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Abstract Hidden faults are important characteristics of complex systems that cannot be observed directly.

The hidden behavior of a system, such as the health state and safety level, has a direct correlation with

these hidden faults. After the predicted hidden behavior reaches a fault boundary, certain measures must be

taken to avoid fault occurrences. Thus, hidden faults can be predicted by the hidden behavior of a system.

The belief rule base (BRB) has been used to predict hidden behaviors. However, two problems remain to be

solved in engineering practice. First, when the observed information is absent, ignorance may exist in the

output. If only global ignorance is considered, it may be unreasonable in certain cases, which can influence

the prediction model. Second, the effects of disturbance factors such as noise and sensor quality may cause

the reliability of the gathered information to decline, which indirectly leads to unreliability of the hidden

behavior. Thus, to address the global ignorance and unreliable hidden behavior, a new hidden BRB model

with a power set and considering attribute reliability (PHBRB-r) is proposed for hidden fault prediction. In

the PHBRB-r model, the effects of disturbance factors on hidden behavior are considered using attribute

reliability, and the discernment frame is a power set. A case study of hidden fault prediction is conducted to

demonstrate the effectiveness of the PHBRB-r model.
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1 Introduction

In engineering practice, certain faults cannot be observed directly; these are called hidden faults. However,

hidden faults can influence the working state of a system. To avoid system faults, hidden faults must be

predicted using other parameters. Hidden system behaviors such as health state and safety level can be

used to access the system’s operational state and predict system faults. For example, the health state

of a diesel engine is a typical hidden behavior and represents its working state. When the predicted

health state exceeds the fault boundary, the engine will experience a fault; therefore, certain maintenance

measures need to be taken. In this manner, hidden system faults can be predicted by hidden behavior in

actual working systems.
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Recent studies have applied many methods for hidden behavior prediction, such as the simple math-

ematical approach proposed to forecast battery behavior in [1]. Mori et al. [2] constructed a behavior

prediction model to forecast a person’s behavior from a daily life record database, and stochastic Petri

nets were used for business process prediction by Rogge-Solti et al. [3]. Thus far, only quantitative data

or expert knowledge has been used in such models. However, observed data cannot be gathered in abun-

dance in engineering practice especially fault data. Moreover, due to the uncertainty of expert knowledge,

the hidden behaviors of complex systems may not be accurately predicted by models constructed based

on expert knowledge. Thus, in hidden behavior prediction for complex systems, both quantitative data

and qualitative information should be considered [4, 5].

The belief rule base (BRB) model is proposed by Yang et al. [6], which is developed based on belief

functions and has shown excellent performance in aggregating quantitative data and qualitative informa-

tion [6,7]. Based on the BRB model, Zhou et al. [8] proposed a hidden belief rule base model (HBRB) to

simultaneously address the probabilistic and fuzzy uncertainty. This model has also been used to predict

gyro drift.

There are two problems in current hidden behavior prediction models. First, only global ignorance has

been considered in current studies. In HBRB, the discernment frame is composed of single sets and a

universal set composed by the system states. However, the discernment frame of HBRB can address only

global ignorance. In engineering practice, when the information can provide support that the ignorance

cannot be assigned to some of the single sets, using the global ignorance is not reasonable. Moreover, once

the local ignorance exists in certain cases, the modeling accuracy of HBRB may be affected. For example,

assume that a diesel engine consists of three parts, named A, B and C. When any part of the equipment

has a fault, the diesel engine cannot work normally, and its safety state is affected. In the HBRB model,

the output is represented in both the signal set and universal set ({A,B,C, {A,B,C}). When the part

with a fault cannot be determined, if A has just been maintained, the ignorance in the model output

should be assigned to the subset {B,C}. If the ignorance is assigned to {A,B,C}, the belief degree dis-

tribution would not be reasonable, and the modeling accuracy would decline. The power set is composed

of signal sets and all their subsets, which can address the local ignorance and global ignorance simulta-

neously. Thus, to address the local ignorance in model output and improve the representation ability of

system information, the discernment frame should be power set ({A,B,C, {A,B}, {B,C}, {A,C}, {A,B,

C}}) [9–12].
Second, in current studies of hidden behavior prediction, the observable information is assumed to be

fully reliable. However, the hidden behavior evaluated from the observable information may be affected

by certain disturbance factors in engineering practice [13–15]. In the hidden behavior prediction model,

several disturbance factors should be considered. In an actual working environment, the observed data

are gathered by sensors or other devices. The quality of these devices may cause their tracing ability to

decline along with the working time, possibly introducing errors into the observed information. Moreover,

environmental noise also affects the observed information. These two disturbance factors affect the

observed information simultaneously in engineering practice. These disturbance factors reduce the ability

of the observed information to correctly represent system information, which decreases its reliability.

When unreliable observed information is used to evaluate hidden behavior, this unreliability is transmitted

into hidden behavior. In other words, the disturbance factors indirectly influence the reliability of the

hidden behavior. Using unreliable hidden behaviors as input for a hidden fault prediction model may

decrease its accuracy. The existing studies do not consider these disturbance factors; instead the hidden

behaviors obtained from the observed data are assumed to be fully reliable [4, 8]. Thus, to address the

disturbance factors in engineering practice, the reliability of hidden behavior is considered in this paper.

