- Supplementary File •

Tracking Control and Parameter Identification with Quantized ARMAX Systems

Lida Jing ${ }^{1,2}$ \& Jifeng Zhang ${ }^{1,2^{*}}$
${ }^{1}$ Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
${ }^{2}$ School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Appendix A Proof of Theorem 1

By (1) and (7) we have

$$
\begin{aligned}
& \operatorname{det}(C(z))(y(k)-F(z) w(k)) \\
= & F(z) \operatorname{adj}(C(z)) A(z) y(k)+G(z) y(k-d)-\operatorname{det}(C(z)) F(z) w(k) \\
= & F(z) \operatorname{adj}(C(z)) B(z) u(k-d)+F(z) \operatorname{det}(C(z)) w(k)+G(z) y(k-d)-\operatorname{det}(C(z)) F(z) w(k) \\
= & G(z) y(k-d)+F(z) \operatorname{adj}(C(z)) B(z) u(k-d),
\end{aligned}
$$

which together with (8) leads to

$$
\begin{aligned}
\operatorname{det}(C(z))(y(k)-F(z) w(k)) & =G(z) y(k-d)+\operatorname{det}(C(z)) y^{*}(k)-G(z) s(k-d), \\
\operatorname{det}(C(z))\left(y(k)-y^{*}(k)\right) & =G(z)(y(k-d)-s(k-d))+\operatorname{det}(C(z)) F(z) w(k) .
\end{aligned}
$$

Thus, by Assumptions 1 and 3 and (6) we have

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n}\left\|y(k)-y^{*}(k)\right\|^{2}=\operatorname{tr} \sum_{j=0}^{d-1} F_{j} R F_{j}^{T}+O(\varepsilon) .
$$

Appendix B Proof of Theorem 2

From (1) it is easy to see

$$
B(z) u(k-d)=A(z) y(k)-C(z) w(k) .
$$

Notice that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=0}^{n}\|y(k)\|^{2}=\frac{1}{n} \sum_{k=0}^{n}\left\|y(k)-y^{*}(k)+y^{*}(k)\right\|^{2} \leqslant \frac{2}{n} \sum_{k=0}^{n}\left\|y(k)-y^{*}(k)\right\|^{2}+\frac{2}{n} \sum_{k=0}^{n}\left\|y^{*}(k)\right\|^{2} . \tag{B1}
\end{equation*}
$$

Then, by Assumption 1, there is a constant $C^{\prime}>0$ such that

$$
\frac{1}{n} \sum_{k=0}^{n}\|u(k)\|^{2} \leqslant \frac{C^{\prime}}{n} \sum_{k=0}^{n+d}\left(\|y(k)\|^{2}+\|w(k)\|^{2}\right) .
$$

This together with Assumptions 2 and 3, Theorem 1 and (B1) implies (10).

[^0]
Appendix C Proof of Lemma 3

By (5), (11) can be rewritten as

$$
A(z) s(k)=z^{d} B(z) u(k)+\epsilon(k), k \geqslant 0
$$

where $\epsilon(k)=A(z)(s(k)-y(k))$.
By (5), one can get

$$
\begin{equation*}
\|\epsilon(k)\| \leqslant M \varepsilon \tag{C1}
\end{equation*}
$$

with $M=\frac{m}{2} \sum_{i=0}^{p}\left\|A_{i}\right\|$.
By Assumption 5, u(i) is bounded. So, there exists a constant c_{0} independent of ε such that

$$
\left|H_{x}(z) u(i) H_{x}^{\prime}(z) \epsilon(i)\right| \leqslant \frac{c_{0}}{3} \varepsilon, \quad x \in R^{m p+l q}, \quad\|x\|=1
$$

Appendix D Proof of Lemma 4

Let

$$
\operatorname{det}(A(z))=a_{0}+a_{1} z+\cdots+a_{m p} z^{m p}, a_{m p} \neq 0
$$

and

$$
\begin{equation*}
\psi_{n}=\operatorname{det}(A(z)) \varphi_{n} \tag{D1}
\end{equation*}
$$

Then

$$
\begin{align*}
\psi_{n}= & {\left[\operatorname{adj}(A(z))\left(z^{d} B(z) u(n)+\epsilon(n)\right)^{T}, \cdots,\right.} \\
& \operatorname{adj}(A(z))\left(z^{p+d-1} B(z) u(n)+\epsilon(n-p+1)\right)^{T} \\
& \left.z^{d-1} \operatorname{det}(A(z)) u^{T}(n), \cdots, z^{d+q-2} \operatorname{det}(A(z)) u^{T}(n)\right]^{T} \tag{D2}
\end{align*}
$$

