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Abstract Accurate model parameters are the basis of robot dynamics. Many linear and nonlinear mod-

els have been proposed to calibrate the inertial parameters and friction parameters of multi-joint robots.

However, methods of choosing a model and calculating its parameters still have few summaries. This pa-

per reviews typical linear/nonlinear models and different calculation methods for robot dynamic calibration.

Through simulations, the features of different methods are analyzed, including torque error, parameter er-

ror, model adaptability, solution time, and anti-interference ability of the calibration results. Finally, an

experiment performed on a six-degree-of-freedom industrial manipulator is used as an example to illustrate

how to select the model for a specified robot. These comparisons and experiments provide references for the

parameter calibration of multi-joint robots.
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1 Introduction

Model based force control is widely used in multi-joint robots. Accurate force control requires accurate

parameters, including the inertial parameters and friction parameters of each joint. However, these

parameters are often not provided by the robot manufacturers and some may change over time. Therefore,

calibration is required to be carried out before application.

There have been many studies on the inertial parameter calibration methods of multi-joint robots.

One method is to calibrate the parameters of each joint separately [1]. However, the parameter error

will accumulate from previously calibrated joints. Another calibration method is based on the inverse

dynamic identification model (IDIM) and least-squares method [2]. In this method, the angular position,

angular velocity and angular acceleration (q, q̇, q̈) of each joint are required. However, most multi-joint

robots measure only the angular position. The angular velocity and angular acceleration are obtained

by differentiation and filtering, which requires appropriate tuning. Ref. [3] proposed to integrate the

identification model before calibration, however additional calculations are introduced. Another method

(output error method, OE) [4] is to minimize the quadratic error between the actual position and the

simulated position. The simulated system takes the same input as the actual system. However, this
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method is sensitive to initial values and takes dozens of iterations to converge for a single degree-of-

freedom robot. The DIDIM method [5] and IDIM-IV method [6] are improvements of the OE method.

The DIDIM method chooses to minimize the joint force/torque error between the actual system and

simulated system. The IDIM-IV method utilizes the simulated data to build an instrument variable,

which is thought to be noise-free and correlated with the observation matrix. The iterative calculation is

simplified. The two methods both converge in approximately three iterations and show robustness to the

initialization of parameters. In these methods, the control law is supposed to be known. For industrial

robots whose control system is unknown, the parameters can be searched by optimization method [7],

and constraints can be added [8, 9]. In addition, there are also online parameter calibration methods.

The Kalman [10] and Extended Kalman [11] methods are suitable for linear and nonlinear identification

models, respectively. However, the points sampled earlier cannot reflect the current parameter conditions

when following changing parameters. The exponential forgetting method [3] introduces an exponential

forgetting index to solve this problem.

There have also been many studies on the calibration methods of friction parameters. The joint friction

consists of Coulomb friction, viscous friction, and static friction [12]. The models of Coulomb friction and

viscous friction are consistent in many studies [13,14]. However, static friction is difficult to estimate and

has different models. It is nonlinear and exists at low velocities. A commonly used static friction model

is the LuGre model [15, 16]. Some other models [17, 18] can be used to approximate the effects of static

friction. However, the nonlinear models are difficult to solve and have a long solution time. Therefore,

some linear models [19, 20] have been proposed to approximate the friction curve. The parameters in

approximation models may not have physical meanings; they are simply mathematical parameters.

In this paper, we analyze the parameter calibration of multi-joint industrial robots. For these robots,

the driving torque is measured by the joint torque sensor [21] or motor current [22, 23]. The measured

torque is the sum of the inertial force and friction. Therefore, the inertial parameters and friction

parameters are calibrated together in one step [24, 25]. The calculation method has been studied by

many researchers. However, the features of these methods have not been compared and summarized in

detail. Some calculation methods [26] estimate parameters within feasible ranges, but some others [2]

only ensure that the joint torques match with the measured ones. Some calculation methods [27] take a

lot of time for solution and are only suitable for offline calculation, while some others [3] can meet the

requirements of online calibration. Some calculation methods [6] are only suitable for linear models, while

some others [28] can be used for nonlinear models and fit better with static friction. To have an overview

of the calibration of inertial parameters and friction parameters, this paper introduces several linear

and nonlinear calculation methods for different models. The features are compared through MATLAB

simulations. Finally, an experiment on a six-degree-of-freedom industrial robot is performed as an example

to illustrate how to select the calculation method and model.