Some studies have been done in fault detection problem considering system noise. For example, Dong et

al. [16] have researched the fault detection problem for discrete-time Markovian jump systems where the

influence from noisy environment has been considered. However, in these fault detection models [16,17],

the local ignorance and unreliable observed data cannot be addressed simultaneously, and the fault

detection accuracy is influenced when the observed data is absent.

To solve the above two problems and improve the accuracy of hidden fault prediction, a new hid-
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den BRB model with a power set and considering attribute reliability (PHBRB-r) is proposed in this

paper. The unreliable hidden behavior is considered based on attribute reliability and the discernment

frame is the power set. To obtain the reliability of the hidden behavior, a calculation method based

on average distance is proposed [18]. The initial parameters in the PHBRB-r model are determined

by experts; however, due to the uncertainty of expert knowledge, the initial model may not accurately

predict hidden behavior. Consequently, an optimization model based on the projection covariance matrix

adaption evolution strategy (P-CMA-ES) is constructed [7]. Hidden behavior can be estimated according

to the observed data; therefore, a likelihood function is constructed to form the objective function in

the optimization model. In the PHBRB-r model, a fault boundary value is predetermined by experts;

if the predicted hidden behavior exceeds the fault boundary, the system will have faults, and certain

maintenance measures will need to be taken.

The remainder of this paper is organized as follows: Section 2 introduces the problem of hidden fault

prediction and describes the construction of the PHBRB-r-based hidden fault prediction model. A method

for calculating attribute reliability and the inference process of PHBRB-r are provided in Section 3. In

Section 4, an optimization model and a likelihood function are constructed to form objective function.

Section 5 presents the modeling process of the new hidden fault prediction model. To demonstrate the

effectiveness of the new hidden fault prediction model constructed in this paper, a case study is discussed

in Section 6. Finally, Section 7 concludes this paper.

2 Problem formulation

In this section, Subsection 2.1 lists the parameters used in this paper, and Subsection 2.2 formulates the

problem of the hidden fault prediction model in engineering practice. The PHBRB-r-based hidden fault

prediction model is developed in Subsection 2.3.

2.1 Notations

The notations used in this paper are as follows:

x (t): hidden behavior at time instant t.

Γ: fault boundary value determined by expert knowledge.

Sn: the nth consequent in the output of PHBRB-r.

U(Sn): utility of the nth consequent.

Hj : the jth evaluation grade.

Θ: universal set in the discernment frame.

∅: empty set in the discernment frame.

βn,k: belief degree of the nth consequent in the kth rule.

N : amount of grade.

L: amount of the rule in PHBRB-r.

θk: rule weight of the kth rule.

δ: weight of the attribute in PHBRB-r.

R: reliability of the attribute.

Xk: referential value in the kth rule.

H : nonlinear function of the PHBRB-r model.

Ξ: nonlinear function of the observation function.

ϑ: parameter vector in the PHBRB-r model.

κ: parameter vector in the observation function.

ξ(t): noise vector at time instant t.

g(t): observed data at time instant t.

G(t): observed data vector from time instant 1 to t.

T : amount of the observed data.

D(t): average distant of the tth hidden behavior with others.
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γ(t): influence degree of disturbance factors to the tth hidden behavior.

αj(t): matching degree of the jth single set at time instant t.

αk(t): matching degree of the kth rule at time instant t.

wk(t): activation weight of the kth rule at time instant t.

C: hybrid parameter considering attribute weight and reliability.

βn: output belief degree of the nth consequent.

2.2 Problem formulation of hidden fault prediction

In the hidden fault prediction model, a hidden fault is predicted by system hidden behavior. There are

three problems in engineering practice described below.

Problem 1. The reliability of hidden behavior is influenced by some disturbance factors in engineering

practice.

In engineering practice, the observed information may be disturbed by unmeasured factors that may

affect its reliability. The disturbance factors include the sensors’ quality and noise in actual working

environment. Both these disturbance factors affect the observed information simultaneously and degrade

its reliability in engineering practice [13]. Moreover, the hidden behavior obtained from this disturbed

observed information is also unreliable. Hence, the disturbance factors may indirectly affect the reliability

of the hidden behavior, which may further affect the accuracy of the hidden fault prediction model. Thus,

disturbance factors of hidden behavior should be considered during the inference process of hidden fault

prediction modeling.

Problem 2. The local ignorance has not been considered in current studies of hidden behavior predic-

tion.

In current hidden behavior prediction models, the belief degree is assigned to the single set and universal

set [8]. Global ignorance is considered, and distributed to the universal set. However, in certain cases,

using only the single sets and the universal set cannot address the residual belief degree precisely, and

the local ignorance should be considered. The power set can simultaneously address the local ignorance

and global ignorance [12]. Thus, to assign the belief degree more precisely, the discernment frame should

be the power set.

Problem 3. The hidden behavior prediction model based on BRB should be further studied with

considering the above two problems.

