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Abstract This work studies the leader-following consensus problem of second-order nonlinear multi-agent

systems with aperiodically intermittent position measurements. Through the filter-based method, a novel

intermittent consensus protocol without velocity measurements is designed for each follower exclusively based

on the relative position measurements of neighboring agents. Under the common assumption that only

relative position measurements between the neighboring agents are intermittently used, some consensus

conditions are derived for second-order leader-following multi-agent systems with inherent delayed nonlinear

dynamics. Moreover, for multi-agent systems without inherent delayed nonlinear dynamics, some simpler

consensus conditions are presented. Finally, some simulation examples are presented to verify and illustrate

the theoretical results.
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1 Introduction

Over the past few years, distributed collaboration control for networked multi-agent systems has at-

tracted considerable attention from different scientific fields, such as control theory, systems engineering,

applied mathematics, and computer science. This topic has wide applications in many areas, such as

flocking [1], synchronization [2], formation control [3], and distributed sensor networks [4]. In multi-agent

system networks, all autonomous agents can communicate and cooperate with their neighbors. Based on

distributed control strategy, all the collaborative agents can complete some large or complex assignments

in multi-agent systems, which is the motivation of distributed collaboration control.

One of the most fundamental and important interests to be explored of distributed collaboration control

is consensus-seeking. For distributed consensus-seeking, some appropriate distributed control strategies

are adopted such that a group of autonomous agents asymptotically reach an agreement on a common

value. The consensus-seeking problems have been intensively discussed from different perspectives in-

cluding leaderless consensus (i.e., consensus without any leader) [5–10], leader-following consensus (i.e.,

consensus with a leader) [11–15], and containment control (i.e., consensus with multiple leaders) [16–20].

Note that the abovementioned references only address the consensus problems of multi-agent systems

under continuous communication. In this case, each agent can communicate and cooperate with its
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neighbors at all times. However, in the real world, owing to some external factors, communication among

the autonomous agents is often discontinuous or intermittent. Under periodically intermittent commu-

nication, several intermittent control protocols for consensus-seeking of multi-agent systems have been

developed [21–24]. Multi-agent consensus problems have also been intensively investigated [25–28] ow-

ing to the coexistence of time delays and intermittent communication. In [29], based on aperiodically

intermittent control strategy, the second-order consensus problem was addressed for delayed multi-agent

systems under aperiodically intermittent communication.

Notably, all of the abovementioned studies on second-order consensus typically require velocity mea-

surements. However, owing to inaccurate velocity measurements, the relative velocity between the neigh-

boring agents is usually unavailable in multi-agent systems. In addition, to save system cost, load weight,

and equipment space, the agents may not be equipped with velocity sensors in many actual systems.

Thus, velocity measurements are usually unavailable in real systems. For multi-agent systems with-

out relative velocity measurements, many profound theoretical results exist on distributed coordination

control [30–33]. According to the filter-based method, the distributed consensus control problem of

second-order nonlinear multi-agent systems was studied in [34], in which velocity measurements were un-

available. Note that all the aforementioned results only focused on either intermittent communication or

inaccurate velocity measurements. However, these two communication limitations always coexist in real

networks. To the best of our knowledge, under intermittent communication, few studies have discussed

the dynamic behavior of second-order multi-agent systems with unavailable velocity measurements.

However, a novel intermittent consensus protocol without velocity measurements under aperiodically

intermittent communication is proposed herein to address the leader-following consensus problem of

second-order nonlinear multi-agent systems. The contributions and novelties of this article can be sum-

marized as follows.

• Compared with most current studies on second-order consensus, in this study, a second-order leader-

following consensus problem for delayed nonlinear multi-agent systems without relative velocity measure-

ments is considered under aperiodically intermittent communication, which can describe more realistic

distributed coordination control of second-order multi-agent systems.

• To overcome the challenging problem arising from aperiodically intermittent communication and in-

accurate velocity measurements, a novel intermittent consensus algorithm without velocity measurements

is developed for leader-following consensus based on the distributed filter designed.

• Under aperiodically intermittent communication, in this study, the proposed control protocol only

used the relative position measurements among agents for a second-order leader-following consensus.

In contrast, current related studies on second-order consensus used both relative position and relative

velocity measurements under periodically intermittent communication or continuous communication.

The remaining article is organized as follows. Section 2 states graph theory, problem formulation, and

some useful definitions and lemmas. The main theoretical results for the leader-following consensus of

second-order nonlinear multi-agent systems with aperiodically intermittent position measurements are

derived in Section 3. Section 4 provides two simulation examples to validate the theoretical analysis.

Finally, Section 5 presents the study’s conclusion.

Notation. Some notations that are used throughout this article are presented below. Let R, Rn, and

R
n×n be the set of integer numbers, the set of n-dimensional real vector space, and the set of n × n

real matrix space, respectively. In, 1n, 0n and 0m×n represent the n-dimensional identity matrix, the

n-dimensional column vector with all ones, the n-dimensional column vector with all zeros, and the m×n

matrix with all zeros. ‖·‖ denotes the Euclidean norm. For a square matrix A, let λmax(A) and λmin(A)

represent the maximum and minimum eigenvalues of A, respectively.

