
SCIENCE CHINA
Information Sciences

October 2019, Vol. 62 200104:1–200104:3

https://doi.org/10.1007/s11432-018-9854-3

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. LETTER .
Special Focus on Software Automation

AI-boosted software automation:

learning from human pair programmers

Xin PENG1,2*, Zhenchang XING3 & Jun SUN4

1School of Computer Science, Fudan University, Shanghai 201203, China;
2Shanghai Key Laboratory of Data Science, Fudan University, Shanghai 201203, China;

3Research School of Computer Science, Australian National University, Acton ACT 2601, Australia;
4School of Information Systems, Singapore Management University, Singapore 178902, Singapore

Received 18 December 2018/Revised 31 January 2019/Accepted 19 March 2019/Published online 3 September 2019

Citation Peng X, Xing Z C, Sun J. AI-boosted software automation: learning from human pair programmers.

Sci China Inf Sci, 2019, 62(10): 200104, https://doi.org/10.1007/s11432-018-9854-3

Dear editor,
Software automation [1] aims to automatically
generate computer programs from formal or infor-
mal requirement descriptions. It covers a variety of
transformations of different spans, including gen-
erating programs from natural-language require-
ments, requirements specifications, or design spec-
ifications. Traditionally software automation is
achieved through logical reasoning and rule-based
transformation [1]. Although the transformation
from high-level programming languages to their
executable forms has been fully automated, auto-
matic generation of programs from their require-
ments is still hard due to the informality, non-
operationality, and incompleteness of the require-
ments [2].

The progress of software automation can be
boosted by the development of big data and AI (ar-
tificial intelligence) techniques. For example, open
source communities such as GitHub1) host hun-
dreds of millions of projects with various kinds of
software development data such as source code, re-
visions, issues, emails; online forums such as Stack
Overflow2) record dozens of millions of questions
and answers on a wide range of topics in pro-
gramming. Moreover, companies such as Google
have accumulated billions of lines of code in their
repositories to support tens of thousands of devel-

opers around the world [3]. On the other hand,
some recent studies have revealed that most soft-
ware is natural, and thus, like natural language,
is also likely to be repetitive and predictable [4].
Based on the huge amount of software develop-
ment data and knowledge, one can naturally ex-
pect that most of the common functionalities have
been implemented and shared by others, and most
of the common problems in software development
have been reported and solved by others. Based on
this assumption, many researchers have explored
ways of data-driven intelligent software develop-
ment, which leverages the big software develop-
ment data and AI techniques such as deep learning
for software automation.

To date data-driven intelligent software develop-
ment has made it possible to automate some spe-
cific tasks in software development such as recom-
mending the next API based on code context [5],
generating API usage sequences for a given natural
language query [6], and generating GUI skeleton
from UI design image [7]. These tasks only account
for a small part of software development. End to
end automated program generation from require-
ments is possible for specific types of small pro-
grams such as data manipulation programs (which
can be induced from input-output pairs), but is
unrealistic for industry-scale software systems in

*Corresponding author (email: pengxin@fudan.edu.cn)
1) https://github.com.
2) https://stackoverflow.com.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9854-3&domain=pdf&date_stamp=2019-9-3
https://doi.org/10.1007/s11432-018-9854-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9854-3
https://doi.org/10.1007/s11432-018-9854-3
https://github.com
https://stackoverflow.com


Peng X, et al. Sci China Inf Sci October 2019 Vol. 62 200104:2

general due to the following challenges.
• Creative and uncertain nature of software.

Understanding the requirements and generating
architecture design of these systems require cre-
ativity and to deal with a great deal of uncer-
tainty. Developers often need to think carefully to
understand and refine user requirements into con-
crete functionalities and business logics. They also
have to consider a sound software architecture that
satisfies the desired non-functional requirements
such as performance, reliability, and extendabil-
ity. Moreover, the requirements and architecture
involve a great deal of uncertainty incurred by the
ever-changing user requirements and runtime en-
vironments.