Based on the above analysis, the third problem is presented. To solve the above two problems, the

reliability of the attribute and power set should both be considered in the BRB based hidden fault

prediction model, which needs to be further studied.

Based on the above analysis, three problems are summarized in the hidden fault prediction model for

complex systems. Currently, several studies have been conducted that predict hidden behavior based

on BRB. The hidden behavior prediction model constructed based on a belief rule base (HBRB) showed

excellent performance in engineering practice [8]. However, in this study, the inputs of the hidden behavior

model were assumed to be fully reliable, and the disturbance factors that affect the observed information

profiled in problem 1 were not considered. Moreover, the HBRB model only addressed global ignorance;

local ignorance was not considered [8]. The discernment frame of the HBRB model was considered in a

power set, and an HBRB model with power set (PHBRB) was constructed [12]. Nevertheless, although

the power set was considered, the PHBRB model assumed that its inputs were fully reliable. In HBRB

and PHBRB, hidden behavior is used as the attribute input. The attribute reliability can reflect the

disturbance degree of the disturbance factors as profiled in problem 1 and can be used as a parameter

in the hidden fault prediction model. Thus, to solve the above three problems, a hidden belief rule base

with power set and considering attribute reliability (PHBRB-r) is constructed in this paper.

2.3 Structure of the new hidden fault prediction model

In this subsection, a hidden fault prediction model is constructed based on the hidden belief rule base

model with power set and considering attribute reliability (PHBRB-r).
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Hidden behavior prediction model based on PHBRB-r
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Figure 1 (Color online) The hidden fault prediction model based on PHBRB-r.

The kth rule in the PHBRB-r is presented as follows:

Rk : If x (t) isXk,

then x̂(t+ 1) is
{(

S
1
, β1,k

)

, . . . ,
(

S
N
, βN,k

)

, . . . ,
(

S2N , β2N ,k

)}

,

with rule weight θk, attribute weights δ, attribute reliabiliy R,

and fault boundary value Γ,

(1)

where x (t) is the attribute of PHBRB-r, that denotes the hidden behavior at the current time instant. In

actual system, the hidden behavior can be obtained through the evaluation method or given by experts.

In the PHBRB-r model, the attributes are assumed to be independent. Here, x̂ (t+ 1) represents the

predicted hidden behavior at time instant t + 1, which is used to predict a system fault, and N is the

hidden behavior grade amount. βn,k (n = 1, 2, . . . , 2N ) represents the belief degree of the nth consequent

in the kth rule. Sn denotes the nth consequent of the hidden behavior. The discernment frame is the

power set 2Θ and Sn ⊆ {∅, H1, H2, . . . , HN , {H1, H2}, . . . ,Θ} (n = 1, 2, . . . , 2N), where H1, H2, . . . , HN

are the evaluation grades. The symbols ∅ and Θ denote the empty set and the universal set, respectively.

θk denotes the weight of the kth rule, and R and δ are the reliability and weight of attribute x (t) in the

PHBRB-r model, respectively. An attribute weight represents the relative importance of an attribute

while the attribute reliability denotes the objective characteristic of attribute and cannot be changed

by experts or optimization method. Because only one attribute exists in the hidden behavior prediction

model, its weight is set to one. Xk denotes the referential value of the hidden behavior x (t). Note that

the output belief degree is not assigned to the empty set ∅ in this paper. Γ is the fault boundary value

determined by experts. If the predicted hidden behavior x
(

t̂+ 1
)

exceeds Γ, the system may experience

a fault at time instant t+ 1.

The relationship between the hidden behavior x (t) and its predicted value x
(

t̂+ 1
)

can be represented

by

x̂(t+ 1) = H(x(t), ϑ), (2)

where H is a nonlinear function modeled by the PHBRB-r model. ϑ denotes the vector of the parameters

in the above equation and ϑ = {θ1, θ2, . . . , θL, β1,1, β1,2, . . . , β2N ,L, R, δ}.
The hidden behavior of the system x (t) can be indirectly estimated by the observation data; this

relationship can be represented by the observation function, which can be profiled as follows:

g(t) = Ξ(x(t), κ) + ξ(t), (3)

where Ξ denotes a nonlinear function. The relationship between the hidden behavior x (t) and the

observed data g (t) is assumed to be a normal distribution in this paper. κ represents the parameter

vector in the observation function and ξ(t) is the noise vector at time instant t.

The PHBRB-r-based hidden fault prediction model is shown in Figure 1.

Remark 1. The observed data in this paper is assumed to be one dimension; however, the data could

have two or even more dimensions. For example, the health state of the typical hidden behavior of the oil

pipeline can be reflected by the pressure and flow in the pipeline. g(t) in the hidden behavior prediction

model is a two dimensional vector. Moreover, an observation function Ξ needs to be constructed to deal

with the relationship between the two dimensions observed data g(t) and the hidden behavior x(t).
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3 Inference of the PHBRB-r model

This section describes the construction of the PHBRB-r model. In Subsection 3.1, a calculation method

of the attribute reliability in the PHBRB-r model is proposed based on the average distance method.