2 Problem formulation

Suppose that a communication network among n nodes is denoted by a weighted undirected graph

G = (W,E,A), where W = {w1, w2, . . . , wn} represents the set of nodes, E ⊆ W × W represents the
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set of edges, and A represents the adjacency matrix with weighted values. In particular, A = [aij ] ∈

R
n×n, in which aij > 0, i, j = 1, 2, . . . , n, denote the adjacency elements of the matrix A. Moreover,

aij > 0 if and only if (wj , wi) ∈ E. For all i ∈ {1, 2, . . . , n}, aii = 0, implying that self-loops are not

allowed. The Laplacian matrix of the graph G is defined by L = [lij ] ∈ R
n×n, i, j = 1, 2, . . . , n, where

lij =
∑n

j=1,j 6=i aij , i = j; lij = −aij , i 6= j. In multi-agent systems, node wi can be regarded as an agent

i. An undirected path from wi to wj is denoted by πi,j = {(wi1, wi2), (wi2, wi3), . . . , (wiq−1, wiq)}, where

wi1 = wi, wiq = wj , and (wip, wip+1) ∈ E ⇔ (wip+1, wip) ∈ E, p ∈ {1, 2, . . . , q − 1}. For an undirected

graph, (wj , wi) ∈ E ⇔ (wi, wj) ∈ E implies aij = aji, which means that agent j and agent i can exchange

information. An undirected network G is connected if there is an undirected path between any pair of

distinct nodes.

Consider a multi-agent network comprising n followers and a leader (labeled 0), which is described by

a simple graph Ḡ = (W̄ , Ē, Ā). The node set is denoted by W̄ = {w0, w1, w2, . . . , wn}, the edge set is

denoted by Ē that contains the edge set E, and the directed edges from the leader to the followers, and

the weighted adjacency matrix is denoted by Ā = [aij ] ∈ R
(n+1)×(n+1). The Laplacian matrix of the

graph Ḡ is defined by L̂. Moreover, L̂ = L + diag{a10, a20, . . . , an0}, in which L is the Laplacian matrix

of the graph G, ai0 > 0 if follower i can receive information from the leader, and ai0 = 0 otherwise,

i = 1, 2, . . . , n.

Definition 1 ([11]). The graph Ḡ is said to be connected if there exists at least one agent in G that

can connect to the leader via a directed edge.

Lemma 1 ([11]). If graph Ḡ is connected, then the symmetric matrix L̂ associated with Ḡ is positive

definite.

Consider a leader-following multi-agent system with the following second-order nonlinear dynamic

model. Each follower has the following dynamics:







ẋi(t) = vi(t),

v̇i(t) = f(t, vi(t), vi(t− τ(t))) + ui(t), i = 1, 2, . . . , n,
(1)

where xi(t) ∈ R
m, vi(t) ∈ R

m, and ui(t) ∈ R
m are the position state, velocity state, and control input of

agent i, respectively. f : Rm×R
m× [0,+∞) → R

m is a uniform continuously differentiable vector-valued

function having a time-varying nonlinear property, which describes the inherent dynamics of agent i. In

addition, the leader, labeled i = 0, has the following dynamics:







ẋ0(t) = v0(t),

v̇0(t) = f(t, v0(t), v0(t− τ(t))),
(2)

where x0(t) ∈ R
m and v0(t) ∈ R

m are the position and velocity states of the leader, respectively, and

f(t, v0(t), v0(t − τ(t))) is defined as that in (1). τ(t) > 0 represents time-varying delays. Moreover, for

the nonlinear function f(·) in systems (1) and (2), the following Lipschitz-type condition is satisfied.

Assumption 1 ([8]). For any x, y, z, w ∈ R
n, there exist non-negative constants ρ1 and ρ2 such that

‖f(t, x, w)− f(t, y, z)‖ 6 ρ1‖x− y‖+ρ2‖w − z‖, ∀t > 0.

Definition 2. The second-order leader-following consensus of systems (1) and (2) is said to be achieved

if, for any initial conditions xi(0), vi(0), i = 0, 1, . . . , n,







lim
t→∞

‖xi(t)− x0(t)‖ = 0,

lim
t→∞

‖vi(t)− v0(t)‖ = 0, i = 1, 2, . . . , n.
(3)

In real systems, velocity measurements are usually unavailable. To overcome this challenge, an ap-

proximation auxiliary filter vector was introduced for a serial n-link rigid robot manipulator in [35], and
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a distributed filter was used for the coordination control of multi-agent systems in [34]. Motivated by the

studies of [34, 35], a distributed filter is introduced for each follower as follows:















ωi(t) = ϑi(t) + b

n
∑

j=0

aij(xi(t)− xj(t)),

ϑ̇i(t) = −aωi(t), i = 1, 2, . . . , n,

(4)

where ωi(t) ∈ R
m is the filter output, ϑi(t) ∈ R

m is an auxiliary filter vector, and a > 0, b > 0 are two

constants. For the sake of simplicity, we assume that m = 1 in this study. For the case of m > 1, all

obtained results still hold using the Kronecker product operations.

Let the time span t ∈ [0,+∞) be divided into several uniformly bounded and non-overlapping sequences

[tk, tk+1), k = 0, 1, . . ., t0 = 0. For any [tk, tk+1), k = 0, 1, . . ., there exists a time point δk such that the

time interval [tk, tk+1) is divided into [tk, δk] and (δk, tk+1), where [tk, δk] is said to be the communication

time duration and (δk, tk+1) is said to be the communication time interruption. In multi-agent networks,

over the time periods [tk, δk], each agent can communicate with their neighbors, whereas over the time

periods (δk, tk+1) all agents cannot obtain the information of their neighbors. Moreover, δk−tk denotes the

k-th communication width, and tk+1−δk denotes the k-th interruption width. Obviously, the intermittent

communication type of the network is aperiodic.

