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Abstract By drawing an analogy between the population of an evolutionary algorithm and a gas system

(which we call a particle system), we first build wave models of evolutionary algorithms based on aerody-

namics theory. Then, we solve the models’ linear and quasi-linear hyperbolic equations analytically, yielding

wave solutions. These describe the propagation of the particle density wave, which is composed of leftward

and rightward waves. We demonstrate the convergence of evolutionary algorithms by analyzing the mecha-

nism underlying the leftward wave, and investigate population diversity by analyzing the rightward wave. To

confirm these theoretical results, we conduct experiments that apply three typical evolutionary algorithms

to common benchmark problems, showing that the experimental and theoretical results agree. These theo-

retical and experimental analyses also provide several new clues and ideas that may assist in the design and

improvement of evolutionary algorithms.
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1 Introduction

Evolutionary algorithms are a class of heuristic swarm intelligence algorithms that have been widely

studied and applied [1]. Recent decades have seen substantial in algorithm design [2, 3], theoretical

analysis [4–6], and practical applications [7, 8].

From the 1990s to the early 2000s, the convergence of evolutionary algorithms was usually analyzed

using finite Markov chain models from stochastic process theory. These Markov models were generally

on the basis of reasonable hypotheses about the algorithms, and then their probabilistic convergence was

proved using stochastic process theory. Some convergence criteria have also been derived via theoretical

analysis. Summary and review articles have been written by the pioneers of this approach, such as Gold-

berg [9], Rudolph [10], among others. The primary approach to studying the time complexity is drift

analysis, first introduced by Yao and He [11]. In this method, a distance function is defined and used to

calculate the average distance between the current generation of solutions and the objective function’s

optimal solution, so as to estimate the average time when the optimal solution will be reached. Hence,

the analysis is still based on Markov chain models. Later, they developed a general framework for ana-

lyzing the computation times of evolutionary algorithms based on absorbing Markov chains. Sudholt [12]

proposed a method of analyzing the time complexity based on dividing the fitness into levels, and proved

lower bounds on the expected running times of evolutionary algorithms by introducing an additional con-

dition on the probabilities of transitions between fitness levels. Recently, Yu [13] and Bian [14] proposed
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the switch analysis to estimate the running time of evolutionary algorithms and multi-objective evolu-

tionary algorithms, based on studying alignment mappings between pairs of Markov chains. So far, the

primary methods of analyzing evolutionary algorithms theoretically have come from stochastic process

theory, particularly Markov chain models. These theoretical results have therefore been probabilistic in

nature, and could hardly be used to guide algorithm design and improvement.

Another way of viewing, the population of an evolutionary algorithm is looked as a particle system,

such as a gas. Given that, it is natural to apply dynamical systems theory and gas dynamics to model

and analyze algorithms. In fact, methods taken from dynamical systems and statistical physics have

already been used to model and design evolutionary algorithms. For instance, defining the gene entropy,

Mori et al. [15] presented a thermodynamic selection rule for genetic algorithm based on defining the

gene entropy. Cornforth and Lipson [16] designed a hybrid evolutionary algorithm for modeling multiple-

time-scale dynamical systems symbolically, and proposed the idea of combining evolutionary algorithms

with dynamical system modeling. By improving the way the entropy computed, we presented a general

dynamical evolutionary algorithm based on the law of minimum free energy from statistical physics [17].

Then, we built dynamical system models of simulated annealing algorithm based on the theory of elastic

mechanics [18], subsequently using them to analyze the convergence and time complexity [19]. Other

results have also been derived within a dynamical systems theory framework that can be used in practice

to design and improve the simulated annealing algorithm. Even though simulated annealing algorithm

conduct iterative single point searches, we can still learn from and generalize these, because the underlying

heuristic is interlinked with that of evolutionary algorithms. In addition, the nature of evolutionary

algorithms is such that they are suited to being described by dynamical systems and aerodynamics

theories.

By drawing an analogy between the population of an evolutionary algorithm and a gas system (which

we call a particle system), we first build wave models of evolutionary algorithms based on aerodynam-

ics theory. Next, we solve the model’s hyperbolic equations analytically to obtain wave solutions that

describe the particle density distribution’s wavelike behavior. Then, we investigate these solutions, con-

sidering, for example, the propagation of the particle density waves, the diversity of the particle systems,

and the convergence and convergence rate of evolutionary algorithms. After that, we carry out exper-

iments to confirm these theoretical results. We also explain and extend the insights gained from the

theoretical analysis and experiments so as to understand their meaning and consequence for the design

and improvement of algorithms. Finally, we discuss the prospects for future research.

The remainder of this paper is organized as follows. In Section 2, we explain the analogy between the

population of an evolutionary algorithm and a particle system. Next, we introduce a pressure formula and

build a wave model aerodynamics theory, then discuss linearizing the model. In Section 3, we analytically

solve the hyperbolic equations of linear and nonlinear models, which describe particle density waves.

Then, we use these wave solutions to analyze the propagation of the particle density waves. After that,

in Section 4, we investigate the convergence and population diversity of evolutionary algorithms in detail.

In Section 5, we carry out experiments to verify the theoretical results and related explanations. Finally,

in Section 6, we present our conclusion, summarizing the content of this paper and discussing future

work.

2 Aerodynamic models for evolutionary algorithms

Consider an evolutionary algorithm for solving a minimization problem, based on definitions for genetic

codes and evolutionary operators. The population consists of N individuals (which we refer to as parti-

cles), whose fitness values are given by the objective function and used to define the particle coordinates.