Subsection 3.2 explains the inference procedure of the PHBRB-r model.

3.1 Calculation method of the attribute reliability in PHBRB-r

In the PHBRB-r model, the data of hidden behaviors are used as the inputs of the attribute. In engineering

practice, the hidden behaviors are influenced by certain disturbance factors as profiled in Section 1. Thus,

they will fluctuate, which can reduce their reliability and further influence the accuracy of the hidden

fault prediction.

The hidden behavior of the system should be a constant within a given time interval if we assume that

the state of the system is unchanged and that no disturbance factors exist. When the hidden behavior

is disturbed, its value may increase or decrease; consequently, the distance between the hidden behavior

and others is changed. Thus, the distances between hidden behaviors can represent their fluctuations

caused by disturbance factors. Therefore, in this paper, the average distance method is used to calculate

the reliability of the attribute [18].

Let x(t), t = 1, 2, . . . , T denote the hidden behaviors, which are used as the attribute inputs. Here, T

represents the number of hidden behaviors. The average distance between the tth hidden behavior and

others can be obtained by

D(t) =
1

T

T
∑

t′=1

|x(t)− x(t′)|, (4)

where D(t) is the average distance between x(t) and x(t′), t′ = 1, 2, . . . , T . |x(t) − x(t′)| denotes the

distance between the tth hidden behavior and the t′th hidden behavior.

Next, the influence degree of the disturbance factors on the tth hidden behavior is calculated by

γ(t) =
D(t)

max(D(t′))
, t, t′ = 1, 2, . . . , T, (5)

where γ(t) represents the influence degree on the tth hidden behavior.

Based on the calculation of γ(t), t = 1, 2, . . . , T , the reliability of the attribute is obtained as follows:

R =
1

T

T
∑

t=1

γ(t), (6)

where R is the reliability of the attribute.

Remark 2. Many methods exist for calculating the attribute reliability, including Bayesian statistical

method and expert knowledge-based methods [13]. In the Bayesian statistical method, the reliability is

obtained from the disturbed observed data, and its boundary interval is determined by experts, while

attribute reliability is provided by the experts in expert knowledge-based methods. However, in the

hidden fault prediction model, the hidden behavior of the system is unknown, and expert knowledge

cannot provide a precise interval. Here, attribute reliability is obtained from the observed data distance

using the average distance method, which is based on quantitative data. Thus, the average distance

method is more appropriate as a measure of attribute reliability in PHBRB-r.

Remark 3. Attribute reliability denotes the objective aspect of the attribute compared with the at-

tribute weight. It is calculated by the hidden behavior and determined by the system and the environment.

Thus, during the modeling process of the PHBRB-r model, attribute reliability is not changed.
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3.2 Inference process of the PHBRB-r model

This subsection presents the inference process of the PHBRB-r model.

The rules in the PHBRB-r model are profiled as shown in (1), where the initial values of the belief

degree βn,k, the rule weight θk, and the referential value of attribute Xk are determined by experts. Note

that the attribute reliability R is calculated by the average distance method proposed in Subsection 3.1,

while the fault boundary value Γ is determined by experts according to the hidden behavior and system

mechanism. The inference of PHBRB-r is described by the following steps.

Step 1. Calculate the matching degree of the input hidden behavior [6]. When the hidden behavior at

time instant t is available, the matching degree to the referential values can be calculated by

αj(t) =



























Xm+1 − x(t)

Xm+1 −Xm
, j = m, if Xm 6 x(t) 6 Xm+1,

x(t) −Xm

Xm+1 −Xm
, j = m+ 1,

0, j = 1, 2, . . . , N, j 6= m,m+ 1,

(7)

where αj(t) is the matching degree of the jth single set at time instant t. Xm and Xm+1 denote two

referential values in the mth and the (m + 1)th evaluation grades, respectively. As shown in (1), the

discernment frame of PHBRB-r is the power set. The matching degree of the hidden behavior to the kth

rule can be obtained by

αk(t) =



























αj(t), Sk = Hj , j = 1, 2, . . . , N,

∏

Hj⊂Sk

αj(t), Sk ⊂ {{H1, H2}, {H1, H3}, . . . ,Θ},

0, Sk = ∅,

(8)

where αk(t) denotes the matching degree of the kth rule at time instant t. As calculated in the above

equation, if Sk is a single set, its matching degree is αj(t); otherwise, it is the product of the matching

degree of the single sets included in Sk. For example, if Sk = {H1, H2}, its matching degree to the kth

rule is α1(t)α2(t).

Step 2. Calculate the rule activation weights. The attribute reliability represents the objective aspect of

the attribute, while the attribute weight denotes the subjective aspect. Thus, both reliability and weight

are attribute aspects that impact the effectiveness of the hidden behavior of the rule. To incorporate

attribute reliability, the activation weight is calculated as discussed in [14]:

wk(t) =
θk(αk(t))

C

∑L

l=1 (αl(t))
C
, (9)

C =
δ

1 + δ −R
, (10)

where wk(t) is the activation weight of the kth rule at time instant t. θk denotes the weight of the kth

rule. δ and R represent the weight and reliability of the attribute, respectively. Note that only one

attribute exists in the PHBRB-r model and its weight equals one. C is the hybrid parameter of the

attribute weight and reliability that allows simultaneous consideration of the objective and subjective

aspects of the attribute [14]. If the attribute reliability is less than one or R < 1, then C < 1.