• Domain diversity. The software projects in
open source and industrial repositories have high
diversity in their business and technical domains.
These projects belong to a large variety of busi-
ness domains (e.g., finance, e-business, education,
entertainment) and are built on a large variety
of languages, libraries, frameworks, and platforms
(e.g., Java, Spring, Android). Although the total
amount of software development data is huge, the
data that a specific project can learn from may be
limited considering the business and implementa-
tion diversity. Moreover, different aspects (e.g.,
different libraries and frameworks, common and
project-specific logics) are often interweaved to-
gether, even in a small piece of code.

• Data quality. The quality of much software
development data is questionable due to both es-
sential and accidental factors. Although the prin-
ciple of separation of concerns is widely accepted,
code scattering and tangling phenomena is com-
mon in open-source and industrial software sys-
tems. On the other hand, the text content (e.g.,
class/method/variable names, comments) of pro-
grams, which is used in tasks like code recommen-
dation and program comprehension, is often not
expressed in a consistent and normative way. For
example, a recent study by Liu et al. [8] revealed
that a large part of the commit messages that are
used as references are noisy, for example they may
be bot messages generated by tools or trivial mes-
sages containing little or redundant information.

Therefore, it may be more realistic to expect
human-AI cooperative automation for industry-
scale software systems. It means that developers
still follow existing development processes such as
agile development and an AI assistant behind the
scene acts as a pair programmer that provides the
required helps when the developers encounter dif-
ficulties. The purpose of this kind of cooperative
automation is not to replace developers by end to
end automation, but achieve better efficiency and

quality by reducing repetitive work and helping
novice developers think and work like experienced
ones.

To understand the requirements for the AI as-
sistant, let us first consider how human developers
work and cooperate. Given a development task,
developers need to achieve the required goal (e.g.,
implementing a new feature or improving an ex-
isting one) based on their development knowledge
and understanding of the current code context.
Usually they can also resort to various develop-
ment resources such as code bases, API documen-
tation, online forums. The reason why they en-
counter difficulties in the task usually lies in the
gap between the developers’ knowledge and the
goal of the task. For example, the developers may
not know the calculation principle of offset in the
canvas of a text editor or the APIs that can change
the color of the text on the canvas. Due to the
knowledge gap it is often hard for them to find
the required solution even though it can be im-
plied from existing code, documentation, or online
discussions. Bridging the knowledge gap therefore
becomes the main task of the AI assistant.

The way how pair programmers communicate
with and help each other can help us further un-
derstand how the AI assistant should work. Here
are some thoughts that are inspired by the coop-
erative work of pair programmers.

Interactive clarification and explanation. When
a pair programmer understands the problem of the
other one and provides suggestions, he/she usually
needs to interactively clarify the intention and ex-
plain the suggested solution. For example, when
the pair programmer suggests to use Java String-
Buffer to construct the text content read from a
file, he/she may explain that StringBuffer is thread
safe and this explanation can increase the trust on
the suggestion. To recommend the solution for the
next step, he/she may clarify the intention, for ex-
ample, by asking whether to print the text content
or show it on the screen. Even when recommend-
ing a code fragment the pair programmer may ex-
plain the parameters and other implementation de-
tails that need to be adapted to the task require-
ments and local code context. Without this kind
of clarification and explanation, it is hard for the
AI assistant to understand the goal of the devel-
opers, make them trust the suggestions, and help
them successfully apply the solutions.

Stepwise refinement. Developers often follow a
non-sequential order of thinking and editing [5].
For example, a developer may first write the body
of a file manipulation functionality and then con-
sider its condition (e.g., whether the file exists).
When developers provide suggestions for others



Peng X, et al. Sci China Inf Sci October 2019 Vol. 62 200104:3

they usually understand the problem and develop
the solution from a refinement process. They could
first suggest some core APIs with sample code
for feedback to clarify the intention, and then de-
termine and complete the implementation details
gradually, for example configuring variable values
and adding initialization, resource cleaning, and
exception handling code. The AI assistant needs
to follow a similar process to understand the in-
tention of the developer and suggests the required
solution, and avoids to get into the details from
every beginning.