We liken this population to a gas system of N particles, and the evolutionary process, whereby individual

fitnesses change generation by generation, is analogous to the particles in the gas system moving over

time. Our analysis ignores the way that individuals’ genetic codes transform, instead focusing on the

fitness changes due to coding and evolutionary operations, namely, the changes in particle coordinates.
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Without loss of generality, let the minimum of the objective function be 0 and its values be bounded

above by M , meaning that all the particles move in the interval [0,M ], which is called the function value

space.

During the evolutionary process, all the particles are distributed within the function value space [0,M ].

At a given time (evolution generation) t and coordinates x, there is a particle micelle (mass point), whose

velocity, density, and pressure are denoted by u, ρ, and p. The particle population’s evolution in the

function value space in terms of the one-dimensional non-viscous motion of a particle or a gas system [20].

Hence, according to aerodynamics theory, the equations of motion of the particle system are given by

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (1)

ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0, (2)

where Eqs. (1) and (2) express the conservation of mass and momentum, respectively. We have not

included the energy conservation equation here, since we are focusing on the motion of the particle

system. Aerodynamics theory also provides us with a formula for the pressure in a low-speed micro-

compressible gas system [21], namely, p = κ (ρ−ρ0)
ρ0

, where κ denotes the coefficient of volume elasticity.

In our particle system, this reflects the local system compression caused by evolutionary operations and

the evolution of the particle population. Here, ρ0 is a reference density value, such as the density at a

certain point or the mean of the initial particle distribution. By substituting the pressure formula into

(2), we can rewrite it as

ρ
∂u

∂t
+ ρu

∂u

∂x
+

κ

ρ0

∂ρ

∂x
= 0. (3)

Eqs. (1) and (3) comprise a quasi-linear hyperbolic equation system, based only on the velocity u and

density ρ. Setting definite conditions, such as initial conditions, then enables us to solve this equation

system.

To clarify the nature of these wave models, we now linearize (1) and (3) to obtain a simplified and

easily solved linear wave model, whose solution will assist us help in understanding wave propagation

and solving the quasi-linear hyperbolic equation system. As mentioned above, the particle system can

be seen as a low-speed, micro-compressible gas motion system. Here, we infer that “low-speed” means u

and ∂u
∂x

are small, while “micro-compressible” means that ∂ρ
∂x

is a small, as are the changes in ρ relative

to ρ0. As a result, the second nonlinear terms in (1), (2), and (3) are second-order small quantities, and

hence can be neglected. In addition, the variable coefficient ρ can be replaced by the constant coefficient

ρ0. Based on this analysis, Eqs. (1) and (3) can be reduced to the following system of linear hyperbolic

equations, known as the acoustics equation system in aerodynamics:

∂ρ

∂t
+ ρ0

∂u

∂x
= 0, (4)

ρ0
∂u

∂t
+ a2

∂ρ

∂x
= 0, (5)

where a =
√

κ/ρ0, called the acoustic speed, is the propagation speed of the gas density wave.

By taking partial derivatives of (4) with respect to t and (5) with respect to x, and then subtracting, we

can eliminate the partial derivative product terms in these two equations. This results in a second-order

linear hyperbolic equation in terms of ρ alone, namely,

∂2ρ

∂t2
− a2

∂2ρ

∂x2
= 0. (6)

Similarly, we can also obtain a second-order linear hyperbolic equation in terms of the velocity u, with

the same form as (6) expect with ρ replaced by u. However, as we mainly focus on the changes in the

particle density ρ in this paper, we do not present this here.
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3 Solving the wave equations

The hyperbolic (quasi-linear and linear) equations given above are also called wave equations, because

their solutions describe the propagation of waves in spacetime. Here, we start by solving the linear wave

equation (6) so as to understand the principle of wave propagation, then we solve the quasi-linear wave

equation system to obtain the wave solution for the particle density ρ. After that, we use these solutions

to analyze the search process and convergence of evolutionary algorithms.

3.1 Solving the linear wave equation

For simplicity, we start with the simple linear wave equation. First, we define two new variables [22]:

ξ = x− at, η = x+ at, (7)

and substitute these into (6), using the chain rule for the derivatives of compound functions to transform

it into the following:

∂2ρ

∂ξ∂η
= 0. (8)

By integrating this with respect to ξ and η, we can easily derive the following formal solution:

ρ(ξ, η) = F (ξ) +G(η). (9)

Next, by substituting (7) into (9), we can derive general solution:

ρ(t, x) = F (x− at) +G(x + at), (10)

where F (·) and G(·) are two arbitrary differentiable functions.

After initializing the population for a given evolutionary algorithm, we can estimate the initial particle

density distribution on the interval [0,M ], denoted by φ(x). In addition, the particles are stationary

when the algorithm begins, so the initial conditions are given by

ρ|t=0 = φ(x), u|t=0 = 0,
∂ρ

∂t

∣

∣

∣

∣

t=0

= 0. (11)

Then, applying these initial conditions to the general solution (10) gives us

F (x) +G(x) = φ(x), (12)

a(−F ′(x) +G′(x)) = 0. (13)

Next, integrating (13) with respect to x yields

a(−F (x) +G(x)) = C, (14)

where C is the constant of integrational. Solving (12) and (14) simultaneously enables us to determine

the functions F (·) and G(·) as

F (x) =
1

2
φ(x) −

C

2a
, G(x) =

1

2
φ(x) +

C

2a
. (15)

Substituting (15) into (10) then produces the solution to (6), namely,

ρ(t, x) =
1

2
(φ(x − at) + φ(x + at)). (16)
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3.2 Solving the quasi-linear wave equation system

Using the acoustic speed a, we can rewrite (3) as

∂u

∂t
+

a2

ρ

∂ρ

∂x
+ u

∂u

∂x
= 0. (17)

Then, we can define the following first-order quasi-linear hyperbolic equation system by combining (1)

and (17):
{

∂ρ
∂t

+ u ∂ρ
∂x

+ ρ∂u
∂x

= 0,
∂u
∂t

+ a2

ρ
∂ρ
∂x

+ u∂u
∂x

= 0.
(18)

Since this system can be solved by a standard application of the characteristic theory of hyperbolic

equations, we will omit the details here. Instead, we will only state the main steps, providing necessary

intermediate results and the final solutions [20, 22].