Step 3. Integrate the activated rules and generate the final outputs of the PHBRB-r model. After the

rule activation weights have been calculated, the rules can be integrated by the evidential reasoning (ER)

algorithm, as follows [5, 6]:

βn =
µ[
∏L

k=1 (wkβn,k + 1− wk

∑N

j=1 βj,k)−
∏L

k=1 (1 − wk

∑N

j=1 βj,k)]

1− µ[
∏L

k=1 (1− wk)]
, (11)
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µ =





N
∑

n=1

L
∏

k=1



wkβn,k + 1− wk

N
∑

j=1

βj,k



− (N − 1)
L
∏

k=1



1− wk

N
∑

j=1

βj,k









−1

, (12)

where βn, n = 1, 2, . . . , 2N are the outputs of the prediction model and denote the belief degrees of the

predicted hidden behavior evaluation grades.

Remark 4. In step 2, a method for integrating the attribute weight and reliability is proposed based

on the evidential reasoning rule (ER rule) [14]. In the ER rule, an integration method was proposed to

integrate the evidence reliability and evidence weight. The evidence is used to support the proposition

in the ER rule and the rule in PHBRB-r is applied to support the predicted hidden behavior. Thus, the

attribute can be regarded as evidence to a certain degree. In this subsection, the method for integrating

attribute reliability is similar to the method for integrating evidence reliability.

4 An optimization algorithm for training the parameters of PHBRB-r

In this section, the objective function is constructed based on the likelihood function, and the P-CMA-

ES algorithm is selected as the optimization algorithm. Subsection 4.1 presents the construction of the

likelihood function, while Subsection 4.2 proposes the optimization model used in the PHBRB-r model.

4.1 Construction of the likelihood function

In this subsection, a likelihood function is constructed to build the relationship between the observed

data and the predicted hidden behavior [8, 12]. The likelihood function is

L(K) =

T
∏

t=2

p(g(t)|G(t− 1)), (13)

where K denotes the parameter vector in the PHBRB-r model and the observation function, which

includes ϑ and κ. G(t−1) is the vector of the observed data from time instant 1 to t−1. T is the amount

of observed data.

p(g(t)|G(t− 1)) can be calculated by

p(g(t)|G(t− 1)) =

U(S
2N

)
∑

x(t)=U(S1)

p(x̂(t)|G(t − 1))p(g(t)|x̂(t)), (14)

where U(Sn) denotes the utility of the nth consequent Sn. In this paper, p(g(t)|x̂(t) = U(Sn)) is assumed

to be a normal distribution in this paper and can be calculated as follows:

p(g(t)|x̂(t) = U(Sn)) =
p′(g(t)|x̂(t) = U(Sn))

∑U(S
2N

)

x(t)=U(S1)
p′(g(t)|x̂(t) = U(Sn))

, (15)

p′(g(t)|x̂(t) = U(Sn)) =











p′(g(t)|x̂(t) = U(Hj)), Sn = Hj ,
∏

Hj⊂Sn

p′(g(t)|x̂(t) = U(Hj)), Sn 6= Hj ,
(16)

p′(g(t)|x̂(t) = U(Hj)) =
1√
2πσ

exp

{

−1

2

(

g(t)− u(t)

σ

)2
}

, (17)

where u(t) = κ1 − κ2x̂(t). The parameter vector κ shown in (3) is composed of κ1, κ2 and σ, and the

initial values are determined by experts. U(Hj) is the utility of the jth evaluation grade Hj . Note that

σ > 0.
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p(x̂(t)|G(t − 1)) is calculated by

p(x̂(t)|G(t − 1)) =

u(S
2N

)
∑

x(t−1)=u(S1)

p(x̂(t)|x(t − 1))p(x(t− 1)|G(t− 1)), (18)

where p(x(t− 1)|G(t− 1)) is calculated by the following equation:

p(x(t− 1)|G(t− 1))

=
p(g(t− 1)|x(t− 1))

∑u(S
2N

)

x(t−2)=u(S1)
p(x(t− 2)|G(t− 2))p(x̂(t− 1)|x(t− 2))

∑u(S
2N

)

x(t−1)=u(S1)
p(g(t− 1)|x(t− 1))

∑u(S
2N

)

x(t−2)=u(S1)
p(x(t− 2)|G(t− 2))p(x̂(t− 1)|x(t− 2))

. (19)

p(x̂(t)|x(t− 1)) is obtained by

p(x̂(t) = u(Sn)|x(t− 1)) =
βn(t)

∑2N

i=1 βi(t)
, (20)

where βn(t) is calculated by the ER algorithm.

4.2 Optimization model based on the likelihood function

In this subsection, the optimization model is developed based on the likelihood function and P-CMA-ES

algorithm [7].