Assumption 2 ([29]). Suppose that the following condition is satisfied under aperiodically intermittent

communication:






inf
k
θk = θ,

sup
k

Tk = T,
(5)

where θ ∈ (0, T ], and T ∈ (0,+∞) are two constants, and θk = δk − tk, Tk = tk+1 − tk, k = 0, 1, 2, . . ..

Remark 1. Assumption 2 means that the duration of each communication should not be less than θ,

and the total time over [tk, tk+1) should not be larger than T ; i.e., the duration of each communication

interruption should not be larger than T − θ.

The following Lemmas 2–6 are required for the theoretical analysis of the study.

Lemma 2 (Schur complement [36]). For a given symmetric matrix

S =

[

S11 S12

ST
12 S22

]

,

where S11 and S22 are square matrices. The following statements are equivalent:

(a) S > 0;

(b) S11 > 0, S22 − ST
12S

−1
11 S12 > 0;

(c) S22 > 0, S11 − S12S
−1
22 ST

12 > 0.

Lemma 3 ([37]). For any two real vectors x and y with the same dimensions, the following inequality

holds:

±2xTy 6 xTΦx+ yTΦ−1y,

where Φ is any positive definite matrix with appropriate dimensions.

Lemma 4 ([38]). Suppose that M ∈ R
n×n is a positive definite matrix, and N ∈ R

n×n is symmetric.

Then, for any vector x ∈ R
n, the following inequality holds:

λmin(M
−1N)xTMx 6 xTNx 6 λmax(M

−1N)xTMx.

Lemma 5 ([26]). Suppose that the non-negative function g(t) satisfies the condition, for t ∈ [−τ,+∞),

dg(t)

dt
6 −c1g(t) + c2g(t− τ), t > 0,
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where constants c1 > c2 > 0. Then,

g(t) 6 ḡ(0) exp{−ε(t)}, t > 0,

where ḡ(t) = sup−τ6ǫ60(g(t+ ǫ)), and ε > 0 is the unique solution of ε− c1 + c2 exp{ετ} = 0.

Lemma 6 ([26]). Suppose that the non-negative function g(t) satisfies the condition, for t ∈ [−τ,+∞),

dg(t)

dt
6 h1g(t) + h2g(t− τ), t > 0,

where h1 > 0 and h2 > 0 are two constants. Then,

g(t) 6 |g(0)|τ exp{(h1 + h2)t}, t > 0,

where |g(0)|τ = sup−τ6s60 g(s).

3 Main results

Based on only relative position measurements, a novel intermittent consensus protocol is presented below:


















ui(t) = −γ





n
∑

j=0

aij(xi(t)− xj(t)) + ωi(t)



, t ∈ [tk, δk],

ui(t) = 0, t ∈ (δk, tk+1),

(6)

where γ is a positive constant to be determined, i = 1, 2, . . . , n.

Remark 2. Under the case where the relative velocity information is unavailable, and the interacting

information between neighboring agents is aperiodically intermittent, the control protocol (6) is designed

for second-order leader-following consensus. However, in contrast to majority previous studies, under

aperiodically intermittent communications, only relative intermittent position measurements can be used

for the consensus control protocol (6). Using the filter output ωi(t) on the work time [tk, δk], the relative

velocity measurements
∑n

j=0 aij(vi(t)− vj(t)) are replaced by the filtered relative position measurements
∑n

j=0 aij(xi(t)− xj(t)).

Before going forward, in systems (1) and (2), for time-varying delay τ(t), the following assumption is

required for deriving the main results.

Assumption 3. There exists a constant τ∗ > 0, such that the time-varying delay satisfies τ(t) 6 τ∗ < θ,

where θ is defined in Assumption 2.

Let x̃i(t) = xi(t) − x0(t) and ṽi(t) = vi(t) − v0(t), i = 1, 2, . . . , n; then the systems (1) and (2) with

protocol (6) can be written in a close-loop form


























˙̃xi(t) = ṽi(t),

˙̃vi(t) = −γ

n
∑

j=0

aij(xi(t)− xj(t))− γωi(t) + f̃(t, vi(t), vi(t− τ(t))), t ∈ [tk, δk],

˙̃vi(t) = f̃(t, vi(t), vi(t− τ(t))), t ∈ (δk, tk+1),

(7)

where f̃(t, vi(t), vi(t− τ(t))) = f(t, vi(t), vi(t− τ(t))) − f(t, v0(t), v0(t− τ(t))), i = 1, 2, . . . , n.

Let ω(t)= [ω1(t), ω2(t), . . . , ωn(t)]
T, x̃(t)= [x̃1(t), x̃2(t), . . . , x̃n(t)]

T and ṽ(t)= [ṽ1(t), ṽ2(t), . . . , ṽn(t)]
T.

Then, system (4) can be rewritten as follows:

ω̇(t) = −aω(t) + bL̂ṽ(t); (8)

and system (7) can be rewritten as














˙̃x(t) = ṽ(t),

˙̃v(t) = −γL̂x̃(t)− γω(t) + f̃(t, v(t), v(t − τ(t))), t ∈ [tk, δk],

˙̃v(t) = f̃(t, v(t), v(t− τ(t))), t ∈ (δk, tk+1),

(9)
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where f̃(t, v(t), v(t−τ(t)))=f(t, v(t), v(t−τ(t)))−1n ⊗f(t, v0(t), v0(t−τ(t))) and f(t, v(t), v(t−τ(t)))=

[f(t, v1(t), v1(t− τ(t))), f(t, v2(t), v2(t− τ(t))), . . . , f(t, vn(t), vn(t− τ(t)))]T.