First, in order to determine the characteristic directions (or characteristic lines) in the x-t plane, we

calculate the eigenvalues of P , the coefficient matrix of system (18) with respect to the spatial variable

x, given by

P =

[

u ρ
a2

ρ
u

]

. (19)

The eigenvalues of P can easily be obtained as λ1 = u + a and λ2 = u − a. Then, the characteristic

directions in the x-t plane are
dx

dt
= u+ a,

dx

dt
= u− a. (20)

Second, by using the eigenvectors corresponding to these eigenvalues, we can transform equation system

(18) into the two relevant characteristic relations, along with their characteristic lines.

The eigenvector corresponding to λ1 is simply (a, ρ). Multiplying the first equation in system (18) by

a and the second equation by ρ, and then adding these, yields the first characteristic relation:

a

[

∂ρ

∂t
+ (u+ a)

∂ρ

∂x

]

+ ρ

[

∂u

∂t
+ (u + a)

∂u

∂x

]

= 0. (21)

Likewise, the eigenvector corresponding to λ2 is (a,−ρ), and we can take the same approach to generate

the second characteristic relation:

a

[

∂ρ

∂t
+ (u− a)

∂ρ

∂x

]

− ρ

[

∂u

∂t
+ (u − a)

∂u

∂x

]

= 0. (22)

Third, we derive the characteristic equations, along with their characteristic lines. To do this, we

introduce two new variables r and s, called the Riemannian invariants, which are written as

r =
1

2
u+

1

2

∫ ρ

ρ0

a

ρ
dρ, s = −

1

2
u+

1

2

∫ ρ

ρ0

a

ρ
dρ. (23)

Using these Riemannian invariants, we can transform the characteristic relations (21) and (22), respec-

tively, into two characteristic equations in the Riemannian invariants r and s:

∂r

∂t
+ (u + a)

∂r

∂x
= 0, (24)

∂s

∂t
+ (u− a)

∂s

∂x
= 0. (25)

According to the characteristic theory of hyperbolic equations, Eq. (24) indicates that the Riemannian

invariant r is constant along the characteristic line dx
dt = u + a. Similarly, the invariant s is constant

along the characteristic line dx
dt = u− a. In addition, we can easily verify that

r − s = u, r + s =

∫ ρ

ρ0

a

ρ
dρ. (26)
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Without loss of generality, we can assume that a is constant, enabling us to simplify the second formula

in (26) to

r + s = a(ln ρ− ln ρ0). (27)

As mentioned above, we concentrate in this paper on the changes in particle density while executing

the algorithm, so we will focus on finding a solution for the density ρ below.

Fourth, we solve the characteristic equations. As we did when solving the linear wave equation, we

derive general solutions for r and s by a similar substitution of variables with respect to (24) and (25),

namely,

r = f(x+ (u + a)t), s = g(x+ (u− a)t), (28)

where f(·) and g(·) are two arbitrary differentiable functions.

Finally, we use the initial conditions to determine the functions f(·) and g(·), and obtain the particle

density. Substituting the initial conditions (11) into (26)–(28), the functions f(·) and g(·) can straight-

forwardly be obtained, as follows:

f(x) = g(x) =
1

2
a(lnφ(x) − ln ρ0). (29)

Then, by substituting the formulas (29) into those in (28) and employing the relationships given by (26)

and (27) for r, s, ρ, and u, we can derive expressions for the two components of ρ, ρL, and ρR, as follows:

ρL(t, x) = e−
u

a φ(x + (a+ u)t), ρR(t, x) = e
u

a φ(x− (a− u)t). (30)

3.3 Particle density wave propagation

Before attempting to understand nonlinear waves, it is helpful to first discuss the principles involved in

linear wave propagation by analyzing the propagation of the density wave. The solution (16) to the linear

wave equation (6) can be expressed as the superposition of the following two parts:

ρR(t, x) =
1

2
φ(x− at), ρL(t, x) =

1

2
φ(x + at). (31)

Now, we focus on ρR. At time t0 = 0, ρR(0, x) =
1
2φ(x) and φ(x) is the initial density distribution on

the interval [0,M ], as shown by the example in Figure 1(a). At time t = t1, ρR(t1, x1) =
1
2φ(x1 − at1),

showing that the initial density at position x0 = x1 − at1 at time t0 = 0, namely, ρR(0, x0) =
1
2φ(x0),

simply propagates to position x1 = x0 + at1 at time t1. This means that the initial density distribution

moves a distance of at1 to the right at a speed of a in the x-ρ plane, as shown by the dotted line in

Figure 1(a). Over time, the distribution continues to move to the right, i.e., ρR simply propagates to the

right, with a propagation speed of a, so it is called the rightward wave. Similarly, ρL propagates to the

left at a speed of a, so it is called the leftward wave. The waves propagating in both directions combine

linearly at x = 1
2 (xL + xR) (where xL > xR) to form, the solution given by (16).

