈S{2λiβi3},

θ4l = maxi∈S{2λiβi4l}, where l = 1, . . . ,m, and cl = max{ θ2l
1−δ̄l

, θ4l
θ3(1−δ̄l)

}, where l = 1, . . . ,m. Suppose

1 >

m
∑

l=1

cl; (27)

then we have that

lim sup
t→∞

log(E|X(t)|2)

t
< −ε, (28)

and

lim sup
t→∞

log |X(t)|

t
< −

ε

2
a.s. (29)

Proof. Let V (x, i, t) = λi|x|2, U1(x, t) = b1|x|2, U2(x, t) = b2|x|2 + b2θ3|x|q . Clearly,

U1(x, t) 6 V (x, i, t) 6 U2(x, t).

Now, we compute LV (z, y1, . . . , ym, i, t). For any i ∈ S,

LV (z, y1, . . . , ym, t, i) = 2λi

[

(x− Λ(y1, i, t))
Tf(x, y1, . . . , ym, i, t) +

1

2
|g(x, y1, . . . , ym, i, t)|2

]

+
∑

j∈S

λjγij(x− Λ(y1, i, t))
T(x− Λ(y1, i, t))

6 2λiβi1|x|
2 + 2λi

m
∑

l=1

βi2l|yl|
2 − 2λiβi3|x|

q + 2λi

m
∑

j=1

βi4l|yl|
q

+
∑

j∈S

λjγij |x|
2 − 2

∑

j∈S

λjγijx
TΛ(y1, i, t) +

∑

j∈S

λjγij |Λ(y1, i, t)|
2

6



2λiβi1 +
∑

j∈S

λjγij +
∑

j∈S

κiλj |γij |



 |x|2 + 2λi

m
∑

l=1

βi2l|yl|
2

+





∑

j∈S

κi|γij |λj +
∑

j∈S,j 6=i

κ2
i γijλj



 |y1|
2 − 2λiβi3|x|

q + 2λi

m
∑

l=1

βi4l|yl|
q.
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Furthermore, by definitions of θ21, θ2l, θ3 and θ4l, we have

LV (x− Λ(y1, i, t), y1, . . . , ym, t, i) 6 −|x|2 +
m
∑

l=1

θ2l|yl|
2 − θ3|x|

q +

m
∑

l=1

θ4l|yl|
q

6 −
1

b2
U2(x, t) +

1

b2

m
∑

l=1

cl(1− δ̄l)U2(yl, t− δl(t)).

Hence, the assertions (28) and (29) follow from Corollary 1.

4 Examples

In this section, we will use three examples to illustrate our theorems. Although these examples are scalar

highly nonlinear hybrid NSDDEs with constant delays, they are fully covered our theorems.

Example 1. Consider the following scalar hybrid NSDDE:

d[X(t)− Λ(X(t− τ1), r(t), t)]=f(X(t), X(t− τ1), X(t− τ2), r(t), t)dt + g(X(t− τ2), r(t), t)dB(t), (30)

where r(t) is a Markov chain on the state space S = {1, 2} with its generator

Γ =

(

−1 1

2 −2

)

,

and the coefficients are defined as follows:

f(x, y1, y2, 1, t) = y1 + y32 − 6x− 6x3, f(x, y1, y2, 2, t) = y1 + y32 − 3x− 4x3,

g(y2, 1, t) = g(y2, 2, t) = 0.5y22, Λ(y1, 1, t) = Λ(y1, 2, t) = 0.1y1.

In mode 1, the system is described by the NSDDE

d[X(t)− 0.1X(t− τ1)] = [X(t− τ1) +X3(t− τ2)− 6X(t)− 6X3(t)]dt+ 0.5X2(t− τ2)dB(t),

while in mode 2 it is described by

d[X(t)− 0.1X(t− τ1)] = [X(t− τ1) +X3(t− τ2)− 3X(t)− 4X3(t)]dt+ 0.5X2(t− τ2)dB(t).

It is easy to see that the two modes have the same structure but different parameters, which means

that the system only experiences abrupt changes in its parameters.

Before applying our theorem, we set τ1 = 2 and τ = τ2 = 3. Let

V (x, i, t) =

{

x2 + x4, if i = 1,

2x2 + 2x4, if i = 2.