With the required background knowledge. An
implied premise of pair programming is that the
pair programmers share the required background
knowledge, including both technical and business
knowledge. For example, when talking about the
thread safety of string APIs the pair programmers
need to both understand the underlying techni-
cal concepts such as process/thread, thread safety,
and buffering and know that thread safety is only
meaningful when multiple threads access and mod-
ify the string. Similarly, when choosing APIs for
reading/writing excel files, the pair programmers
need to know concepts like sheet, row, column,
cell and their relationships. To efficiently commu-
nicate with the developers and provide accurate
suggestions, the AI assistant needs to be equipped
with knowledge such as API knowledge graph [9]
and other technical or business knowledge graphs.

On-demand solution granularities or forms. De-
velopers need solutions and suggestions of differ-
ent granularities or forms in different situations.
When an implementation (e.g., a code fragment
or a set of files) for a similar functionality can be
found there is no reason to suggest the code line
by line; instead, the pair programmer could rec-
ommend the whole reference implementation and
suggest the required modifications. In some cases,
the knowledge gap of the developers lies in an API,
a technical principle, or the format of a string vari-
able, thus the pair programmer needs to provide
different forms of suggestions and solutions such
as API recommendation, explanation of technical
principles and string format. Therefore, the AI as-
sistant needs to understand the knowledge gap of
the developer and provides suggestions and solu-

tions of different granularities or forms in an on-
demand way.

To conclude, end to end automated program
generation is unrealistic for industry-scale software
systems due to the creative and uncertain nature
of software, diversity of technical and business do-
mains, and data quality issues. A more realistic
expectation is human-AI cooperative automation,
where an AI assistant acts as a pair programmer
and provides the required helps. How the AI assis-
tant should work can be understood by observing
the way how pair programmers communicate with
and help each other. Some inspirations include in-
teractive clarification and explanation, stepwise re-
finement, background knowledge, and on-demand
solution granularities or forms.

Acknowledgements This work was supported by Na-

tional Key Research and Development Program of China

(Grant No. 2016YFB1000801).

References

1 Xu J, Chen D, Lv J, et al. Software Automation (in
Chinese). Beijing: Tsinghua University Press, 1994

2 Mei H, Zhang L. Can big data bring a breakthrough
for software automation? Sci China Inf Sci, 2018, 61:
056101

3 Potvin R, Levenberg J. Why Google stores billions of
lines of code in a single repository. Commun ACM,
2016, 59: 78–87

4 Hindle A, Barr E T, Gabel M, et al. On the natural-
ness of software. Commun ACM, 2016, 59: 122–131

5 Nguyen A T, Nguyen T N. Graph-based statistical lan-
guage model for code. In: Proceedings of the 37th
IEEE/ACM International Conference on Software En-
gineering (ICSE-15), Florence, 2015. 858–868

6 Gu X D, Zhang H Y, Zhang D M, et al. Deep API
learning. In: Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (FSE-16), Seattle, 2016. 631–642

7 Chen C Y, Su T, Meng G Z, et al. From UI design
image to GUI skeleton: a neural machine translator to
bootstrap mobile GUI implementation. In: Proceed-
ings of the 40th International Conference on Software
Engineering (ICSE-18), Gothenburg, 2018. 665–676

8 Liu Z X, Xia X, Hassan A E, et al. Neural-machine-
translation-based commit message generation: how far
are we? In: Proceedings of the 33rd ACM/IEEE In-
ternational Conference on Automated Software Engi-
neering (ASE-18), Montpellier, 2018. 373–384

9 Li H W, Li S R, Sun J M, et al. Improving API
caveats accessibility by mining API caveats knowledge
graph. In: Proceedings of the 34th IEEE International
Conference on Software Maintenance and Evolution
(ICSME-18), Madrid, 2018. 183–193

https://doi.org/10.1007/s11432-017-9355-3
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2902362