Furthermore, if we draw clusters of straight lines in the x-t plane such that x = x0+at and x = x0−at,

x0 ∈ [0,M ] (Figure 1(b)), which we call characteristic lines clusters, then ρR propagates to the right along

the first line cluster while ρL propagates to the left along the second line cluster.

Now that we have analyzed linear wave propagation, we turn to the solution to the quasi-linear wave

equation system. Although the solution given in (30) also consists of two parts itself, these two parts

cannot be overlaid because of the multi-solution resulting from the nonlinear phenomena. The multi-

solution also gives an expression of diversity in nature. As for our attention, the two parts describe the

nonlinear particle density wave and the way it propagates, which is different to the linear wave discussed

above.

Nonetheless, we can still explain this nonlinear wave by analogy with the linear wave. As before, ρL,

expressed by the first formula in (30), propagates at a speed of a+u along the characteristic lines clusters

x = x0 − (a + u)t, x0 ∈ [0,M ], although these lines are now no longer straight. The particle density

increases (or decreases) by a factor of e−
u

a due to the nonlinear coherence. Likewise, ρR propagates at a
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ρ
(a) (b)

t

Figure 1 (Color online) Illustration showing (a) the rightward linear wave and (b) clusters of characteristic lines.

speed of a− u along the cluster of characteristic lines x = x0 + (a − u)t (which are again not straight),

and the particle density increases (or decreases) by a factor of e
u

a . Looking at the exponential functions

e−
u

a and e
u

a , we can clearly see that these increases or decreases are determined by the sign of u. The

absolute value of their exponents Ma = |u|
a

is called the Mach number in aerodynamics.

The assumptions used when building the wave models in Section 2 imply that |u| < a, so ρL and ρR are

waves that propagate to the left and right, respectively. Based on aerodynamics theory, they propagate

into different areas and do not combine. One wave is called the compression wave while the other is called

the sparse wave, depending on the sign of u. Relating this to the particle population of an evolutionary

algorithm, the compression wave represents the tendency of particles to gather in a certain area, while

the sparse wave represents the way particles are drawn away from other areas.

4 Explanation to evolutionary algorithms

The wave (change in particle density) appears to be caused by particle movement driven by evolution-

ary operators. Hence, the propagation of the particle density wave describes the characteristics of the

evolving population, and reflects the effects the evolutionary operators have on the evolution process.

Of course, different evolutionary algorithms involve different evolutionary operators, for example, the

PSO algorithm’s update step aims mainly to learn from the global best. However, in all evolutionary

algorithms, the selection pressure drives the population to search for the optimal solutions. In principle,

wave models ignore the details of the algorithms’ evolutionary operators, focusing instead on the behavior

they produce in the population (or particle system) as a whole. In other words, these models describe

the population’s evolution at a macro level. Thus, we will now analyze the macroscopic behavior of

evolutionary algorithms based on the solutions to their corresponding wave models.

4.1 Analyzing the search mechanism and convergence

Based on our analysis of the particle density wave’s behavior in Subsection 3.3, there are two main waves

in both the linear and nonlinear model. These propagate synchronously and are known as the leftward

and rightward waves. They correspond to two critical mechanisms involved in evolutionary algorithm:

the leftward wave represents optimization or exploitation, while the rightward wave represents extensive

search or exploration to maintain diversity. These two behaviors are vitally important to an evolutionary

algorithm’s search process, because they indicate the global optimization ability of the algorithm as a

whole.

The solution for linear waves (31) shows that these two factors are equivalent. However, for nonlinear

waves, the solution (30) indicates that they are opposite: one must be increasing while the other must

be decreasing. The following experiments in Section 5 will show that the behavior of most evolutionary

algorithms is governed by nonlinear waves, with linear waves being simply an ideal case. The pressure

formula proposed in Section 2 can be used to adjust these two behaviors, and could contribute to the

design of evolutionary algorithms. This will be the focus of our future work.
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Now, we turn to analyzing the convergence of evolutionary algorithms. As described above, the left-

ward wave represents the algorithm’s optimization and illustrates its progress toward convergence. For

simplicity and clarity, we use the linear wave to concretely express this convergence without loss of

generality.

After initializing the particle population, we can compute the particle density distribution φ(x), x ∈

[0,M ]. Over time (generation t), the leftward wave becomes ρL(t, x) = 1
2φ(x + at). Setting x = 0,

namely, the minimum of the objective function, gives ρL(t
∗, 0) = 1

2φ(at
∗). If we let x∗ = at∗ ∈ [0,M ],

then 1
2φ(at

∗) will propagate along the characteristic line x = x∗−at to position x = 0 after time t∗ = x∗

a
,

meaning that some particles with function values x∗ at time t0 = 0 move to x = 0 at time t∗, that is, they

find the minimum of the function. This demonstrates the global convergence of evolutionary algorithms,

with a convergence time t∗ that approximately equals the evolution generations used by the algorithm,

and a convergence speed a that is defined relation to a concrete algorithm.

Analyzing the nonlinear leftward wave in the same way produces a similar result, but the convergence

speed is now a + u (no longer a constant), which is like adding wind with velocity u. Considering the

case where the density wave propagates leftward, we find that the particle micelles move left as well,

meaning that their velocities u are negative, and hence that e−
u

a > 1. Thus, the leftward wave ρL is a

compression wave and the particle density is increasing. This indicates that many particles gather on the

left, behavior that guarantees the algorithm’s global convergence.

Thinking about this in more detail, the particle density distribution generated through evolution at

any given generation can generally be taken as the initial density distribution, so evolution up to that

generation can be replaced by initializing the particle distribution differently. Likewise, the particle

density wave then propagates in the same ways, namely, in the form of leftward and rightward waves.