For convenience, let z(t) = [x̃T(t)L̂, ṽT(t), ωT(t)]T; then, systems (8) and (9) can be transformed into

{

ż(t) = H1z(t) + F (t, v(t), v(t − τ(t))), t ∈ [tk, δk],

ż(t) = H2z(t) + F (t, v(t), v(t − τ(t))), t ∈ (δk, tk+1),
(10)

where

H1 =









0n×n L̂ 0n×n

−γIn 0n×n −γIn

0n×n bL̂ −aIn









, H2 =









0n×n L̂ 0n×n

0n×n 0n×n 0n×n

0n×n bL̂ −aIn









,

and F (t, v(t), v(t − τ(t))) = [0T
n , f̃

T(t, v(t), v(t − τ(t))),0T
n ]

T.

Theorem 1. Suppose that G is undirected, Ḡ is connected, and Assumptions 1–3 hold. Then, the

control protocol (6) makes the systems (1) and (2) achieve second-order leader-following consensus, if the

following condition holds:































































γ > max

{

λmax(L̂)

2
, d1

}

,

b >
(γ + d2)

λmin(L̂)
+ 1,

a > 2γ + d3,

λmin(R1) >
2ρ2λmax(P )

λmin(P )
,

̟ = µ(θ − τ∗)− υ(T − θ) > 0,

(11)

where µ is the unique positive solution of µ − η1 + η2 exp{µτ
∗} = 0, η1 = λmin(R1)

λmax(P ) , η2 = 2ρ2

λmin(P ) ,

υ = η3 + η4, η3 = λmax(P
−1R2), η4 = 2ρ2

λmin(P ) , d1 = ρ1+ρ2

2 , d2 = 3ρ1 + ρ2, d3 = ρ1+ρ2

2 , and ρ1 and ρ2 are

defined as that in Assumption 1.

Proof. Consider a Lyapunov function defined as follows:

V (t) =
1

2
zT(t)Pz(t), (12)

where

P =

















γL̂−1 1

2
In 0n×n

1

2
In In −

1

2
In

0n×n −
1

2
In

1

2
In

















.

According to Lemma 1, L̂ is symmetric and positive definite. Through Lemma 2, we have that P > 0

if and only if






γL̂−1 1

2
In

1

2
In In






− 2





0n×n

−
1

2
In





[

0n×n −
1

2
In

]

=
1

2

[

2γL̂−1 In

In In

]

> 0.

Then, using the expression γ >
λmax(L̂)

2 in condition (11), we can easily check that P > 0 and V (t) > 0.

In addition, V (t) = 0 if and only if z(t) = 03n. Moreover, we obtain

V (t) >
1

2
λmin(P )zT(t)z(t), (13)
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V (t) 6
1

2
λmax(P )zT(t)z(t). (14)

When t ∈ [tk, δk], k = 0, 1, 2, . . ., considering V̇ (t) along the system (10), we have

V̇ (t) = zT(t)P [H1z(t) + F (t, v(t), v(t − τ(t)))]

=−
1

2
zT(t)











γIn 0n×n 0n×n

0n×n (b− 1)L̂
(

γ −
a

2

)

In −
b

2
L̂

0n×n

(

γ −
a

2

)

In −
b

2
L̂ (a− γ)In











z(t)

+ zT(t)PF (t, v(t), v(t − τ(t)))

=−
1

2

{

γx̃T(t)L̂2x̃(t) + (b− 1)ṽT(t)L̂ṽ(t) + (a− γ)ωT(t)ω(t)

+ 2

[

γṽT(t)ω(t) −
a

2
ṽT(t)ω(t)−

b

2
ṽT(t)L̂ω(t)

]}

+

[

1

2
L̂x̃(t) + ṽ(t)−

1

2
ω(t)

]T

f̃(t, v(t), v(t − τ(t))). (15)

Using Lemma 3, we obtain

V̇ (t) 6−
1

2

{

γx̃T(t)L̂2x̃(t) + (b − 1)ṽT(t)L̂ṽ(t) + (a− γ)ωT(t)ω(t)

+
(

−γ +
a

2

)

[

ṽT(t)ṽ(t) + ωT(t)ω(t)
]

+
b

2

[

ṽT(t)ṽ(t) + ωT(t)L̂2ω(t)
]

}

+

[

ṽ(t) +
1

2
L̂x̃(t)−

1

2
ω(t)

]T

f̃(t, v(t), v(t − τ(t)))

6−
1

2

{

γx̃T(t)L̂2x̃(t) + ṽT(t)[(b − 1)L̂− γIn]ṽ(t)

+ (a− 2γ)ωT(t)ω(t)
}

+

[

ṽ(t) +
1

2
L̂x̃(t)−

1

2
ω(t)

]T

f̃(t, v(t), v(t − τ(t)))

=−
1

2
zT(t)









γIn 0n×n 0n×n

0n×n (b− 1)L̂− γIn 0n×n

0n×n 0n×n (a− 2γ)In









z(t)

+

[

ṽ(t) +
1

2
L̂x̃(t)−

1

2
ω(t)

]T

f̃(t, v(t), v(t − τ(t))). (16)

Based on Assumption 1, we can easily show that

1

2
x̃T(t)L̂f̃(t, v(t), v(t − τ(t))) =

1

2
x̃T(t)L̂[f(t, v(t), v(t− τ(t))) − 1n ⊗ f(t, v0(t), v0(t− τ(t)))]

6
1

2

∥

∥L̂x̃(t)
∥

∥ · (ρ1 ‖ṽ(t)‖+ρ2 ‖ṽ(t− τ(t))‖)

=
1

2

(

ρ1
∥

∥L̂x̃(t)
∥

∥ · ‖ṽ(t)‖+ρ2
∥

∥L̂x̃(t)
∥

∥ · ‖ṽ(t− τ(t))‖
)