The contributions of the paper are as follows.

(1) This paper compares commonly used inertial parameter and friction parameter calibration models,

proposes quantitative evaluation indices, and analyzes their advantages and disadvantages.

(2) Through simulations and experiments, the features of different calculation methods are compared

and divided into three levels. The summary of features and an instance of a six-degree-of-freedom

industrial robot provide references for the parameter calibration of multi-joint robots.

The rest of this paper is organized as follows. Section 2 introduces typical linear and nonlinear mod-

els. Section 3 presents the parameter calculation methods. Section 4 discusses the optimal trajectory.

Section 5 describes the features and quantization methods. Section 6 gives the results of simulations and

experiments, and finally, Section 7 summarizes the conclusion.

2 Calibration models

This section introduces calibration models for the multi-joint industrial robot. The Coulomb friction and

viscous friction models, nonlinear models, and approximation models are introduced. Finally, the inertial
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force model and friction model are combined for calculation.

The forces applied on the robot can be described as [29]

M(q)q̈ + V (q, q̇) +G(q) + τf = τj , (1)

where q, q̇, q̈ are the angular position, angular velocity and angular acceleration, M(q) is the inertia

matrix, V (q, q̇) is the centrifugal and Coriolis forces, G(q) is the gravity vector, τf is the friction torque,

and τj is the joint driving torque.

Define the set of inertial parameters to be calibrated as φd. Then Eq. (1) can be rewritten as [2]

Kdφd + τf = τj , (2)

where Kd is only related to the kinematic parameters and q, q̇, q̈, which are supposed to be known.

If only the Coulomb friction and viscous friction are taken into consideration, τf is

τf = Fcsgn(q̇) + βq̇, (3)

where Fc is the Coulomb friction coefficient and β is the viscous friction coefficient.

When the joint angular velocity q̇ is smaller than the threshold q̇s, static friction cannot be ignored.

In the Lugre model, τf is described as [12]

τf =
[

Fc + (Fs − Fc)e
−| q̇

q̇s
|
δs
]

sgn(q̇) + βq̇, (4)

where Fc is the Coulomb friction coefficient, Fs is the static friction coefficient, q̇s is the angular velocity

threshold, δs can be set to 2, and β is the viscous friction coefficient.

There are also studies using different models to calculate the friction τf [17]:

τf = f1sgn(q̇)− f2sgn(q̇)e
−

|q̇|
f3 − f4sgn(q̇)e

− 1

f5|q̇| + βq̇, (5)

where f1,f2,f3,f4,f5,β are the parameters to be calibrated.

Ref. [18] proposed another model:

τf = (f1 + f2sech(f3q̇)) tanh(f4q̇) + βq̇, (6)

where f1,f2,f3,f4,β are the parameters to be calibrated.

Eq. (3) can be written in a linear form:

τf =
[

sgn(q̇) q̇

]

[

Fc

β

]

. (7)

However, Eqs. (4)–(6) cannot be written as a linear form of q̇. Therefore, some studies use linear

approximations to fit the friction curve. Ref. [19] proposed a method as

τf = Fcsgn(q̇) + βq̇ + f1q̇
1/3. (8)

Ref. [30] proposed another approximation model:

τf = Fcsgn(q̇) + βq̇ + f1τload, (9)

where τload is the torque caused by the load.

The linear expressions of (7)–(9) can be summarized as

τf = Kfφf , (10)

where Kf is a known matrix related to the kinematic parameters and φf contains all the friction param-

eters.
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Eqs. (4)–(6) are non-linear expressions and can be summarized as

τf = f(φf ). (11)

Therefore, the parameter calibration problem is to calculate φd and φf according to (2) and (10) or

(11).

τj =
[

Kd Kf

]

[

φd

φf

]

, (12)

τj = Kdφd + f(φf ). (13)

Eq. (12) is a general linear model; Eq. (13) is a general nonlinear model. The two equations can be

written as

τj = Kφ, (14)

where K = [Kd Kf ] for linear models and K = [Kd ∂f/∂φf ] for nonlinear models.

3 Parameter calculation methods

This section describes the calculation methods for (12) and (13). The typical calculation method for

the linear model is the pseudo-inverse method [31], and that for the nonlinear model is the optimization

method. Considering the online estimation method, the Kalman filter method [10,11] and other methods

[3] will also be introduced. Some methods [32] are variants of these methods and are ignored. Only

typical methods are introduced in the paper.