In the PHBRB-r model, the initial parameters are determined by experts and are composed of rule

weight θk, belief degree βn,k and κ. Due to the ignorance and uncertainty of the experts’ knowledge, the

initial parameters must be trained by the actual working environment. Thus, an optimization model is

needed:

max{L(K)} (21)

0 6 θk 6 1, k = 1, 2, . . . , L, (22)

0 6 βn,k 6 1, n = 1, 2, . . . , 2N , (23)

2N
∑

n=1

βn,k = 1, k = 1, 2, . . . , L, (24)

0 < κ1 6 1, (25)

0 < κ2 6 1, (26)

0 < σ 6 1. (27)

In this study, the P-CMA-ES algorithm is selected to train the parameters in the PHBRB-r model. Its

optimization procedure is presented in Figure 2 [7].

5 Modelling procedure of the new PHBRB-r-based hidden fault prediction

model

In this section, the modeling procedure of the PHBRB-r-based hidden fault prediction model is presented.

The hidden fault prediction model predicts faults based on the hidden behavior of the system, which is

predicted by the PHBRB-r model. The likelihood function is constructed as the objective function in the

optimization model.

Based on the above analysis, the following steps are used to construct the hidden fault prediction

model.
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Figure 2 (Color online) The optimization procedure of P-CMA-ES.

Step 1. When data of the hidden behavior are available, the hidden behavior reliability is calculated

by the method proposed in Subsection 3.1. In the PHBRB-r model, the reliability denotes the objective

aspect of the hidden behavior, which is determined by the system and environment. Thus, in the entire

procedure of the hidden behavior prediction model, hidden behavior reliability remains unchanged and

is treated as a constant.

Step 2. The initial parameters in the PHBRB-r model are determined by experts. Due to the un-

certainty of the expert knowledge, the optimization model is developed as shown in (21)–(27). In the

optimization model, the likelihood function L(K) is constructed as an objective function obtained by the

following steps:

Step 2.1. When the hidden behavior is available, βn(t), n = 1, 2, . . . , 2N are obtained by the ER

algorithm as shown in (11) and (12) and p(x̂(t)|x(t − 1)) is calculated.

Step 2.2. After the observation function is constructed, p(g(t)|x(t)) is calculated by (15)–(17).

Step 2.3. On the basis of the above two steps, the parameters in (19) are obtained, and p(x(t−1)|G(t−
1)) can be calculated.

Step 2.4. Finally, p(g(t)|G(t − 1)) is obtained by (14).

Step 3. In the modeling procedure of the new hidden fault prediction model, the dataset is divided

into training data and testing data. After the optimized prediction model has been obtained from the

training data, the effectiveness of the PHBRB-r-based hidden fault prediction model can be tested with

the testing data.

Step 4. Based on the hidden fault prediction, faults can be predicted by the hidden behavior. When
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the predicted hidden behavior exceeds the fault boundary value, the system will experience a fault in the

future; consequently maintenance measures need to be taken.

6 Case studies

In this section, to demonstrate the effectiveness of the proposed model, a case study of hidden fault

prediction for the WD615 model diesel engine is presented.

6.1 Problem formulation of a diesel engine

Diesel engines are important for providing power in complex systems. A diesel engine that has a hidden

fault that cannot be observed directly may affect the working state of the engine [19]. Thus, the health

state of a diesel engine is an important hidden behavior that reflects the working state of the engine. In

engineering practice, experts provide the fault boundaries used to raise alarms when the engine experiences

a fault. When the engine’s health state declines and the predicted health state exceeds the fault boundary,

the engine is likely to experience a fault; therefore, certain measures should be taken. Thus, in the case

study, the health state of diesel engine in the hidden fault prediction model is selected as the hidden

behavior.

The health state of the diesel engine is evaluated from the observed information. The following two

problems should be considered in hidden behavior prediction. First, the hidden behavior may be indirectly

affected by some disturbance factors in engineering practice, such as the quality of vibration sensors

and the noise in the environment. In addition, when ignorance exists and the health grade cannot

be determined, the belief degree should be assigned to the health grade subsets. Ignorance is divided

into global and local ignorance. Global ignorance is assigned to the universal set, and local ignorance

is assigned to subset of part health grades. When only global ignorance is considered, the ignorance

distribution can be unreasonable. To profile the ignorance more accurately, global and local ignorance

should both be considered in the prediction model.

Thus, in this section, to solve the above problems, a fault prediction model is constructed based on

the PHBRB-r model, where the health state of a diesel engine is selected as the hidden behavior. In

the fault prediction model for the diesel engine, the reliability of the health state is considered and the

discernment frame is profiled in the power set.

6.2 Construction of the hidden fault prediction model

As shown in Figure 1, the hidden fault prediction model is constructed based on the PHBRB-r model

and the likelihood function is used as the objective function in the optimization model.

The initial parameters in the prediction model are determined by experts, and are composed of fault

boundary value, rule weights, belief degrees and κ. In this paper, the observation function is assumed

to have a normal distribution as shown in (17), and its initial parameters are shown in Table 1. Note

that σ denotes the variance of the hidden behavior, and its value should satisfy the restraint 0 < σ 6 1.