Consequently, some of the potential particles generated by extensive exploration will be propagated and

preserved. In addition, most current evolutionary algorithms use an elite preservation. Hence, these

potential particles and good genes must be propagated to the objective function’s minimum point with

the leftward wave, behavior guarantees the algorithm’s global convergence.

However, this spreading or compression process cannot continue infinitely, because the density ρ must

be finite, either in a real gas system or the particle system of an evolutionary algorithm. Thus, continuous

compression will eventually lead to a discontinuity where, at some time t and point x, ρL jumps to a

larger value, which is called a shock wave in aerodynamics. After that, the shock wave will continue to

propagate to leftward. In this situation, many particles will also gather on the left, guaranteeing the

algorithm’s global convergence. The condition for producing such a shock wave is that the Mach number

Ma > 1, this is called a supersonic flow in aerodynamics, with the opposite case being a subsonic flow.

4.2 Estimating the volume elasticity coefficient and convergence speed

So far, we have not considered two important and closely related parameters, namely, the volume elasticity

coefficient κ, and the wave propagation speed a. In aerodynamics theory, these are macroscopically

observable values. The volume elasticity coefficient κ indicates the ability of a gas system to generate

pressure when it is being compressing and reflects certain internal and natural characteristics of the gas,

such as the organization of the gas molecules and their interactions. With regard to our evolutionary

algorithm analogy, it represents the relevance of the particles and their interactions, and also the ability

of the evolutionary operators to drive the particle system’s search process. The wave propagation speed

a, which we define as the convergence rate, is an external reflection of the coefficient κ, since they are

positively correlated. Whereas, theoretical aerodynamics equations apply to general gas systems, the

coefficient κ and speed a, which are measured by aerodynamics experiments, characterize a specific gas

system. Similarly, the particle system (or population) of a general evolutionary algorithm is governed by

the wave equations established in Section 2, by analogy with a gas system, while the coefficient κ and

speed a characterize different algorithms. In the same way, these can only be determined by numerical

experiments. Thus, we will now derive formulas for estimating them based on the pressure formula

introduced in Section 2 and the conservation law.
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Going form generation t−1 to generation t, we selectK particles to take part in evolutionary operations,

with coordinates are xi(t− 1). The particle density at xi(t− 1) is ρi(t− 1), i = 1, . . . ,K. These particles

are updated via the evolutionary operations, which is the same as saying that they move in the interval

[0,M ] driven by these operations. If, at generation t, the ith particle moves to xi(t), then its velocity is

ui(t) = xi(t)− xi(t− 1) and its momentum is mi = ui (assuming its mass is 1). Employing the pressure

formula given in Section 2 shows that the local pressure at xi(t − 1) is pi =
κ(ρi−ρ0)

ρ0

, which drives the

particle’s motion. The impulse applied to the ith particle by the pressure is Ii =
κ(ρi−ρ0)

ρ0

∆t, where for

simplicity, we have set ∆t = 1. Since κ describes the nature of the particle population, conservation of

momentum enables us to estimate its value when evolving from generation t− 1 to t as

κt = ρ0
|
∑K

i=1 u
t
i|

∑K
i=1 |ρ

t
i − ρ0|

. (32)

To avoid any issues with the sign, we take the absolute value of the right hand side in the experiments

below.

Having obtained the volume elasticity coefficient, it is now easy to obtain an estimate of the wave

propagation speed as

at =

√

κt

ρ0
. (33)

This expresses the convergence speed of an evolutionary algorithm in solving a problem, but only for

the subsonic flow. In the supersonic case, shock wave propagation increases the convergence rate. By

considering the shock wave mechanism and mass conservation [23], we can estimate propagation speed

in this case as follows:

asw =
ρ(xf , t)

ρ(xf , t)− ρ(xr , t− 1)
ur, (34)

where ρ(xf , t) and ρ(xr , t − 1) are the peak particle densities at generations t and t − 1, respectively,

obtained at the points xf and xr. While ur (called the rear wave velocity) is the velocity of the particle

micelle at xr.

Now, we give a simple example to explain the wavelike nature of an evolutionary algorithm’s search

process and illustrate the roles played by the volume elasticity coefficient κ and wave propagation speed a

that occur in wave models. The experimental methods will be described in more detail in the next section,

along with further experiments. Consider a classical multimodal function, namely, Rastrigin’s function,

expressed as f(x) =
∑n

i=1(x
2
i − 10cos(2πxi) + 10), with a search domain of −100 6 xi 6 100 and n = 10

dimensions. This function has many local minima, and the global minimum is x∗ = (0, 0), f(x∗) = 0.

We will use the standard PSO algorithm to solve this problem, with the parameters set as in global PSO

(GPSO) optimizer [24].

Figure 2 illustrates the particle density distributions over the function value range after several different

numbers generations (Figure 3(a)). Here, the particle density distributions generally continue to move

leftward as the number of generations increasing, meaning that particles are gathering on the left, due

to the leftward (compression) particle density wave. Inevitably, the wave also propagates rightward

occasionally, which may be due to stochastic noise or the multimodal problem’s landscape: for example,

the green dashed line (t = 2002) has moved to the right of the blue line (t = 2000). However, the

overall trend is for the wave to propagate leftward, causing compression, as the algorithm’s selection

pressure is always driving the population in search of the optimal solution. Figures 3(b) and (c) show the

changes in the volume elasticity coefficient κ and wave propagation speed a, respectively, over time, these

characterize the evolution process of the standard PSO algorithm’s evolution process when optimizing

the function f(x). The volume elasticity coefficient κ denotes evolutionary operators’ ability to generate

pressure that drives local particle movement, which is then reflected macroscopically in the particle

system’s ability to search in the optimal direction. Figure 3(b) shows that κ is large in the early stages,

because the particles are initially uniformly distributed over the function’s range and the particle system

is compressible. However, we can also see that its value declines quickly in the later stages, as particles
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Figure 2 (Color online) Wave propagation for f(x), showing the (a) particle density distribution, (b) volume elasticity

coefficient κ, and (c) wave propagation speed a over time.

are gathering on the left and thus increasing the particle density towards the left-hand side of the interval,

continually reducing the system’s compressibility. Figure 3(c) shows that wave propagation speed a is

positively correlated with κ, following a similar trajectory. This simple example shows that wave models

can explain the dynamics of the evolution process by estimating the particle density ρ, elasticity coefficient

κ, or wave speed a.