3.1 Pseudo-inverse method

Eq. (12) can be solved by the pseudo-inverse method:

φ̂ = K+τj = (KTK)−1KTτj , (15)

where φ̂ is the estimate of φ.

This method is actually a least-squares estimation method. Its objective function is

J =
∥

∥

∥
τj −Kφ̂

∥

∥

∥

2

. (16)

The pseudo-inverse method calculates all parameters quickly but requires sampling all of the points

and calculating them together. It is only suitable for offline calibration.

Remark 1. In this method, q̇, q̈ are obtained by the differentiation of q, which introduces noise and

delay. Filtering and phase adjustment are required to reduce the bias in the result. However, the filters

need to be carefully tuned. An alternative is to use the IDIM-IV method [6,33]. An instrumental variable

which is not disturbed by the noise is built for calibration:

φ̂ = (ZTK)−1ZTτj , (17)

whereZ = K(qsp, q̇sp, q̈sp) is the instrumental variable calculated with simulated parameters qsp, q̇sp, q̈sp,

which are observed by simulation of the control law and direct dynamic model of the robot. The simulated

system takes the same reference trajectories and control structure as the actual robot system. The torque

is filtered and resampled with a parallel decimation procedure to reduce ripples. Otherwise, the IDIM-IV

method will lose its efficiency.
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3.2 Kalman filter/extended Kalman filter

Considering the noise in the model and measurement, Eq. (12) can be rewritten as follows:

τj = Kφ+ ω, (18)

where ω ∼ N(0,R) is the noise. To solve this equation using a Kalman filter, the process is as follows:

φ̂−
n = φ̂n−1,

P−
n = Pn−1,

Gn = P−
n KT(KP−

nK
T +R)

−1
,

φ̂n = φ̂−
n +Gn(τj −Kφ̂−

n ),

Pn = [I −GnK]P−
n ,

(19)

where the subscripts n and n− 1 represent the nth and (n− 1)th iterations, respectively, and P ,G are

intermediate variables.

Compared with the pseudo-inverse method, this method calculates the current parameters from the

calibration result of the previous step and does not require pre-sampling, which is suitable for online

calibration.

For nonlinear models, the extended Kalman filter can be used. First, Eq. (13) with noise can be

rewritten as

τj = Kdφd + f(φf ) + ω. (20)

The solution to this equation is as follows:

(φ̂d)
−
n = (φ̂d)n−1,

(φ̂f )
−
n = (φ̂f )n−1,

P−
n = Pn−1,

Gn = P−
n KT(KP−

nK
T +R)

−1
,

φ̂n = φ̂−
n +Gn(τj −Kd(φ̂d)

−
n − f((φ̂f )

−
n )),

Pk = [I −GnK]P−
k .

(21)

The Kalman filter and the extended Kalman filter have few calculations and are suitable for online

calibration.

3.3 Exponential forgetting method

In general, the inertial parameters of robot joints are fixed, but the friction parameters will change with

the temperature and working time. The points sampled earlier cannot reflect the current parameter

conditions. As such, it is necessary to weaken the influence of the previous data. The exponential

forgetting method is commonly used to achieve this goal.

Ref. [3] defines the optimization objective as

J =
N
∑

i=1

µN−i(τj −Kφ)2, (22)

where N is the number of samples and µ ∈ [0, 1] is a real number representing forgetting speed. A larger

µ leads to a slower forgetting speed, and the effect of the previous data will exist longer, and vice versa.

To find the φ which minimizes J , the solution process is as follows:

φ̂−
n = φ̂n−1,

P−
n = Pn−1,

Gn = P−
n KT(KP−

nK
T + µI)

−1
,

φ̂n = φ̂−
n +Gn(τj −Kφ̂−

n ),

Pn =
1

µ
[I −GnK]P−

n .

(23)
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Similarly, the exponential forgetting method for a nonlinear model is as follows:

(φ̂d)
−
n = (φ̂d)n−1,

(φ̂f )
−
n = (φ̂f )n−1,

P−
n = Pn−1,

Gn = P−
n KT(KP−

nK
T + µI)

−1
,

φ̂n = φ̂−
n +Gn(τj −Kd(φ̂d)

−
n − f((φ̂f )

−
n )),

Pk =
1

µ
[I −GnK]P−

k .

(24)

The exponential forgetting method is similar to the Kalman filter. The calculation is fast and suitable

for online calibration. However, the parameter µ needs to be carefully set. A too large or too small µ

will cause observation errors.