6
1

2

(

ρ1+ρ2

2

∥

∥L̂x̃(t)
∥

∥

2
+

ρ1

2
‖ṽ(t)‖

2
+

ρ2

2
‖ṽ(t− τ(t))‖

2

)

, (17)

ṽT(t)f̃(t, v(t), v(t − τ(t))) 6 ‖ṽ(t)‖ · (ρ1 ‖ṽ(t)‖+ρ2 ‖ṽ(t− τ(t))‖)

6

(

ρ1+
ρ2

2

)

‖ṽ(t)‖
2
+
ρ2

2
‖ṽ(t− τ(t))‖

2
, (18)
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−
1

2
ωT(t)f̃(t, v(t), v(t − τ(t))) 6

1

2
‖ω(t)‖ · (ρ1 ‖ṽ(t)‖+ρ2 ‖ṽ(t− τ(t))‖)

6
1

2

(

ρ1

2
‖ṽ(t)‖

2
+
ρ1+ρ2

2
‖ω(t)‖

2
+

ρ2

2
‖ṽ(t− τ(t))‖

2

)

. (19)

Combining (14)–(19), we obtain

V̇ (t) 6 −
1

2
‖z(t)‖TR1 ‖z(t)‖+

1

2
‖z(t− τ(t))‖TS1 ‖z(t− τ(t))‖

6 −
1

2
λmin(R1)z(t)

Tz(t) +
1

2
λmax(S1)z(t− τ(t))Tz(t− τ(t)), (20)

where

R1 =









(γ − d1)In 0n×n 0n×n

0n×n (b− 1)L̂− (γ + d2)In 0n×n

0n×n 0n×n (a− 2γ − d3)In









, S1 =









0n×n 0n×n 0n×n

0n×n 2ρ2In 0n×n

0n×n 0n×n 0n×n









,

and






































































‖z(t)‖ =
[

∥

∥L̂x̃(t)
∥

∥

T
, ‖ṽ(t)‖

T
, ‖ω(t)‖

T
]T

,

‖z(t− τ(t))‖ =
[

∥

∥L̂x̃(t− τ(t))
∥

∥

T
, ‖ṽ(t− τ(t))‖

T
, ‖ω(t− τ(t))‖

T
]T

,

‖x̃(t)‖ = [‖x̃1(t)‖ , . . . , ‖x̃n(t)‖]
T,

‖ṽ(t)‖ = [‖ṽ1(t)‖ , . . . , ‖ṽn(t)‖]
T,

‖ω(t)‖ = [‖ω1(t)‖ , . . . , ‖ωn(t)‖]
T,

d1 = d3 =
ρ1 + ρ2

2
,

d2 = 3ρ1 + ρ2.

Moreover, according to condition (11), R1 > 0.

Inequalities (13), (14), and (20) imply that

V̇ (t) 6 −η1V (t) + η2V (t− τ(t)), (21)

where η1 = λmin(R1)
λmax(P ) , η2 = 2ρ2

λmin(P ) .

When t ∈ (δk, tk+1), k = 0, 1, 2, . . ., still considering V̇ (t) along the system (10), we have

V̇ (t) = zT(t)P [H2z(t) + F (t, v(t), v(t − τ(t)))]

=
1

2
zT(t)













0n×n γIn 0n×n

γIn (1− b)L̂
b

2
L̂+

a

2
In

0n×n

b

2
L̂+

a

2
In −aIn













z(t)

+

[

ṽ(t) +
1

2
L̂x̃(t)−

1

2
ω(t)

]T

f̃(t, v(t), v(t − τ(t))). (22)

Using a similar analysis method, we obtain

V̇ (t) 6
1

2
‖z(t)‖

T
R2 ‖z(t)‖+

1

2
‖z(t− τ(t))‖

T
S2‖z(t− τ(t))‖, (23)

where

R2 =













d1In γIn 0n×n

γIn (1− b)L̂+ d2In
b

2
L̂+

a

2
In

0n×n

b

2
L̂+

a

2
In (d3 − a)In













, S2 =









0n×n 0n×n 0n×n

0n×n 2ρ2In 0n×n

0n×n 0n×n 0n×n









.
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Based on inequality (23) and Lemma 4, we obtain

V̇ (t) 6
1

2
λmax(P

−1R2)z(t)
TPz(t) +

1

2
λmax(S2)z(t− τ(t))Tz(t− τ(t)). (24)

Using inequalities (13) and (24), we have

V̇ (t) 6 λmax(P
−1R2)V (t) +

λmax(S2)

λmin(P )
V (t− τ(t)) = η3V (t) + η4V (t− τ(t)), (25)

where η3 = λmax(P
−1R2), η4 = 2ρ2

λmin(P ) .

If Assumptions 2, 3 and the condition (11) hold, then we obtain the following results.

For t ∈ [0, δ0], it follows from Lemma 5 that

V (t) 6 sup
−τ∗6ǫ60

V (ǫ) exp{−µt}, (26)

where µ > 0 is a solution of µ− η1 + η2 exp{µτ
∗} = 0. Moreover, µ is a unique solution. For t ∈ (δ0, t1),

it follows from Lemma 6 that

V (t) 6 sup
δ0−τ∗6ǫ6δ0

V (ǫ) exp{υ(t− δ0)}

6 sup
δ0−τ∗6ǫ6δ0

{

sup
−τ∗6s60

V (s) exp{−µǫ}

}

exp{υ(t− δ0)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−µ(δ0 − τ∗) + υ(t− δ0)}

= sup
−τ∗6ǫ60

V (ǫ) exp{−µ(δ0 − t0 − τ∗) + υ(t− δ0)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−µ(θ − τ∗) + υ(t− δ0)}, (27)

where υ = η3 + η4.