5 Experiments

Although we have obtained several important theoretical results about evolutionary algorithms via the

analysis discussed above, these are still only theoretical. Although the toy example in Subsection 4.2 has

helped to demonstrate the model’s feasibility, more experimental results are needed to verify whether

wave models can be used to analyze most evolutionary algorithms. In addition, we will exhibit the

wave characteristics of different evolutionary algorithms via these experiments, and then propose suitable

improvement strategies for different types of algorithms based their experimental characteristics and our

previous theoretical analysis.

5.1 Algorithms and test problems

In this subsection, we verify the theoretical results by studying three evolutionary algorithms, namely,

the classic genetic algorithm (GA), particle swarm optimization (PSO), and the differential evolution

(DE) approach that is currently being widely studied and used. We chose three typical problems, suited

to the characteristics of each algorithms. To test the GA, we selected the traveling salesman problem

(TSP), a classical NP-hard problem. Meanwhile, for the PSO and DE methods, we selected two numerical
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Table 1 Test functions used for PSO and DE

Test function D Search range fmin Name

f1(y) =
∑D−1

i=1
(100(y2i − y2i+1

) + (yi − 1)2) + F ∗
4 ,

30 [−100, 100]D 400 Shifted and Rotated
where y = M( 2.048z

100
) + 1, M is a rotation matrix,

Rosenbrock [25]
z = x− o, and o = [o1, o2, . . . , on] is the shifted

global optimum.

f2(y) =
∑D

i=1

y2

i

4000
−

∏D
i=1

cos( yi√
i
) + 1 + F ∗

7
,

30 [−100, 100]D 700
Shifted and Rotatedwhere y = M( 600z

100
), M is a rotation matrix,

Griewank [25]z = x− o, and o = [o1, o2, . . . , on] is the shifted

global optimum.

optimization problems, taken from the opening CEC2014 test case [25], namely, two multimodal functions

with minima 400 and 700, respectively (described in Table 1).

Briefly, the TSP can be described as follows. Suppose there are n cities, with a given distance matrix

D such that Dij denotes the distance between city i and j. The problem is to find the shortest path

that visiting every city once and only once before returning to the start, i.e., to minimize the objective

function TSP(n). In our experiments, the number of cities n was 50 and 100, and the coordinates of the

n cities were randomly generated with the square [0, 1000]× [0, 1000].

The aim of this experimental study was to demonstrate the wavelike behaviors of three typical evo-

lutionary algorithms and then verify that they agree with the theoretical results. The experiments also

illustrate the algorithm’s different wavelike characteristics, which reflect their different search mecha-

nisms. This will ultimately yield ideas and methods for further developing the theoretical analysis and

directing algorithm design.

Since the main emphasis is on verifying the wave models and associated theory, we use the original

forms of the algorithms below. Each algorithm was used to solve the corresponding problem 50 times,

and the mean of these 50 solutions was taken as the final solution.

To compute the particle density, the interval between the minimum and maximum of the objective

function at a certain generation was first divided into L equal smaller intervals. Then, considering each of

these as an elementary volume, we calculated the number of particles and density for each small interval

to drive the overall particle density distribution. The reference value, ρ0 was taken as the mean of the

initial density distribution.

5.2 Nonlinear compression and sparse waves

First, we used the classic GA to solve the TSP. Figure 3(a) and (b) show the particle density distributions

for TSP(50) and TSP(100), respectively. Here, the horizontal and vertical axis denote the objective

function value and the particle density, respectively. Snapshots of the distribution taken at several

different evolution generations t are shown using different colors. Both figures (Figure 3) clearly show

the particle density distributions narrowing and moving leftward over time (generation t), meaning that

they represent leftward-propagating compression waves. Meanwhile, an invisible wave is also propagating

rightward, namely, the sparse wave. The interval to the right of the distribution, where the particle

density ρ is almost equal to 0, grows continuously as the distribution moves left, so the sparse wave can

be seen as a leftward attraction, that draws particles from the right-hand side to the left, in agreement

with the behavior of the theoretical solution (30).

Next, we applied elementary PSO to find the minima of the test functions f1 and f2 shown in Table 1.

Figures 4(a) and (b) show the particle density distributions for f1 and f2, respectively, presented similarly

to the GA results above. Again, both figures (Figure 4) clearly show leftward compression waves in the

particle density, and we can infer the invisible sparse waves from these distribution lines, thus verifying

the theoretical results presented in Section 4.

We have now tested two common algorithms by solving two typical problems. Comparing the two sets

of figures (Figures 3 and 4) show that the particle density distributions for PSO are smoother than those
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Figure 3 (Color online) (a) TSP (n = 50); (b) TSP (n = 100).
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Figure 4 (Color online) PSO applied to (a) f1 and (b) f2.

for the GA because of the numerical optimization problems used. However, they still exhibit similar

features and tendencies, namely, leftward compression waves search for the minima of the objective

functions and sparse rightward waves that help to maintain the particle system’s diversity. Overall, these

experiments have demonstrated that the evolution processes of the GA and PSO, at least when solving

these test problems, can be regarded as subsonic flows with continuous motion [20, 21].