3.4 Optimization method

To solve (12) and (13) with the optimization method, an objective function needs to be set first. If the

objective function is defined as (16), the optimization method is similar to the least-squares method. If

the objective function is defined as (22), the optimization method is similar to the exponential forgetting

method. A choice is to set the objective function as

J =

nj
∑

i=1

|ēi|+ ke

nj
∑

i=1

σ(ei), e = τj −Kφ̂, (25)

where ēi is the mean of ei, ke is a positive real number, and nj is the number of joints.

Unlike the other methods, the optimization method can solve the problem within an appropriate

parameter range. The initial inertial parameter can be obtained from the three-dimensional model of

the robot. The parameter range could be set around the initial parameter. The inertia matrix can be

constrained to be positive definite. Other limits can also be added [26, 34]. With these constraints, φ̂ is

obtained which minimizes the objective function J . The calibration result is more physically feasible.

To solve the optimization problem, the gradient descent method [35], genetic algorithm [36] and particle

filter algorithm [37] can be used.

(1) Gradient descent method. The gradient descent method decreases the objective function by chang-

ing the parameters along the reverse gradient direction. However, this method needs initial values of the

calibrated parameters, which should be set carefully. Owing to the strong nonlinearity of the objective

function, this method may obtain a locally optimal solution.

(2) Genetic algorithm. The genetic algorithm simulates the evolution process by operators such as

mutation, crossover, and selection and searches for the optimal solution that satisfies the constraints. This

method does not need to specify the initial parameters, and only search ranges are required. However,

this method may also obtain a locally optimal solution.

(3) Particle filter algorithm. The particle filter algorithm estimates the sample distribution by resam-

pling and then performs a global search. Additionally, this method does not need to estimate the initial

parameters, but instead must collect a large number of samples to approximate the actual distribution

probability, especially for high-dimensional systems. The amount of calculation is large.

4 Optimal trajectory

In order to reduce the measurement noise, multiple points can be sampled on a trajectory to form

multiple equation groups. Solving these equation groups together can achieve better accuracy. The

trajectory should sufficiently excite the effect of the dynamic parameters to make the observation matrix

well-conditioned. The excitation characteristic of this trajectory is directly related to the accuracy of the
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Table 1 The levels of torque error

Level A Level B Level C

eT <0.01 <0.1 >0.1

calculation result [38]. There are several criteria [39] for generating the excitation trajectory. The most

prominent is

Jq = cond(K), q = argmin(Jq). (26)

Based on this criterion, some other criteria have been derived [40–42]. All these criteria are designed to

make the dynamic parameters reflected in the joint torques so that the calibration result is more accurate.

Based on the criteria, two schemes can be used to generate the trajectory: (1) Deal with the constraint

directly with a genetic algorithm [41] or other methods [43, 44]; (2) Use different curves to generate the

trajectory, such as splines, polynomials, sine series, and Fourier series and optimize the parameters based

on the constraint. Many applications adopt the Fourier series trajectory because it obtains a smaller

condition number [26].

qi =

L
∑

l=1

ai,l
ωf l

sin(ωf lt)−
bi,l
ωf l

cos(ωf lt), (27)

where ai,l and bi,l are trajectory parameters constrained by (26), ωf is the fundamental frequency of the

Fourier series, and i = 1, 2, . . . , nj .

5 Features and quantization

To compare the features of the different models and calculation methods, the following presents the

features and quantization method.

5.1 Features of calibration models

The main difference between the linear models and nonlinear models is the static friction. When the joint

velocity is smaller than q̇s, the static friction has a significant effect if the lubrication is poor. Eq. (8) is

an approximation of the nonlinear model and has a compromising effect. The linear models and nonlinear

models mainly differ in torque error.

Torque error is the difference between the measured torques and simulated torques. Define the evalu-

ation indexes as

eT = Mean(|τj − τ̂j | /τmax), eT Std = Std(|τj − τ̂j | /τmax),

where τ̂j is the torque calculated by (2) with the calibrated parameters, τmax is the maximum joint

driving torque, Mean() means averaging, and Std() means standard deviation.

Based on the evaluation index eT , define three levels as Table 1.

5.2 Features of calculation methods

The calculation methods mainly differ in:

(1) Model adaptability. The pseudo-inverse method and Kalman filter apply only to the linear models.