For t ∈ [t1, δ1], we obtain

V (t) 6 sup
t1−τ∗6ǫ6t1

V (ǫ) exp{−µ(t− t1)}

6 sup
t1−τ∗6ǫ6t1

{

sup
−τ∗6s60

V (s) exp{−µ(θ − τ∗) + υ(ǫ− δ0)}

}

× exp{−µ(t− t1)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−µ(θ − τ∗) + υ(t1 − δ0)− µ(t− t1)}

= sup
−τ∗6ǫ60

V (ǫ) exp{−µ(θ − τ∗) + υ[(t1 − t0)− (δ0 − t0)]− µ(t− t1)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−µ(θ − τ∗) + υ(T − θ)− µ(t− t1)}

= sup
−τ∗6ǫ60

V (ǫ) exp{−̟− µ(t− t1)}, (28)

where ̟ = µ(θ − τ∗)− υ(T − θ) > 0. For t ∈ (δ1, t2), we obtain

V (t) 6 sup
δ1−τ∗6ǫ6δ1

V (ǫ) exp{υ(t− δ1)}

6 sup
δ1−τ∗6ǫ6δ1

{

sup
−τ∗6s60

V (s) exp{−̟ − µ(ǫ− t1)}

}

× exp{υ(t− δ1)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−̟− µ(δ1 − τ∗ − t1) + υ(t− δ1)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−̟− µ(θ − τ∗) + υ(t− δ1)}. (29)
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For t ∈ [t2, δ2], we have

V (t) 6 sup
t2−τ∗6ǫ6t2

V (ǫ) exp{−µ(t− t2)}

6 sup
t2−τ∗6ǫ6t2

{

sup
−τ∗6s60

V (s) exp{−̟− µ(θ − τ∗) + υ(ǫ− δ1)}

}

× exp{−µ(t− t2)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−̟ − µ(θ − τ∗) + υ(t2 − δ1)− µ(t− t2)}

= sup
−τ∗6ǫ60

V (ǫ) exp{−̟ − µ(θ − τ∗) + υ[(t2 − t1)− (δ1 − t1)]− µ(t− t2)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−̟ − µ(θ − τ∗) + υ(T − θ)− µ(t− t2)}

= sup
−τ∗6ǫ60

V (ǫ) exp{−2̟− µ(t− t2)}. (30)

For t ∈ (δ2, t3), we obtain the following expressions:

V (t) 6 sup
δ2−τ∗6ǫ6δ2

V (ǫ) exp{υ(t− δ2)}

6 sup
δ2−τ∗6ǫ6δ2

{

sup
−τ∗6s60

V (s) exp{−2̟− µ(ǫ− t2)}

}

× exp{υ(t− δ2)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−2̟− µ(δ2 − τ∗ − t2) + υ(t− δ2)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−2̟− µ(θ − τ∗) + υ(t− δ2)}. (31)

By repeating the abovementioned procedure, there exists a natural number s > 0 such that ts 6 t <

ts+1, for arbitrary t > 0. For t ∈ [ts, δs], we obtain

V (t) 6 sup
−τ∗6ǫ60

V (ǫ) exp{−s̟− µ(t− ts)} 6 sup
−τ∗6ǫ60

V (ǫ) exp{−s̟}. (32)

For t ∈ (δs, ts+1), we obtain

V (t) 6 sup
−τ∗6ǫ60

V (ǫ) exp{−s̟− µ(θ − τ∗) + υ(t− δs)}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−s̟− µ(θ − τ∗) + υ(ts+1 − δs)}

= sup
−τ∗6ǫ60

V (ǫ) exp{−s̟− µ(θ − τ∗) + υ[(ts+1 − ts)− (δs − ts)]}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−s̟− µ(θ − τ∗) + υ(T − θ)}

= sup
−τ∗6ǫ60

V (ǫ) exp{−(s+ 1)̟}

6 sup
−τ∗6ǫ60

V (ǫ) exp{−s̟}. (33)

In conclusion, for arbitrary t > 0, it follows that

V (t) 6 sup
−τ∗6ǫ60

V (ǫ) exp{−s̟}

6 sup
−τ∗6ǫ60

V (ǫ) exp

{(

−
t

T
+ 1

)

̟

}

= K0 exp{−K1t}, (34)

whereK0 = sup−τ∗6ǫ60 V (ǫ) exp{̟} andK1 = ̟/T , which indicates that z(t) = 03n is globally exponen-

tially stable. As t → ∞, it follows that L̂x̃(t) → 0n and ṽ(t) → 0n. In addition, because L̂ is symmetric
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and positive definite, x̃(t) → 0n as t → ∞. Therefore, the conclusions of limt→∞ ‖xi(t)− x0(t)‖ = 0 and

limt→∞ ‖vi(t)− v0(t)‖ = 0 hold, for ∀i = 1, 2, . . . , n. This completes the proof.