Then, we obtain

LV (x− Λ(y1, 1, t), y1, y2, 1, t) = (2(x− 0.1y1) + 4(x− 0.1y1)
3)(y1 + y32 − 6x− 6x3)

+ (0.25 + 1.25(x− 0.1y1)
2)y42 + (x− 0.1y1)

2 + (x − 0.1y1)
4,

and

LV (x− Λ(y1, 2, t), y1, y2, 2, t) = (4(x− 0.1y1) + 8(x− 0.1y1)
3)(y1 + y32 − 3x− 4x3)

+ (0.5 + 3(x− 0.1y1)
2)y42 − 2(x− 0.1y1)

2 − 2(x− 0.1y1)
4.
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Applying the inequalities (a + b)p 6 (1 + ρ)p−1(ap + ρ1−pbp), and setting ρ = κ/(1 − κ) = 1/9, and

aβb1−β 6 βa+ (1 − β)b, we obtain

4(x− 0.1y1)
3(y1 + y32) 6 4.94|x|3|y1|+ 0.4y41 + 4.94|x|3|y2|

3 + 0.4|y1|
3|y2|

3

6 3.72x4 + 1.64y41 + 2.47x6 + 0.2y61 + 2.67y62,

and

(x− 0.1y1)
2
6 1.1x2 + 0.11y21, (x− 0.1y1)

4
6 1.38x4 + 0.1y41,

(0.25 + 1.5(x− 0.1y1)
2)y42 6 0.56x6 + 0.25y42 + 0.05y61 + 1.44y62.

By the well-known Young inequality, we have

2(x− 0.1y1)(y1 + y32 − 6x− 6x3) 6 −10.4x2 + 1.4y21 − 10.6x4 + 0.35y41 + 1.65y42,

−24x(x− 0.1y1)
3
6 −18.594x4 + 1.818y41, −24x3(x− 0.1y1)

3
6 −17.988x6 + 1.212y61.

Hence,

LV (x− Λ(y1, 1, t), y1, y2, 1, t)

6 −14.958x6 − 24.094x4 − 9.3x2 + 1.462y61 + 3.908y41 + 1.51y21 + 3.89y62 + 1.9y42.

Similarly,

LV (x− Λ(y1, 2, t), y1, y2, 2, t)

6 −17.924x6 − 26.348x4 − 11.2x2 + 2.116y61 + 5.8y41 + 2.38y21 + 7.78y62 + 3.8y42.

Therefore,

LV (x−Λ(y1, i, t), y1, y2, i, t) 6 −14.958x6−24.094x4−9.3x2+2.116y61+5.68y41+2.38y21+7.78y62+3.8y42

6 −4.6(3x6 + 5x4 + 2x2) + 1.2(3y61 + 5y41 + 2y21) + 2.6(3y62 + 5y42 + 2y22).

Letting U1(x, t) = x2 + x4 and U2(x, t) = 2x2 + 5x4 + 3x6, we have U1(x, t) 6 V (x, i, t) 6 U2(x, t).

Thus, we have a1 = 0, a2 = 4.6, c1 = 1.2, c2 = 2.6. By Theorem 2 and Corollary 1, we conclude that the

hybrid system (30) is fourth moment exponential stable. This result is also supported by the simulation

analysis carried out (see Figure 1).

Example 2. Let r(t) be a Markov chain on the state space S = {1, 2} with generator

Γ =

(

−1 1

10 −10

)

.

Consider the following scalar hybrid NSDDE:

d[X(t)− Λ(X(t− τ1), r(t), t)] = f(X(t), X(t− τ1), r(t), t)dt + g(X(t− τ2), r(t), t)dB(t), (31)

where τ1 = 1, τ2 = 2,

f(x, y1, 1, t) = y1 − 4x− 4x3, f(x, y1, 2, t) = 0.5x, g(y2, 1, t) = y22 ,

g(y2, 2, t) = 0.5y2, Λ(y1, 1, t) = Λ(y1, 2, t) = 0.1y1.