The extended Kalman filter is applicable to the nonlinear model. The optimization method can be applied

to both linear models and nonlinear models.

(2) Parameter errors. The parameter errors include inertial parameter errors and friction parameter

errors. If the parameters change over time, there are also parameter following errors. The evaluations of

parameter errors are shown in Table 2.

edi = Mean(|(φdi − φ̂di)/φdi|),

efi = Mean(|(φfi − φ̂fi)/φfi|),
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Table 2 The levels of parameter errors

Level A Level B Level C

ed <0.2 <1 >1

ef <0.2 <1 >1

Je <1 <10 >10

Follow changing parameter Slope change Step change None

Table 3 The levels of solution time of offline methods

Level A Level B Level C

Solution time <1 min <1 h >1 h

Table 4 The levels of anti-interference ability

Level A Level B Level C

∆Je <0.1 <1 >1

ed = Mean(edi),

ef = Mean(efi),

Je = ed + ef + eT + eT Std,

where ed is the inertial parameter errors and ef is the friction parameter errors.

(3) Solution time. The Kalman filter and exponential forgetting method are iteratively calculated once

per cycle. The pseudo-inverse method and the optimization method are offline calculation methods. To

obtain the result, the pseudo-inverse method calculates in one iteration and the optimization method

requires multiple iterations to converge. The levels of solution time are presented in Table 3.

(4) Anti-interference ability. In order to analyze the anti-interference ability of the parameter calcula-

tion methods, a Gaussian noise is added to the measured torque τj , and different methods are used to

calculate again. The evaluation index of anti-interference ability is defined as

∆Je = (Je2 − Je1)/Je1,

where Je1 is Je measured without noise and Je2 is Je measured with noise. The levels of anti-interference

ability are shown in Table 4.

6 Simulations and experiments

6.1 Simulation platform

First, a simulation platform is built in MATLAB to compare the results of the parameter calculation

methods. The platform is built based on the six-degree-of-freedom Efort robot ER20-C10 (as shown in

Figure 1), having the same kinematic parameters and inertial parameters as the three-dimensional model

of the robot. The friction parameters are set to suitable values based on experience.

The condition number of K could then be calculated and the trajectory described in (27) could be

optimized. According to [26], the parameter L is set to 5 and the fundamental frequency ωf is set to

0.1 Hz. The optimization problem is solved with a genetic algorithm. The linear calibration method

takes (7) as an example and the nonlinear calibration method takes (4) as an example. The minimum Jq
of (7) and (4) are 4.6 and 5.7, respectively. The results of position trajectories of the six joints are shown

in Figure 2.

The optimal trajectories (qd, q̇d, q̈d) are simulated in the platform as drawn in Figure 3. The ER20

robot model consists of a direct dynamic model and a friction model. φs is the set parameter, τjc is the

control torque, τjm is the measured torque, and qm, q̇m, q̈m are the measured angular position, angular

velocity, and angular acceleration. The inverse dynamic and friction model also takes φs for control. τjm
and qm, q̇m, q̈m are obtained from the simulation at 100 Hz. The simulation is performed in two steps.
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Figure 1 (Color online) The Efort ER20-C10 robot and D-H frames.

0          2          4           6           8 10 12
t (s)

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

q
 (

ra
d
)

axis1
axis2
axis3
axis4
axis5
axis6

0          2          4           6           8 10 12
t (s)

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2.0

q
 (

ra
d
)

axis1
axis2
axis3
axis4
axis5
axis6

(a) (b)

Figure 2 (Color online) Position trajectories of the six joints optimized according to (26) and (27). (a) Linear model (7);

(b) nonlinear model (4).

Inverse dynamic

  + friction (  s)

PID control

ER20

robot model

φ

jcτττ jmτττ

(  s)

qd, qd, qd

. ..

qd, qm, qm

. ..

φ

Figure 3 The simulation platform for point sampling.

• Ignore the noise of τjm, qm, q̇m, q̈m and compare the parameter errors of the different calculation

methods.