5.3 Nonlinear shock waves and phase transitions

By contrast, DE’s evolution process reveals different type of nonlinear wave, i.e., discontinuous motion.

We applied elementary DE to find the minima of the functions f1 and f2, producing the particle density

distributions shown in Figures 5(a) and (b), respectively. Inset into Figure 5(b) is an enlarged view

of the particle density distribution over a small interval, presented for clarity. Both figures (Figure 5)

clearly show a sudden jump in the particle density at a generation t and function value x, representing a

shock wave. Unlike the GA and PSO, DE’s evolution process can be seen as a supersonic flow [20, 23].

Afterwards, the peak particle density value continues to propagate left at a speed of asw until it runs into

a barrier, such as the left-hand edge of the interval. This barrier then absorbs or reflects the shock wave,

(or both), weakening. Again, the experimental results confirm the predictions of the theoretical analysis,

and also demonstrate that shock wave related behavior can emerge when running some evolutionary

algorithms. The phenomena of shock wave or discontinuities are called phase transitions in dynamical

systems theory. Thus, these wave models have revealed an important aspect of some evolutionary al-

gorithms, both theoretically and experimentally, namely, phase transitions. This will guide our deeper

research into evolutionary algorithms.
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To estimate the convergence speed, we compared the PSO and DE examples discussed above. Fig-

ures 6(a) and (b) show their convergence rates a when solving f1 and f2, respectively. Here, the horizontal

and vertical axis give the number of generations and the convergence speed, respectively, and the red and

blue lines represent DE and PSO, respectively. To make the differences clearer, both the horizontal and

vertical use logarithmic scales. Comparing the two results using either figure indicates that DE initially

converges rapidly, but soon appears to be slower than PSO. However, DE’s evolution in fact undergoes

shock wave phase during the middle and final periods, where its convergence rate should actually be a

asw (see Figures 7(a) and (b)). By comparing the PSO and DE experiments, we find that DE usually

converges faster than PSO, but PSO’s convergence rate is nearly stable, meaning that its population

diversity is better. This analysis is in general agreement with our knowledge of DE and PSO.

In a real gas system, shock waves propagate faster than the speed of sound. As discussed in Subsec-

tion 4.2, we usually have that asw > a. To confirm this, we computed a and asw when using DE to solve

the same problem. Figures 7(a) and (b) show the way they changed over time when solving f1 and f2,

respectively. Here, the red and blue lines represent asw and a, respectively. Figures 7(a) and (b) indicate

that asw is always greater than a throughout the evolution process, again confirming the presence of su-

personic flows [20,23]. The shock wave is not present in the early stages, but this phase occurs very soon

thereafter. Considering Figures 6(a) and (b), the shock wave appears after about generation 100. These

results show that DE’s convergence speed is initially a, becoming asw during the middle and later stages.

Overall, the convergence rate slows over time, so the initial rapid convergence could be evidence of local

convergence, with the algorithm performing slower local search during the middle and later stages. Here,

both the theoretical and experimental results provide clues to improving such algorithms, namely, how

to detect an earlier shock wave phase in the evolution process and look for ways of preventing premature
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convergence. These ideas will inspire our future research.

As is well known, we must consider the balance between exploration and exploitation in order to design

a good evolutionary algorithm. A key criterion with regard to exploration is population diversity. Signif-

icantly, there are many metrics for measuring the population diversity of an evolutionary algorithm [26],

such as entropy-based [27], probability distribution-based [28], and the distance-based diversity met-

rics [29]. The particle density from the wave models essentially coincides with the entropy-based metric.

As well as the particle density, wave models give us other potentially useful parameters, such as κ and a,

mentioned above, and the Mach number Ma. For example, we could use κ or a to measure the selection

pressure, enabling us to adjust an algorithm’s evolutionary operators and selectors so as to better balance

exploration with exploitation in the population. Larger κ values are accompanied by larger a values, and

hence higher selection pressure and more rapid diversity loss. With regard to the particle density ρ, we

have experimentally confirmed the wave behavior seen in the theoretical solutions derived in Section 3

and analyzed in Section 4. In conjunction, with the Mach number Ma, this could also offer a new criterion

for detecting earlier shock waves and thus preventing premature convergence. In summary, combining

these theoretical models with experimental analysis will help us to design and improve algorithms.

6 Conclusion

Although many theoretical results have been achieved by building Markov models of evolutionary algo-

rithms based on stochastic process theory, we have chosen to consider a different theoretical approach

in the hope of obtaining new ideas that can assist with algorithm design. It is natural to consider an

analogy between an evolutionary algorithm’s population, or particle system, and a gas system. In this

paper, we have therefore built wave models of evolutionary algorithms based on aerodynamics theory.

By solving the models’ hyperbolic equations, we have found wave solutions by applying the characteristic

theory of hyperbolic equations. In addition, we have found significant results by studying the behavior of

the particle density distribution waves, namely, the leftward compression wave and the rightward sparse

wave. We then demonstrated the convergence of evolutionary algorithms by analyzing the mechanism

underlying the leftward wave, and discussed population diversity by analyzing the rightward wave. In

addition, we estimated the wave’s propagation speeds while running a given algorithm, which could be

used to measure their convergence rates in practice. To confirm these theoretical results, we carried out

experiments that applied three typical evolutionary algorithms to common benchmark problems, finding

agreement between the experimental and theoretical results. Furthermore, these theoretical and experi-

mental analyses will inspire our future research, as they yielded several new clues and ideas, that could

assist in the design and improvement of evolutionary algorithms.