It is clear that the system has different structures in different modes. In mode 1, both f and g are

highly nonlinear functions, while in mode 2, f and g are linear functions. This shows that the system

experiences abrupt changes in its structure. Next, we will show that our theorem can be applied to

systems which have different structures in different modes.
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Figure 1 Computer simulation of the stochastic trajectories of the Markov chain and the NSDDE (30).

Let

V (x, i, t) =

{

x2, if i = 1,

2x2 + x4, if i = 2.

It is easy to show that

LV (x − Λ(y1, 1, t), y1, y2, 1, t) 6 −5.4x2 − 6x4 + 1.3y21 + 0.3y41 + y42,

and

LV (x− Λ(y1, 2, t), y1, y2, 2, t) 6 −6.9x2 − 3x4 + y21 + 1.4y41 + 0.5y22 + y42 .

Hence, we have

LV (x− Λ(y1, i, t), y1, y2, i, t) 6 −5.4x2 − 3x4 + 1.3y21 + 1.4y41 + 0.5y22 + y42

6 −2.7(2x2 + x4) + 1.4(2y21 + y41) + (2y22 + y42).

If we set U1(x, t) = x2 and U2(x, t) = 2x2 + x4, then we have U1(x, t) 6 V (x, i, t) 6 U2(x, t), a1 = 0,

a2 = 2.7, c1 = 1.4 and c2 = 1. By Theorem 2 and Corollary 1, we conclude that the NSDDE (31) is

almost sure exponential stable. The sample paths of the Markov chain and the solution of the NSDDE

(31) are plotted in Figure 2.

Example 3. In this example, we use the method of M-matrix to analysis the stability of NSDDEs. Let

r(t) be a Markov chain on the state space S = {1, 2} with its generator as

Γ =

(

−1 1

10 −10

)

.

Consider the following scalar hybrid NSDDE:

d[X(t)− Λ(X(t− τ1), r(t), t)]=f(X(t), X(t− τ1), X(t− τ2), r(t), t)dt + g(X(t− τ2), r(t), t)dB(t), (32)
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Figure 2 Computer simulation of the sample paths of the Markov chain and the NSDDE (31).

on t > 0, where

τ1 = 1, τ2 = 2, f(x, y1, y2, 1, t) = y1 + y32 − 6x− 6x3, f(x, y1, y2, 2, t) = 0.2y1 +
1

2
y32 − 4x3,

g(y2, 1, t) = y2, g(y2, 2, t) = 0.5y2, Λ(y1, 1, t) = Λ(y1, 2, t) = 0.1y1.

We estimate as follows:

(x− Λ(y1, 1, t))
Tf(x, y1, y2, 1, t) +

1

2
|g(x, y2, 1, t)|

2

= (x− 0.1y1)(y1 + y32 − 6x− 6x3) +
1

2
y22

6 −5.2x2 + 0.7y21 + 0.5y22 − 5.35x4 + 0.225y41 + 0.825y42,

and

(x− Λ(y1, 2, t))
Tf(x, y1, y2, 2, t) +

1

2
|g(x, y2, 2, t)|

2

= (x− 0.1y1)

(

0.2y1 +
1

2
y32 − 4x3

)

+
1

2
y22

6 0.1x2 + 0.08y21 + 0.125y22 − 3.575x4 + 0.1125y41 + 0.4125y42.

Thus, we have

β11 = −5.2, β21 = 0.1, β121 = 0.7, β122 = 0.5, β221 = 0.08, β222 = 0.125,

β13 = 5.35, β23 = 3.45, β141 = 0.225, β142 = 0.825, β241 = 0.1125, β242 = 0.4125.

By Assumption 5, we derive that

A =

(

11.3 −1.1

−11 8.8

)

, A−1 =

(

0.1008 0.0126

0.1259 0.1294

)

, λ1 = 0.1234, λ2 = 0.2553.

Thus, by Theorem 3 we have the following computed:

b1 = 0.1234, b2 = 0.2553, θ21 = 0.432, θ22 = 0.1234, θ3 = 1.3203,
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Figure 3 Computer simulation of the sample paths of the Markov chain and the NSDDE (32).

θ41 = 0.0556, θ42 = 0.2107, c1 = 0.432, c2 = 0.1596.