• Take the noise into consideration and analyze the anti-interference ability of the different methods.
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Table 5 Linear calibration result of joint 3

Parameter Set
Pseudo-

inverse
Kalman

Index

forgetting

Optimization

Gradient
descent

Genetic
algorithm

Particle
filter

Mass (kg) m 25.6083 17.7803 17.7782 17.7793 24.5913 24.5699 24.5250

Center (m)

X 0.0938 −0.1811 −0.1807 −0.1809 0.0672 0.0994 0.1208

Y 0.1383 −0.1121 −0.1140 −0.1132 0.1107 0.1657 0.1384

Z 0.1164 0.0085 0.0082 0.0083 0.0970 0.1159 0.1148

Inertia

(kg ·m2)

I11 0.1706 3.3342 3.3206 3.3262 0.1287 0.1783 0.2189

I12 −0.1498 0.5166 0.5146 0.5151 −0.2175 −0.1258 −0.1829

I13 0.2140 0.6943 0.6915 0.6928 0.1790 0.1615 0.2486

I22 0.3493 −3.5211 −3.5359 −3.5298 0.4161 0.2925 0.4160

I23 −0.1320 −0.2403 −0.2808 −0.2641 −0.1994 −0.0933 −0.1646

I33 0.2363 −0.3693 −0.3691 −0.3693 0.3062 0.3046 0.3063

Friction
Fc 50.0000 50.0000 49.7802 49.8704 50.2227 50.2716 50.4040

β 40.0000 40.0000 40.0250 40.0161 39.7539 39.6028 39.8216

Torque

error (Nm)

Mean −0.0001 −0.0066 0.0323 0.2568 0.2725 0.0029

Std 0.0001 0.2903 0.2210 0.6332 0.8545 0.8825

Table 6 Nonlinear calibration result of joint 3

Parameter Set
Extended

Kalman

Index

forgetting

Optimization

Gradient
descent

Genetic
algorithm

Particle
filter

Mass (kg) m 25.6083 18.0803 18.0862 25.5425 29.5065 29.1977

Center (m)

X 0.0938 −0.1405 −0.1401 0.075 0.0964 0.1141

Y 0.1383 −0.0374 −0.0377 0.1107 0.1156 0.1526

Z 0.1164 0.0179 0.0175 0.0931 0.1143 0.1158

Inertia

(kg ·m2)

I11 0.1706 3.9916 4.0685 0.2302 0.1447 0.2406

I12 −0.1498 0.2146 0.2089 −0.0886 −0.2168 −0.097

I13 0.214 0.5786 0.595 0.265 0.2368 0.1683

I22 0.3493 −3.1141 −3.0855 0.4044 0.2933 0.2909

I23 −0.132 −0.2575 −0.2548 −0.1994 −0.1421 −0.0809

I33 0.2363 0.5709 0.5297 0.2828 0.302 0.2335

Friction

Fc 50 51.7727 52.183 50.625 49.9266 50.2767

Fs 60 52.1061 52.2013 60 59.8052 60.0016

qs 0.1 5.5823 6.3761 0.08 0.1142 0.0996

β 40 38.2327 38.1439 39.8125 39.8125 39.7704

Torque

error (Nm)

Mean 0.0355 0.0314 2.8462 −0.0209 0.0062

Std 1.9688 1.9705 1.2125 0.6137 0.2182

6.2 Parameter errors

The calculated parameters are compared to the set parameters. The linear calibration result is present

in Table 5 and the nonlinear calibration result is present in Table 6. For simplicity, only the parameters

of joint 3 are presented.

As can be seen from Tables 5 and 6, the pseudo-inverse method and the Kalman filter can ensure that

the torque error and friction parameter errors are small, but the inertial parameters have large deviations

from the set parameters and are partially unreasonable. Because the optimization methods constrain

the parameter ranges, the inertial parameters are relatively reasonable and the joint torques are also

consistent with the actual torques. In this simulation, the initial parameters of the gradient method are

set to ±20% around the set parameters.

The exponential forgetting method is an extension of the Kalman filter and the result is similar. The

advantage of the exponential forgetting method is that it can adjust the forgetting factor and follow
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Figure 4 (Color online) A comparison of the Kalman filter and exponential forgetting method. (a) Kalman filter (slope

change); (b) exponential forgetting (slope change); (c) Kalman filter (second-order change); (d) exponential forgetting

(second-order change).

closer to changing parameters. In Figure 4, the Kalman filter and exponential forgetting method are

used to track the coefficient of viscous friction (β). β is changing with the number of iterations (N). In

Figure 4(a) and (b), β is a ramp function; in Figure 4(c) and (d), β is a second-order function. It can be

seen that the exponential forgetting method tracks closer to the actual value than the Kalman filter.

6.3 Solution time

The offline calculation time is tested on a computer with an Intel i5-4590 CPU and 8 GB of memory.