From (D1) we can obtain that for any $x \in R^{m p+l q}$,

$$
\begin{aligned}
x^{\prime}\left(\sum_{i=k+m p+1}^{k+m p+h} \psi_{i} \psi_{i}^{\prime}\right) x & =\sum_{i=k+m p+1}^{k+m p+h}\left(x^{\prime} \psi_{i}\right)^{2}=\sum_{i=k+m p+1}^{k+m p+h}\left(\sum_{j=0}^{m p} a_{j} x^{\prime} \varphi_{i-j}\right)^{2} \leqslant \sum_{j=0}^{m p} a_{j}^{2} \sum_{i=k+m p+1}^{k+m p+h} \sum_{j=0}^{m p}\left(x^{\prime} \varphi_{i-j}\right)^{2} \\
& \leqslant h \sum_{j=0}^{m p} a_{j}^{2} \sum_{i=k+1}^{k+m p+h} x^{\prime} \varphi_{i} \varphi_{i}^{\prime} x
\end{aligned}
$$

which implies

$$
\lambda_{\min }\left(\sum_{i=k+1}^{k+m p+h} \varphi_{i} \varphi_{i}^{\prime}\right) \geqslant \frac{1}{h \sum_{j=0}^{m p} a_{j}^{2}} \lambda_{\min }\left(\sum_{i=k+m p+1}^{k+m p+h} \psi_{i} \psi_{i}^{\prime}\right)
$$

Hence, in order to prove (15) we only need to show that

$$
\lambda_{\min }\left(\sum_{i=k+m p+1}^{k+m p+h} \psi_{i} \psi_{i}^{\prime}\right) \geqslant c_{1} \lambda_{\min }\left(\sum_{i=k+m p-d+2}^{k+m p+h-d+1} U_{i} U_{i}^{\prime}\right), c_{1}>0
$$

Write the unit vector $x \in R^{m p+l q}$ in the vector-component form $x=\left[x_{1}^{T}, x_{2}^{T}, \cdots, x_{p+q}^{T}\right]^{T}$. Then, by (D2), Assumption 5 and $\delta=\frac{h c_{0} \varepsilon}{\min _{\|x\|=1}\|g(x)\|^{2}}$ we have

$$
\begin{aligned}
& x^{\prime} \sum_{i=k+m p+1}^{k+m p+h} \psi_{i} \psi_{i}^{\prime} x=\sum_{i=k+m p+1}^{k+m p+h}\left(H_{x}(z) u(i)+H_{x}^{\prime}(z) \epsilon(i)\right)^{2} \\
= & g^{\prime}(x) \sum_{i=k+m p-d+2}^{k+m p+h-d+1} U_{i} U_{i}^{\prime} g(x)+2 \sum_{i=k+m p+1}^{k+m p+h} H_{x}(z) u(i) H_{x}^{\prime}(z) \epsilon(i)+\sum_{i=k+m p+1}^{k+m p+h}\left(H_{x}^{\prime}(z) \epsilon(i)\right)^{2} \\
\geqslant & \min _{\|x\|=1}\|g(x)\|^{2} \lambda_{\min }\left(\sum_{i=k+m p-d+2}^{k+m p+h-d+1} U_{i} U_{i}^{\prime}\right)+2 \sum_{i=k+m p+1}^{k+m p+h} H_{x}(z) u(i) H_{x}^{\prime}(z) \epsilon(i) \\
\geqslant & \min _{\|x\|=1}\|g(x)\|^{2} \lambda_{\min }\left(\sum_{i=k+m p-d+2}^{k+m p+h-d+1} U_{i} U_{i}^{\prime}\right)-\frac{2 h}{3} c_{0} \varepsilon \\
= & \min _{\|x\|=1}\|g(x)\|^{2}\left(\lambda_{\min }\left(\sum_{i=k+m p-d+2}^{k+m p+h-d+1} U_{i} U_{i}^{\prime}\right)-\frac{2 \delta}{3}\right) \\
\geqslant & \frac{1}{3} \min _{\|x\|=1}\|g(x)\|^{2} \lambda_{\min }\left(\sum_{i=k+m p-d+2}^{k+m p+h-d+1} U_{i} U_{i}^{\prime}\right) .
\end{aligned}
$$

This together with Lemma 2 gives (15).