Hence, inequality (27) holds. Consequently, by Theorem 3, we conclude that the NSDDE (32) is stable,

although the second subsystem is unstable. Figure 3 illustrates the sample paths of the Markov chain

and the NSDDE (32).

5 Conclusion

In this study, we investigated boundedness and stability of highly nonlinear hybrid NSDDEs with multiple

delays without assuming linear growth condition. We also introduced a general Lyapunov function to

over come the difficulties in handling nonlinear growth conditions. Furthermore, the method of M-matrix

was utilized to analyze mean square exponential stability of NSDDEs. Our results can be applied to a

larger class of hybrid NSDDEs which may have different structures or parameters in different modes. We

have also presented three examples to demonstrate the applicability of our theorems.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 71571001,

71873002), Natural Science Foundation of Universities of Anhui Province (Grant No. KJ2018A0119), and Promoting Plan

of Higher Education of Anhui Province (Grant No. TSKJ2016B11).

References

1 Song J, Niu Y, Zou Y Y. Asynchronous sliding mode control of Markovian jump systems with time-varying delays and

partly accessible mode detection probabilities. Automatica, 2018, 93: 33–41

2 Fei W Y, Hu L J, Mao X R, et al. Generalized criteria on delay dependent stability of highly nonlinear hybrid stochastic

systems. Int J Robust Nonlinear Control, 2019, 29: 1201–1215

3 Wang B, Zhu Q. Stability analysis of semi-Markov switched stochastic systems. Automatica, 2018, 94: 72–80

4 Fei C, Shen M X, Fei W Y, et al. Stability of highly nonlinear hybrid stochastic integro-differential delay equations.

Nonlinear Anal-Hybrid Syst, 2019, 31: 180–199

5 Mao X R, Yuan C G. Stochastic Differential Equations with Markovian Switching. London: Imperial College Press,

2006

6 Song G F, Lu Z Y, Zheng B C, et al. Almost sure stabilization of hybrid systems by feedback control based on

discrete-time observations of mode and state. Sci China Inf Sci, 2018, 61: 070213

7 Yan Z G, Song Y X, Park J H. Finite-time stability and stabilization for stochastic markov jump systems with mode-

dependent time delays. ISA Trans, 2017, 68: 141–149

8 Mao X R. Stochastic Differential Equations and Applications. 2nd ed. Chichester: Horwood Publishing, 2007

https://doi.org/10.1016/j.automatica.2018.03.037
https://doi.org/10.1002/rnc.4402
https://doi.org/10.1016/j.automatica.2018.04.016
https://doi.org/10.1016/j.nahs.2018.09.001
https://doi.org/10.1007/s11432-017-9297-1
https://doi.org/10.1016/j.isatra.2017.01.018


Shen M X, et al. Sci China Inf Sci October 2019 Vol. 62 202205:16

9 Cao Y Y, Lam J, Hu L. Delay-dependent stochastic stability and H∞ analysis for time-delay systems with Markovian

jumping parameters. J Franklin Inst, 2003, 340: 423–434

10 Wu Y, Liu M, Wu X, et al. Input-to-state stability analysis for stochastic delayed systems with markovian switching.

IEEE Access, 2017, 5: 23663–23671

11 Wu X T, Tang Y, Zhang W B. Stability analysis of stochastic delayed systems with an application to multi-agent

systems. IEEE Trans Autom Control, 2016, 61: 4143–4149

12 Hu L J, Mao X R, Shen Y. Stability and boundedness of nonlinear hybrid stochastic differential delay equations. Syst

Control Lett, 2013, 62: 178–187

13 Hu L J, Mao X R, Zhang L G. Robust stability and boundedness of nonlinear hybrid stochastic differential delay

equations. IEEE Trans Autom Control, 2013, 58: 2319–2332

14 Fei W Y, Hu L J, Mao X R, et al. Delay dependent stability of highly nonlinear hybrid stochastic systems. Automatica,

2017, 82: 165–170

15 Fei W Y, Hu L J, Mao X R, et al. Structured robust stability and boundedness of nonlinear hybrid delay systems.

SIAM J Control Optim, 2018, 56: 2662–2689
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