The pseudo-inverse method gets results within one second. The gradient descent method and particle

filter algorithm take approximately 30 min and the genetic algorithm takes more than an hour.

6.4 Anti-interference ability

The torque noise added at each joint is shown in Table 7. The standard deviation of noise is set to the

same magnitude as the measurement noise of the robot. The comparisons of ed, ef , eT , Je, eT Std with

and without noise are shown in Tables 8 and 9. Under the influence of noise, the errors (ed, ef , eT , Je)

become larger but not significant. Each method shows a certain degree of anti-interference ability. eT Std

increases obviously, which is related to the standard deviation of the noise. In the optimization method,

the gradient descent method is sensitive to the initial parameters. Different initial parameters may lead

to different results. The genetic algorithm and particle filter algorithm do not need initial values and

have similar results.

Taking the noise of qm, q̇m, and q̈m into consideration, it further affects the stability of the calibration

results. The IDIM-IV method [6] is proposed for this problem. To illustrate the anti-interference ability of
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Table 7 The standard deviation of noise added to τj

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Std (Nm) 10 10 10 1.78 1.78 1.78

Table 8 The comparison of Je with and without noise (linear methods)

Pseudo-

inverse
Kalman

Exponential

forgetting

Optimization

Gradient
descent

Genetic
algorithm

Particle
filter

Without
noise

ed 279.8642 256.6049 255.1294 0.3839 0.8657 0.6336

ef 0.0000 0.0135 0.0080 0.0032 0.0061 0.0185

eT 0.0000 0.0000 0.0001 0.0001 0.0006 0.0001

eT Std 0.0000 0.0007 0.0005 0.0006 0.0012 0.0010

Je 279.8642 256.6191 255.1380 0.3879 0.8736 0.6532

With

noise

ed 289.2396 261.2449 260.0939 0.9258 1.0587 0.9754

ef 0.0585 0.0289 0.0314 0.1136 0.1147 0.1258

eT 0.0016 0.0005 0.0005 0.0013 0.0008 0.0010

eT Std 0.0219 0.0203 0.0203 0.0203 0.0209 0.0204

Je 289.3216 261.2945 260.1460 1.0610 1.1951 1.1225

Anti-interference ∆Je 0.0338 0.0182 0.0196 1.7352 0.3680 0.7184

Table 9 The comparison of Je with and without noise (nonlinear methods)

Extended

Kalman

Exponential

forgetting

Optimization

Gradient
descent

Genetic
algorithm

Particle
filter

Without

noise

ed 71.7454 72.6643 0.2243 0.8152 0.7340

ef 3.0663 3.4116 0.0681 0.0376 0.0182

eT 0.0001 0.0001 0.0014 0.0001 0.0001

eT Std 0.0061 0.0060 0.0019 0.0013 0.0007

Je 74.8180 76.0820 0.2956 0.8541 0.7530

With

noise

ed 74.0046 74.4194 0.8248 0.8351 0.8438

ef 48.4565 54.6694 0.1287 0.1776 0.1493

eT 0.0004 0.0004 0.0005 0.0008 0.0006

eT Std 0.0212 0.0211 0.0197 0.0207 0.0197

Je 122.4827 129.1102 0.9737 1.0343 1.0135

Anti-interference ∆Je 0.6371 0.6970 2.2936 0.2110 0.3459

Table 10 The comparison between the IDIM-IV method and Pseudo-inverse method for model (7)

Pseudo-inverse IDIM-IV

Je (with filter) 411.5920 412.3433

Je (without filter) 1911.7927 446.4756

∆Je 3.6449 0.0828

the IDIM-IV method, it is compared with the pseudo-inverse method. First, qm, q̇m, and q̈m are filtered

offline with a 20-Hz fourth-order Butterworth filter. Je of the pseudo-inverse method is calculated with

the filtered parameters. The pseudo-inverse method is then performed again without filtering. In both

cases, the IDIM-IV method builds the instrument variable with the simulated data to calculate Je. The

change of Je is shown in Table 10. It can be seen that the IDIM-IV method has a smaller ∆Je than

the pseudo-inverse method. Therefore, the IDIM-IV method has a better anti-interference ability in this

case.
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Table 11 The feature levels of different methods

Pseudo-

inverse
Kalman

Extended

Kalman

Exponential

forgetting

Optimization

Gradient
descent

Genetic
algorithm

Particle
filter

Error

ed C C C C B B B

ef A A B B A A A

eT A A A A A A A

Je
(without noise)