The kurtosis of the vibration signal is selected as the observed data in the likelihood function [12]. The

rules in the PHBRB-r model are determined in (1), where x (t) denotes the health state of the diesel

engine at time instant t, and x̂(t+ 1) is the predicted health state. The health state of the diesel engine

can be established by the evaluation model. It is divided into three grades, High (H), Middle (M) and

Low (L), whose referential values are shown in Table 2. The discernment frame in the PHBRB-r model

is the power set and Sn ⊆ {∅, L,M,H, {L,M}, {L,H}, {M,H}, {L,M,H}}, where Sn denotes the nth

consequent in the output of the prediction model. The initial rules in the PHBRB-r model are shown in

Table 3, and the initial rule weights are assumed to be one. During testing part, after the belief degrees

of each set have been obtained, the health state can be calculated as follows:

Output(t) =
2N
∑

n=1

βn(t)U(Sn), t = 1, 2, . . . , T, (28)
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Table 1 The initial parameters in the observation function

Parameter σ κ1 κ2

Initial value 0.1 0.02 0.2

Table 2 The referential values of the health state

Semantic value L M H

Referential value 0 0.5 1

Table 3 The initial parameters in the PHBRB-r model

Number Rule weight x (t) {∅, L,M,H, {L,M}, {L,H}, {M,H}, {L,M,H}}

1 1 L {0, 1, 0, 0, 0, 0, 0, 0}

2 1 M {0, 0, 1, 0, 0, 0, 0, 0}

3 1 H {0, 0, 0, 1, 0, 0, 0, 0}

4 1 {L,M} {0, 0, 0, 0, 1, 0, 0, 0}

5 1 {L,H} {0, 0, 0, 0, 0, 1, 0, 0}

6 1 {M,H} {0, 0, 0, 0, 0, 0, 1, 0}

7 1 {L,M,H} {0, 0, 0, 0, 0, 0, 0, 1}

Table 4 The utility of consequent in the output

Output consequent ∅ L M H {L,M} {L,H} {M,H} {L,M,H}

Referential value 0 0 0.5 1 0.25 0.5 0.75 0.5
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Health state of the diesel engine

Figure 3 (Color online) The actual health state of the diesel engine.

where U(Sn) is the utility of the nth consequent Sn. In this paper, the utilities of the sets are given by

experts, as shown in Table 4. Output(t) denotes the estimated health state of the diesel engine by the

PHBRB-r model at time instant t.

6.3 Training part and testing part of the hidden fault prediction model

Due to the ignorance and uncertainty of the expert knowledge, the initial parameters need to be trained

according to the actual environment. In this subsection, the training part and the testing part are

presented.

During training part, the optimization model constructed as described in Subsection 3.4 is trained by

the P-CMA-ES algorithm [7]. In this experiment, the observed data are gathered from the vibration

signal. The rotation speed is 1800 r/min and the vibration sensor is installed on the fourth main bearing.

The intervals between the bearing and journal are set to 0.1, 0.24 and 0.4, which denote high health,

middle health and low health states, respectively [19]. Next, 150 data points are obtained at different

states as shown in Figure 3, and 150 corresponding observation data of kurtosis are gathered from the

vibration signal as shown in Figure 4. The reliability of attribute R is calculated based on the method
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Figure 4 (Color online) The observed data of kurtosis gathered from variation signal.

Table 5 The optimized parameters in the observed function

Parameter σ κ1 κ2

Optimized value 0.1094 0.0093 0.3540

Table 6 The optimized parameters in the PHBRB-r model

Number Rule weight x (t) {∅, L,M,H, {L,M}, {L,H}, {M,H}, {L,M,H}}

1 1.0000 L {0.1511, 0, 0, 0.3462, 0.2724, 0, 0.2302}

2 0.8088 M {0.1631, 0.3574, 0.0930, 0, 0.3865, 0, 0}

3 0.8957 H {0, 0.1178, 0.3950, 0.2011, 0.0049, 0, 0.2813}

4 0.1233 {L,M} {0, 0.0190, 0.2025, 0.5210, 0.1391, 0, 0.1184}

5 0.3406 {L,H} {0.0749, 0.0290, 0.2858, 0, 0.5680, 0.0422, 0}

6 0.3406 {M,H} {0.1751, 0, 0.0118, 0, 0, 0.8131, 0}

7 0.0000 {L,M,H} {0, 0.2856, 0, 0.3050, 0, 0, 0.4094}

proposed in Subsection 3.1, resulting in R = 0.8033. Note that the attribute reliability represents the

attribute’s ability to reflect the correct system information, which is not changed by the expert knowledge

and is treated as a constant in this experiment.

In the training part, 75 data points are selected as the training data. After the training part, the

optimized PHBRB-r model is obtained. The optimized parameters are shown in Tables 5 and 6. Next, 75

data points of the health state and corresponding kurtosis are selected as the testing data. In the testing

part, the optimized PHBRB-r model and testing data are the inputs. Note that the attribute reliability

R remains unchanged between the training part and testing part.

