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Appendix A Proof of Theorem 1

By (1) and (7) we have

det (C(z)) (y(k)− F (z)w(k))

= F (z)adj (C(z))A(z)y(k) +G(z)y(k − d)− det (C(z))F (z)w(k)

= F (z)adj (C(z))B(z)u(k − d) + F (z)det (C(z))w(k) +G(z)y(k − d)− det (C(z))F (z)w(k)

= G(z)y(k − d) + F (z)adj (C(z))B(z)u(k − d),

which together with (8) leads to

det (C(z)) (y(k)− F (z)w(k)) = G(z)y(k − d) + det (C(z)) y∗(k)−G(z)s(k − d),

det (C(z)) (y(k)− y∗(k)) = G(z)(y(k − d)− s(k − d)) + det (C(z))F (z)w(k).

Thus, by Assumptions 1 and 3 and (6) we have

lim sup
n→∞

1

n

n∑
k=0

||y(k)− y∗(k)||2 = tr

d−1∑
j=0

FjRF
T
j +O(ε).

Appendix B Proof of Theorem 2

From (1) it is easy to see

B(z)u(k − d) = A(z)y(k)− C(z)w(k).

Notice that

1

n

n∑
k=0

||y(k)||2 =
1

n

n∑
k=0

||y(k)− y∗(k) + y∗(k)||2 6
2

n

n∑
k=0

||y(k)− y∗(k)||2 +
2

n

n∑
k=0

||y∗(k)||2. (B1)

Then, by Assumption 1, there is a constant C′ > 0 such that

1

n

n∑
k=0

||u(k)||2 6
C′

n

n+d∑
k=0

(
||y(k)||2 + ||w(k)||2

)
.

This together with Assumptions 2 and 3, Theorem 1 and (B1) implies (10).
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Appendix C Proof of Lemma 3

By (5), (11) can be rewritten as

A(z)s(k) = zdB(z)u(k) + ε(k), k > 0,

where ε(k) = A(z)(s(k)− y(k)).

By (5), one can get

||ε(k)|| 6Mε, (C1)

with M = m
2

∑p
i=0 ||Ai||.

By Assumption 5, u(i) is bounded. So, there exists a constant c0 independent of ε such that

|Hx(z)u(i)H′x(z)ε(i)| 6
c0

3
ε, x ∈ Rmp+lq , ||x|| = 1.

Appendix D Proof of Lemma 4

Let

det(A(z)) = a0 + a1z + · · ·+ ampz
mp, amp 6= 0,

and

ψn = det (A(z))ϕn. (D1)

Then

ψn = [adj (A(z)) (zdB(z)u(n) + ε(n))T , · · · ,

adj (A(z)) (zp+d−1B(z)u(n) + ε(n− p+ 1))T ,

zd−1det (A(z))uT (n), · · · , zd+q−2det (A(z))uT (n)]T . (D2)

From (D1) we can obtain that for any x ∈ Rmp+lq ,

x′

 k+mp+h∑
i=k+mp+1

ψiψ
′
i

x =

k+mp+h∑
i=k+mp+1

(
x′ψi

)2
=

k+mp+h∑
i=k+mp+1

mp∑
j=0

ajx
′ϕi−j

2

6
mp∑
j=0

a2j

k+mp+h∑
i=k+mp+1

mp∑
j=0

(
x′ϕi−j

)2
6 h

mp∑
j=0

a2j

k+mp+h∑
i=k+1

x′ϕiϕ
′
ix,

which implies

λmin

k+mp+h∑
i=k+1

ϕiϕ
′
i

 >
1

h
∑mp
j=0 a

2
j

λmin

 k+mp+h∑
i=k+mp+1

ψiψ
′
i

 .

Hence, in order to prove (15) we only need to show that

λmin

 k+mp+h∑
i=k+mp+1

ψiψ
′
i

 > c1λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

 , c1 > 0.

Write the unit vector x ∈ Rmp+lq in the vector-component form x =
[
xT1 , x

T
2 , · · · , xTp+q

]T
. Then, by (D2), Assumption

5 and δ = hc0ε
min||x||=1 ||g(x)||2

we have

x′
k+mp+h∑
i=k+mp+1

ψiψ
′
ix =

k+mp+h∑
i=k+mp+1

(
Hx(z)u(i) +H′x(z)ε(i)

)2
=g′(x)

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
ig(x) + 2

k+mp+h∑
i=k+mp+1

Hx(z)u(i)H′x(z)ε(i) +

k+mp+h∑
i=k+mp+1

(
H′x(z)ε(i)

)2
> min
||x||=1

||g(x)||2λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

+ 2

k+mp+h∑
i=k+mp+1

Hx(z)u(i)H′x(z)ε(i)

> min
||x||=1

||g(x)||2λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

− 2h

3
c0ε

= min
||x||=1

||g(x)||2
λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

− 2δ

3


>

1

3
min
||x||=1

||g(x)||2λmin

k+mp+h−d+1∑
i=k+mp−d+2

UiU
′
i

 .

This together with Lemma 2 gives (15).
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Appendix E Lemma 5

If
N−1∑
i=k

ϕiϕ
′
i

1 + ||ϕi||2
> αI,

for some α > 0, then we have

||Ψ(N, k)|| 6
[
1−

α2

4(N − k)3

]1/2
.

Proof. See [1].

Appendix F Proof of Lemma 6

For the first inequality of Lemma 6

||Ψ(τn, 0)|| 6 exp

(
−c1

n∑
i=1

δ2

M2
i

)
,

please see [1].