Next, we consider the special case where f(t, vi(t), vi(t − τ(t))) ≡ 0, i = 1, 2, . . . , n. In this case,

systems (1) and (2) are reduced to double integrator systems as follows:

{

ẋi(t) = vi(t),

v̇i(t) = ui(t),
i = 1, 2, . . . , n, (35)

{

ẋ0(t) = v0(t),

v̇0(t) = 0.
(36)

By applying the control protocol (6) for system (35), we obtain



























˙̃xi(t) = ṽi(t),

˙̃vi(t) = −γ

n
∑

j=0

aij(xi(t)− xj(t))− γωi(t), t ∈ [tk, δk],

˙̃vi(t) = 0, t ∈ (δk, tk+1),

(37)

where x̃i(t) = xi(t)− x0(t) and ṽi(t) = vi(t)− v0(t), i = 1, 2, . . . , n. Moreover, based on system (37), we

have














˙̃x(t) = ṽ(t),

˙̃v(t) = −γL̂x̃(t)− γω(t), t ∈ [tk, δk],

˙̃v(t) = 0, t ∈ (δk, tk+1).

(38)

Next, we define z(t) = [x̃T(t)L̂, ṽT(t), ωT(t)]T in the following. Hence, according to systems (8) and

(38), we easily obtain the following expressions:







ż(t) = Γ1z(t), t ∈ [tk, δk],

ż(t) = Γ2z(t), t ∈ (δk, tk+1),
(39)

where

Γ1 =









0n×n L̂ 0n×n

−γIn 0n −γIn

0n×n bL̂ −aIn









, Γ2 =









0n×n L̂ 0n×n

0n×n 0n×n 0n×n

0n×n bL̂ −aIn









.

Theorem 2. Suppose that G is undirected, Ḡ is connected, and Assumption 2 holds. Then, the

control protocol (6) makes the systems (35) and (36) achieve second-order leader-following consensus if

the following condition holds:



































γ >
λmax(L̂)

2
,

b >
γ

λmin(L̂)
+ 1,

a > 2γ,

η3θ − η4(T − θ) > 0,

(40)

where η3 = λmin(Ξ1)
λmax(P ) , η4 = λmax(P

−1Ξ2).

Proof. Consider the same Lyapunov function V (t) as that defined in the proof of Theorem 1 in Section 3.

Thus, if γ >
λmax(L̂)

2 in condition (40) holds, then V (t) is still an effective Lyapunov function for the

system (39).
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When t ∈ [tk, δk], k = 0, 1, 2, . . ., calculating V̇ (t) along the system (39), we obtain

V̇ (t) =
1

2
zT(t)[PH1 +HT

1 P ]z(t)

=−
1

2

{

γx̃T(t)L̂2x̃(t) + (b− 1)ṽT(t)L̂ṽ(t)

+ (a− γ)ωT(t)ω(t) + 2

[

γṽT(t)ω(t)

−
a

2
ṽT(t)ω(t)−

b

2
ṽT(t)L̂ω(t)

]}

. (41)

Using Lemma 3, it follows from (41) that

V̇ (t) 6−
1

2

{

γx̃T(t)L̂2x̃(t) + (b − 1)ṽT(t)L̂ṽ(t) + (a− γ)ωT(t)ω(t)

+
(

−γ +
a

2

)

[ṽT(t)ṽ(t) + ωT(t)ω(t)]

+
b

2
[ṽT(t)ṽ(t) + ωT(t)L̂2ω(t)]

}

6−
1

2

{

γx̃T(t)L̂2x̃(t) + (b − 1)ṽT(t)L̂ṽ(t)

+ (a− γ)ωT(t)ω(t)− γ[ṽT(t)ṽ(t) + ωT(t)ω(t)]
}

=−
1

2
zT(t)Ξ1z(t). (42)

Here,

Ξ1 =









γIn 0n×n 0n×n

0n×n (b− 1)L̂− γIn 0n×n

0n×n 0n×n (a− 2γ)In









> 0.

Then, it follows from inequalities (14) and (42) that

V̇ (t) 6 −
1

2
λmin(Ξ1)z

T(t)z(t) 6 −η3V (t), (43)

where η3 = λmin(Ξ1)
λmax(P ) .

When t ∈ (δk, tk+1), k = 0, 1, 2, . . ., calculating V̇ (t) along the system (39), we obtain

V̇ (t) =
1

2
zT(t)[PH2 +HT

2 P ]z(t) =
1

2
zT(t)Ξ2z(t), (44)

where

Ξ2 =













0n×n γIn 0n×n

γIn (1− b)L̂
b

2
L̂+

a

2
In

0n×n

b

2
L̂+

a

2
In −aIn













.

Using Lemma 4 and (44), we obtain

V̇ (t) 6
1

2
λmax(P

−1Ξ2)z
T(t)Pz(t) = λmax(P

−1Ξ2)V (t) = η4V (t), (45)

where η4 = λmax(P
−1Ξ2).

For t ∈ [t0, δ0], it follows from (43) that

V (t) 6 V (t0) exp{−η3(t− t0)}. (46)
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For t ∈ [δ0, t1], it follows from (45) that

V (t) 6 V (δ0) exp{η4(t− δ0)}. (47)

Then, according to (46) and (47), it follows that

V (t1) 6 V (δ0) exp{η4(t1 − δ0)}

6 V (t0) exp{−η3(δ0 − t0) + η4(t1 − δ0)}

= V (t0) exp{−η3(δ0 − t0) + η4[(t1 − t0)− (δ0 − t0)]}

= V (t0) exp{−η3θ0 + η4(T0 − θ0)}

= V (0) exp{−∆0}, (48)

where ∆0 = η3θ0 − η4(T0 − θ0) and t0 = 0. Then, using condition (40), we have ∆0 > 0. By recursion,

for any positive integer k, we have

V (tk+1) 6 V (0) exp







−
k

∑

j=0

∆j







, (49)

where ∆j = η3θj − η4(Tj − θj) > 0, j = 0, 1, 2, . . . , k.