C C C C A A A

Follow changing
parameter

C B B A C C C

Solution time OfflineA Online Online Online OfflineB OfflineC OfflineB

Linear/

nonlinear
Linear Linear Nonlinear

Linear/

nonlinear

Linear/

nonlinear

Linear/

nonlinear

Linear/

nonlinear

Anti-interference ∆Je A A B B C B B

6.5 Summary of calculation methods

In summary, Table 11 presents the feature levels of different methods. The feature is marked ‘A’, ‘B’

and ‘C’ as defined in Section 5. For the methods that apply to both linear and nonlinear models, the

evaluation indexes are averaged before marking. It can be seen that different methods adapt to different

applications. The features of these methods are summarized as follows.

• The pseudo-inverse method. The pseudo-inverse method is accurate in estimating the Coulomb

friction and viscous friction parameters and has a strong anti-interference ability. It is easy to calculate

and can be used in offline calculations.

• The Kalman method. The Kalman method has similar features to the pseudo-inverse method but

is used in online calculations.

• The extended Kalman method. The extended Kalman method is an online calculation method for

nonlinear models. The anti-interference ability is weaker than the Kalman method.

• The exponential forgetting method. The exponential forgetting method is similar to the Kalman

filter but has advantages in following changing parameters.

• The IDIM-IV method. The IDIM-IV method has a better anti-interference ability in noisy systems

with known robot control laws. It is suitable for linear models.

• The optimization methods. The optimization methods can ensure the results are reasonable, but

they require to estimate the parameter ranges and the solution time is long. The friction parameter errors

of the optimization methods are relatively large. The gradient descent method requires to estimate the

initial values. The genetic algorithm takes the longest time to obtain a solution.

6.6 Instance

In this experiment, the Efort robot ER20-C10 is taken as an example to illustrate how to choose the

calculation method and model. For this industrial robot, the requirements for parameter calibration are

as follows:

• The parameter error Je should be as small as possible.

• Under the premise of small Je, the calculation method should adapt to different models, take less

solution time, and have a certain degree of anti-interference ability.

• There are no requirements for online and offline calibration.

Considering the characteristics of each calculation method, the particle filter method is selected for

calculation. The robot is then controlled to move along an optimal trajectory and the points are also

sampled at 100 Hz. The torque of each joint is calculated from the motor current. The angular position is

measured by the encoder. The angular velocity and angular acceleration are obtained from differentiation

and filtered with a 20-Hz fourth-order Butterworth filter. As we have no knowledge of the structural

characteristics of the robot, it is difficult to choose the model. Therefore, we try different models with
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Table 12 The experiment result of torque errors

Linear models Nonlinear models

Eq. (7) Eq. (8) Eq. (9) Eq. (4) Eq. (5) Eq. (6)

Mean (Nm) 0.4478 0.0469 0.4509 0.4085 2.7903 1.2232
Std (Nm) 44.7068 30.8389 44.417 19.1073 51.8087 25.5865

the particle filter method. The Coulomb friction coefficients and viscous friction coefficients of different

models are set to the same ranges. The torque errors of different models are compared in Table 12. It

can be seen that all the eT are small. However, the eT Std of (4) is the smallest. Thus the Lugre model

fits better with this robot than other tested models.

The torque error is related to the robot and trajectory used for testing. If the static friction of the

driving system is small and the absolute velocity is high, the difference between the two types of model

is small. Because different robots have different driving systems, the best model may not be the same.

7 Conclusion

In this paper, several typical linear/nonlinear calibration models for the inertial parameters and friction

parameters of multi-joint robots are introduced. Different calculation methods are compared quantita-

tively and the features are analyzed. The linear model has fewer parameters and the calculation is easier.

However, friction is usually nonlinear in practice. Linear models can be taken as approximations. The

pseudo-inverse method and the Kalman filter are commonly used calculation methods for linear models.

The extended Kalman filter is a nonlinear online method. The index forgetting method has advantages

in following changing parameters. The IDIM-IV method has a better anti-interference ability to the noise

of qm, q̇m, and q̈m. The optimization methods are suitable for linear/nonlinear models with parameter

constraints. In applications, the calculation method is determined first according to the requirements of

a specified robot. A series of points are then sampled by experiments. Different models are tested with

the selected calculation method to determine the most suitable model. More complex models can also be

used for comparison. However, there is a trade-off between complexity and effectiveness.
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