Here we need only to show the second inequality of Lemma 6. By Lemma 4 and Assumption 5

τn−1∑
i=τn−1

ϕiϕ
′
i

1 + ||ϕi||2
>

cδ

Mnh
I.

This together with Lemma 5 and the elementary inequality 1− x 6 e−x, ∀x ∈ [0, 1] leads to

||Ψ(τn, τn−1)|| 6
(

1− c′2
δ2

M2
n

) 1
2

,

where c′2 > 0 is a constant.

Let c2 = 1
2
c′2. Then, we can get Lemma 6.

Appendix G Proof of Theorem 3

By (14) we have

θ̃n+1 =θ − θn+1

=θ − θn −
ϕn

1 + ||ϕn||2
(
sn+1 − ϕ′nθn

)
=θ̃n −

ϕn

1 + ||ϕn||2
(
ϕ′nθ̃n + ε(n+ 1)

)
=

(
I −

ϕnϕ′n
1 + ||ϕn||2

)
θ̃n −

ϕn

1 + ||ϕn||2
ε(n+ 1)

= · · ·

=Ψ(n+ 1, 0)θ̃0 −
ϕn

1 + ||ϕn||2
ε(n+ 1)− · · ·

−Ψ(n+ 1, 2)
ϕ1

1 + ||ϕ1||2
ε(2)−Ψ(n+ 1, 1)

ϕ0

1 + ||ϕ0||2
ε(1),

and hence,

||θ̃n|| 6||Ψ(n, 0)||||θ̃0||+ ||ε(n)||+ ||Ψ(n, n− 1)||||ε(n− 1)||
+ · · ·+ ||Ψ(n, 1)||||ε(1)||. (G1)

Noticing

τn = n(h+mp) + 1,

by (16) we get ||ϕτn || = O(τvn). This together with the definition of Mi results in

M2
i = O

(
τ4vi
)

= O
(
i4v
)
.

So, from (16) and Lemma 6 there exists c3 > 0 such that

||Ψ(τn, 0)|| 6 exp

(
−c3

n∑
i=1

1

i4v

)
= O

(
exp

(
−c4(n+ 1)1−4v

))
, (G2)

where c4 = c3
1−4v

> 0.

For any n, there exists kn such that

τkn 6 n 6 τkn+1,

or

kn(h+mp) + 1 6 n 6 (kn + 1)(h+mp) + 1.
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So,

kn + 1 >
n− 1

h+mp
.

By (G2) we have

||Ψ(n, 0)|| 6 ||Ψ(τkn , 0)|| = O
(
exp

(
−c5(kn + 1)1−4v

))
= O

(
exp

(
−αn1−4v

))
, (G3)

where c5 > 0, α > 0.

For Ψ(n, k), by Lemma 5, we have

||Ψ(τn, τn−1)|| 6
(

1− c′2
δ2

M2
n

)1/2

.

For any 1 6 k 6 n, by the definition of τn, there exists m such that τm > k. So,

||Ψ(τn, k)|| 6 ||
n∏

i=m+1

Ψ(τi, τi−1)|| 6

 n∏
i=m+1

(
1− c′2

δ2

M2
i

)1/2

.

From (16) and Lemma 6 there exists c6 > 0 such that

||Ψ(τn, k)|| 6 exp

−c6 n∑
i=m+1

1

i4v


= O

(
exp

(
−c7(n+ 1)1−4v

))
, (G4)

where c7 > 0.

Hence, by (G2) and (G4) we can get

||Ψ(n, k)|| 6 ||Ψ(τkn , k)|| = O
(
exp

(
−c8(kn + 1)1−4v

))
= O

(
exp

(
−βn1−4v

))
, (G5)

where c8 > 0, β > 0.

Therefore,

lim
n→∞

||Ψ(n, 1)||+ · · ·+ ||Ψ(n, n)|| = O (1) ,

which together with (C1), (G1), (G3) and (G5), implies

||θ̃n|| = O (ε) , as n→∞.

Appendix H Simulation

Example 1. Tracking control with quantiezd outputs

Consider a system

A(z)y(k) = B(z)u(k − 1) + C(z)w(k), k = 1, 2, ...

with

A(z) =

[
1 + 1

2
z 0

0 1 + 1
3
z

]
, B(z) =

[
1 1

1 0

]
, C(z) =

[
1 + 1

2
z 1

2
z

1
3
z 1 + 1

3
z

]
,

w(k) being a 2-dimensional standard normal noise, the output y(k) measured by (5) with ε = 0.3, and y∗(k) = [1, 1]T .

Then, under the tracking control (8), the tracking error is shown in H1.
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Figure H1 Trajectory of 1
n

∑n
k=1 ||y1(k)− y∗1(k)||2 and 1

n

∑n
k=1 ||y1(k)− y∗1(k)||2
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Example 2. Parameter identification with quantiezd outputs

Consider a system

y(k) = ay(k − 1) + bu(k − 1), k = 1, 2, ...

with θ = [a, b]T = [−1, 1]T to be identified. The output y(k) is measured by (5) with ε = 0.01. The projection algorithm

(13) is used with initial θ0 = [0, 0]T and the control u(k)=-3, -1, 1, -3, -1, 1, -3 ... , k=1, 2, ... , and the ||θ̃n|| is shown in

H2.
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Figure H2 Trajectory of ||θ̃n||
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