Furthermore, for all t > 0, there exists a natural number s∗ such that ts∗+1 6 t < ts∗+2. For

t ∈ [ts∗+1, δs∗+1], we have

V (t) 6 V (ts∗+1) exp{−η3(t− ts∗+1)} 6 V (0) exp







−

s∗
∑

j=0

∆j







. (50)

For t ∈ (δs∗+1, ts∗+2), we have

V (t) 6 V (δs∗+1) exp{η4(t− δs∗+1)}

6 V (ts∗+1) exp{−η3(δs∗+1 − ts∗+1) + η4(ts∗+2 − δs∗+1)}

6 V (0) exp







−

s∗
∑

j=0

∆j − η1θs∗+1 + η4(Ts∗+1 − θs∗+1)







= V (0) exp







−

s∗+1
∑

j=0

∆j







6 V (0) exp







−

s∗
∑

j=0

∆j







. (51)

Thus, for arbitrary t > 0, it follows that

V (t) 6 V (0) exp







−

s∗
∑

j=0

∆j







6 V (0) exp{−s∗∆min}

6 V (0) exp

{(

−
t

T
+ 1

)

∆min

}

= K0 exp{−K1t}, (52)

where K0 = V (0) exp{∆min}, K1 = ∆min/T , ∆min = η3θ − η4(T − θ); this implies that z(t) = 03n, as

t → ∞. Then, using the control protocol (6) with a filter (4), the second-order leader-following consensus

for systems (35) and (36) is achieved. This completes the proof.
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Figure 1 Communication topology Ḡ.

Remark 3. In [34], the authors investigated the consensus problem of second-order multi-agent sys-

tems without velocity measurements under continuous communication. However, under aperiodically

intermittent communication, only few studies exist that consider the consensus problems of multi-agent

systems with immeasurable velocity. To the best of our knowledge, this study is the first one to investigate

the leader-following consensus problem of second-order nonlinear multi-agent systems with aperiodically

intermittent position measurements. In addition, herein, a new type of intermittent consensus control

protocol combined with a distributed filter is designed using the relative intermittent position measure-

ments between neighboring agents, which is different from [34].

4 Simulation examples

Consider a multi-agent communication network with four followers and one leader with the topology

graph Ḡ as shown in Figure 1. Suppose that the connection weighted values of the communication

topology are all equal to 1 in this study. Then, based on the topology graph Ḡ, we have λmax(L̂) = 4.618

and λmin(L̂) = 0.382.

Example 1. Consider the second-order nonlinear dynamic model (1) and (2). Suppose the multi-agent

network interaction graph among the agents is selected as that shown in Figure 1. Let f(t, vi(t), vi(t −

τ(t))) = 0.001 sinvi(t) + 0.001 cosvi(t − τ(t)), where τ(t) = 0.1|sin t| 6 0.1, xi(t) ∈ R, vi(t) ∈ R, and

i ∈ {0, 1, 2, 3, 4}. Considering Assumption 1, we know that ρ1 = 0.001 and ρ2 = 0.001. The initial

position and velocity of the followers are selected as xi(0) = 0.05i, vi(0) = 0.01i, i = 1, 2, 3, 4. The initial

values of the leader are selected as x0(0) = 0, v0(0) = 0.02. Using condition (11), we can consider that

γ = 3, a = 8, and b = 12. According to Theorem 1, we obtain λmin(R1) = 1.198 >
πλmax(P )
λmin(P ) = 0.374,

µ = 0.1039, and υ = 2.0031. Then, we can choose T and θ such that ̟ = µ(θ − τ∗) − υ(T − θ) > 0.

Figure 2(a) shows the differences in the position states between the four followers and the leader, and

Figure 2(b) shows the differences in the velocity states between the four followers and the leader. These

differences imply that second-order leader-following consensus can be achieved for nonlinear multi-agent

systems with time-varying delay and aperiodically intermittent position measurements.

Example 2. Here, we again use the communication topology shown in Figure 1. The second-order

nonlinear dynamic model is reduced to the double integrator model similar to systems (35) and (36);

i.e., f(t, vi(t), vi(t − τ(t))) ≡ 0. The initial states of the followers and the leader are selected identical

to those in Example 1. Similarly, we take γ = 4, a = 10, and b = 14, which satisfies the condition (40).

Based on Theorem 2, we obtain η3 = 0.1224 and η4 = 2.4977. Then, we can choose T and θ, such that

η3θ − η4(T − θ) > 0. Figure 3 shows the simulation results. This shows that leader-following consensus

can be achieved for multi-agent systems with double-integrator dynamics and aperiodically intermittent

position measurements.

5 Conclusion

In this study, the leader-following consensus problem for a second-order nonlinear multi-agent system with

time-varying delay and aperiodically intermittent position measurements is investigated. Different from

majority of the current studies, the intermittent communication type used in this study can be aperiodic,
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Figure 2 (Color online) Errors of the states between the followers and the leader in Example 1. (a) Position; (b) velocity.
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Figure 3 (Color online) Errors of the states between the followers and the leader in Example 2. (a) Position; (b) velocity.

and only the intermittent position measurements among the agents can be used. Under aperiodically

intermittent communication, a novel consensus control protocol combined with a distributed filter is

designed to guarantee that all followers can track the leader using the relative position measurements

between the neighboring agents. With the help of the intermittent control method and Lyapunov function

technology, some consensus conditions are obtained for second-order leader-following multi-agent systems

under aperiodically intermittent communications. As communication noises are usually inevitable, in the

future, we will focus on investigating the intermittent mean square consensus tracking problem for second-

order nonlinear delayed multi-agent systems without velocity measurements.
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