In Figure 5, the red line denotes the actual health state of the diesel engine, and the blue line is the

health state predicted by the PHBRB-r model which accurately reflects the actual health state of the

diesel engine. When the predicted health state falls below the fault boundary, the diesel engine needs to

be maintained to avoid fault occurrence.

The mean squared error (MSE) reflects the accuracy of the predicted model [4]. The MSE of the

PHBRB-r-based health state prediction model is 0.0104, which is far smaller than the health state. To

demonstrate the robustness of the optimization algorithm, the experiment is conducted 20 times. The

mean and variance of the MSEs are 0.0332 and 2.1754E-04, respectively. The variance is far smaller than

the mean.

6.4 Comparative studies

To demonstrate the effectiveness of the proposed model, comparative studies are conducted between the

PHBRB-r model, the PHBRB model, the HBRB model and the hidden Markov model (HMM) [8,12]. The

PHBRB model was proposed by Zhou et al. [12], where the power set is considered; however, the hidden

behaviors obtained from the engineering practice are assumed to be fully reliable. The discernment frame
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Figure 5 (Color online) The predicted health state of the diesel engine.

Table 7 The initial parameters in the HBRB model

Number Rule weight x (t) {L,M,H, {L,M,H}}

1 1 L {1, 0, 0, 0}

2 1 M {0, 1, 0, 0}

3 1 H {0, 0, 1, 0}

4 1 {L,M,H} {0, 0, 0, 1}

of the HBRB is the universal set and the single set; thus, it does not consider the local ignorance.

In the comparative studies, the training data are selected 75 data points from the dataset and the

testing data are same as the PHBRB-r model in the previous subsection. The initial parameters for

PHBRB model are the same as those for the PHBRB-r, and the reliability is set to one. The discernment

frame in the HBRB model is the single set and the universal set and its initial parameters are shown in

Table 7. The PHBRB and the HBRB models are trained by the P-CMA-ES algorithm. The predicted

health states generated by PHBRB, HBRB and HMM are shown in Figure 6.

The comparative results are shown in Figure 6 and Table 8. In Figure 6, the blue line denotes the

predicted health state by the PHBRB-r model. For hidden fault prediction, the PHBRB-r model is

more accurate than the HBRB, PHBRB and HMM models, which cannot predict the fault in a timely

fashion. MSE can be used to represent the accuracy of the prediction model. MSEs generated by

the PHBRB-r, PHBRB, HBRB and HMM models are listed in Table 8. Compared with the PHBRB

model, the accuracy of PHBRB-r is a 54.59% improvement, which illustrates the effectiveness of attribute

reliability. Moreover, the accuracy of PHBRB-r represents an increase of 70.54% compared with that of

the HBRB model, which demonstrates that using the power set can address the ignorance more precisely

and improve the prediction accuracy. The accuracy of PHBRB-r is improved by 76.17% compared with

that of the HMN. The above analysis shows that the PHBRB-r substantially improves the accuracy of

hidden behavior prediction. The fault boundary is used to predict the future engine faults. When the

predicted health state falls below the fault boundary, a fault will occur in the engine and some measures

should be taken to maintain the diesel engine. As shown in Figure 6, compared with the PHBRB-r

model, the estimated health state generated by HBRB, PHBRB and HMM may include false positives

and false negatives. Thus, the PHBRB-r model can enhance the prediction accuracy of hidden faults,

and its modeling ability is improved for complex systems.
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Figure 6 (Color online) Comparative studies with other models.

Table 8 MSEs generated by PHBRB-r model and other models

Model PHBRB-r PHBRB HBRB HMM

MSE 0.0104 0.0229 0.0353 0.0752

7 Conclusion

In hidden fault prediction, two aspects should be considered in engineering practice. First, in the predic-

tion model output, the ignorance should not be only assigned to the universal set. Under the absence of

observed information in engineering practice, the global and local ignorance should both be considered,

which can address the ignorance more accurately. Thus, the discernment frame should be the power set.

Moreover, the hidden behavior is evaluated from the observed information, which may be disturbed by

some factors such as the sensors quality and environment noise. These disturbance factors cause the

hidden behavior to not be fully reliable. Therefore, in the prediction model, the reliability of the hidden

behavior should be considered.

To address the above two problems, the PHBRB-r model is proposed. In the PHBRB-r model, the

hidden behavior is used as the attribute input, and a method for calculating attribute reliability is

proposed based on the average distance method. After introducing attribute reliability into the hidden

fault prediction model, a calculation method of the activation weight is developed, that takes the influence

of unreliable hidden behavior into account. A hidden fault prediction experiment for a diesel engine is

conducted to illustrate the effectiveness of the proposed model, in which the engine’s health state is

selected as the typical hidden behavior. The results demonstrate that the PHBRB-r model can predict

the health state and hidden fault more accurately.

In this paper, the observed data in the observation function is only one dimension, which limits the

presentation of the system information. Moreover, the calculation method of hidden behavior in PHBRB-r

also needs to be studied. Therefore, the higher dimension of the observed data and the calculation method

of hidden behavior in PHBRB-r should both be considered in future research.
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