First, analyzing both the theoretical and experimental results indicates that both the compression and
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sparse waves are relevant to the performance of evolutionary algorithms. It is thus worth investigating

in more detail how to balance exploration (or diversity) and exploitation (or convergence) by adjusting

the two waves so as to control an algorithm’s evolution process. This would depend on the Mach number

Ma.

Second, in Subsection 4.2 we only provided a rough estimate of the wave (or convergence) speed. This

appears to be related to the orders of magnitude of the objective function values, and a more careful and

accurate estimate would eliminate this relationship. In addition, the time (number of generations) needed

for convergence should be better estimated in order to derive practical stopping criteria for algorithms.

In other words, these estimates could offer valuable parameters and practical assistance to guide the

evolution process of evolutionary algorithms.

Third, although the shock wave (or phase) transition is captured by both theoretical and experimental

analysis, we still do not know when and where the phase transition will emerge in practice. This is an

interesting and attractive question, for which both theoretical analysis and experiments will be important.

Such research could potentially discover more algorithms with phase transitions, as well as the transitions’

features and conditions, thereby slowly revealing the characteristics of this class of algorithms within the

framework of dynamical systems theory.

In summary, this study has shown that dynamical systems theory can be used to analyze evolution-

ary algorithms, but this is just the beginning. Recent discussion has suggested some possible research

directions, and we expect that dynamical systems theory will play an important role in the design and

analysis of evolutionary algorithms.
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6 Derrac J, Garćıa S, Hui S, et al. Analyzing convergence performance of evolutionary algorithms: a statistical approach.

Inf Sci, 2014, 289: 41–58

7 Tan C J, Neoh S C, Lim C P, et al. Application of an evolutionary algorithm-based ensemble model to job-shop

scheduling. J Intell Manuf, 2019, 30: 879–890

8 Wu H, Kuang L, Wang F, et al. A multiobjective box-covering algorithm for fractal modularity on complex networks.

Appl Soft Comput, 2017, 61: 294–313

9 Goldberg D E, Segrest P. Finite Markov chain analysis of genetic algorithms. In: Proceedings of the 2nd International

Conference on Genetic Algorithms, Cambridge, 1987. 1: 1

10 Rudolph G. Finite Markov chain results in evolutionary computation: a tour d’horizon. Fund Inform, 1998, 35: 67–89

11 He J, Yao X. Drift analysis and average time complexity of evolutionary algorithms. Artif Intell, 2001, 127: 57–85

12 Sudholt D. A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans Evol

Computat, 2013, 17: 418–435

13 Yu Y, Qian C, Zhou Z H. Switch analysis for running time analysis of evolutionary algorithms. IEEE Trans Evol

Computat, 2015, 19: 777–792

14 Bian C, Qian C, Tang K. A general approach to running time analysis of multi-objective evolutionary algorithms.

In: Proceedings of 27th International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, 2018. 1405–1411

15 Mori N, Yoshida J, Tamaki H, et al. A thermodynamical selection rule for the genetic algorithm. In: Proceedings of

IEEE International Conference on Evolutionary Computation, Perth, 1995. 1: 188

16 Cornforth T W, Lipson H. A hybrid evolutionary algorithm for the symbolic modeling of multiple-time-scale dynamical

systems. Evol Intel, 2015, 8: 149–164

17 Li Y X, Zou X F, Kang L S, et al. A new dynamical evolutionary algorithm based on statistical mechanics. J Comput

Sci Technol, 2003, 18: 361–368

18 Li Y X, Xiang Z L, Xia J N. Dynamical system models and convergence analysis for simulated annealing algorithm

(in Chinese). Chin J Comput, 2019, 42: 1161–1173

https://doi.org/10.1016/j.ins.2018.01.027
https://doi.org/10.1109/TEVC.2013.2297160
https://doi.org/10.1162/EVCO_a_00132
https://doi.org/10.1016/j.ins.2014.06.009
https://doi.org/10.1007/s10845-016-1291-1
https://doi.org/10.1016/j.asoc.2017.07.034
https://doi.org/10.1016/S0004-3702(01)00058-3
https://doi.org/10.1109/TEVC.2012.2202241
https://doi.org/10.1109/TEVC.2014.2378891
https://doi.org/10.1007/s12065-015-0126-x
https://doi.org/10.1007/BF02948906


Li Y X, et al. Sci China Inf Sci October 2019 Vol. 62 202101:16

19 Li Y X, Xiang Z L, Zhang W Y. A relaxation model and time complexity analysis for simulated annealing algorithm

(in Chinese). Chin J Comput, 2019. http://kns.cnki.net/kcms/detail/11.1826.TP.20190425.1042.002.html

20 Zhou Y L. One-Dimensional Unsteady Hydrodynamics. Beijing: Science China Press, 1998

21 Lamb H. Hydrodynamics. Cambridge: Cambridge University Press, 1993

22 Gu C H, Li D Q. Mathematical Physics Equations. Beijing: People’s Education Press, 1982

23 Zhang Y. Expansion Waves and Shock Waves. Beijing: Peking University Press, 1983

24 Shi Y, Eberhart R C. Empirical study of particle swarm optimization. In: Proceedings of IEEE International Confer-

ence on Evolutionary Computation, Washington, 1999. 3: 1945–1950

25 Liang J J, Qu B Y, Suganthan P N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session

and Competition on Single Objective Real-Parameter Numerical Optimization. Zhengzhou University and Nanyang

Technological University, Technical Report. 2013
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