Appendix E Lemma 5

If

$$
\sum_{i=k}^{N-1} \frac{\varphi_{i} \varphi_{i}^{\prime}}{1+\left\|\varphi_{i}\right\|^{2}} \geqslant \alpha I
$$

for some $\alpha>0$, then we have

$$
\|\Psi(N, k)\| \leqslant\left[1-\frac{\alpha^{2}}{4(N-k)^{3}}\right]^{1 / 2}
$$

Proof. See [1].

Appendix F Proof of Lemma 6

For the first inequality of Lemma 6

$$
\left\|\Psi\left(\tau_{n}, 0\right)\right\| \leqslant \exp \left(-c_{1} \sum_{i=1}^{n} \frac{\delta^{2}}{M_{i}^{2}}\right),
$$

please see [1].
Here we need only to show the second inequality of Lemma 6. By Lemma 4 and Assumption 5

$$
\sum_{i=\tau_{n-1}}^{\tau_{n}-1} \frac{\varphi_{i} \varphi_{i}^{\prime}}{1+\left\|\varphi_{i}\right\|^{2}} \geqslant \frac{c \delta}{M_{n} h} I .
$$

This together with Lemma 5 and the elementary inequality $1-x \leqslant e^{-x}, \forall x \in[0,1]$ leads to

$$
\left\|\Psi\left(\tau_{n}, \tau_{n-1}\right)\right\| \leqslant\left(1-c_{2}^{\prime} \frac{\delta^{2}}{M_{n}^{2}}\right)^{\frac{1}{2}}
$$

where $c_{2}^{\prime}>0$ is a constant.
Let $c_{2}=\frac{1}{2} c_{2}^{\prime}$. Then, we can get Lemma 6 .

Appendix G Proof of Theorem 3

By (14) we have

$$
\begin{aligned}
\tilde{\theta}_{n+1}= & \theta-\theta_{n+1} \\
= & \theta-\theta_{n}-\frac{\varphi_{n}}{1+\left\|\varphi_{n}\right\|^{2}}\left(s_{n+1}-\varphi_{n}^{\prime} \theta_{n}\right) \\
= & \tilde{\theta}_{n}-\frac{\varphi_{n}}{1+\left\|\varphi_{n}\right\|^{2}}\left(\varphi_{n}^{\prime} \tilde{\theta}_{n}+\epsilon(n+1)\right) \\
= & \left(I-\frac{\varphi_{n} \varphi_{n}^{\prime}}{1+\left\|\varphi_{n}\right\|^{2}}\right) \tilde{\theta}_{n}-\frac{\varphi_{n}}{1+\left\|\varphi_{n}\right\|^{2}} \epsilon(n+1) \\
= & \cdots \\
= & \Psi(n+1,0) \tilde{\theta}_{0}-\frac{\varphi_{n}}{1+\left\|\varphi_{n}\right\|^{2}} \epsilon(n+1)-\cdots \\
& -\Psi(n+1,2) \frac{\varphi_{1}}{1+\left\|\varphi_{1}\right\|^{2}} \epsilon(2)-\Psi(n+1,1) \frac{\varphi_{0}}{1+\left\|\varphi_{0}\right\|^{2}} \epsilon(1),
\end{aligned}
$$

and hence,

$$
\begin{align*}
\left\|\tilde{\theta}_{n}\right\| \leqslant & \|\Psi(n, 0)\|\left\|\tilde{\theta}_{0}\right\|+\|\epsilon(n)\|+\|\Psi(n, n-1)\|\|\epsilon(n-1)\| \\
& +\cdots+\|\Psi(n, 1)\|\|\epsilon(1)\| . \tag{G1}
\end{align*}
$$

Noticing

$$
\tau_{n}=n(h+m p)+1,
$$

by (16) we get $\left\|\varphi_{\tau_{n}}\right\|=O\left(\tau_{n}^{v}\right)$. This together with the definition of M_{i} results in

$$
M_{i}^{2}=O\left(\tau_{i}^{4 v}\right)=O\left(i^{4 v}\right)
$$

So, from (16) and Lemma 6 there exists $c_{3}>0$ such that

$$
\begin{equation*}
\left\|\Psi\left(\tau_{n}, 0\right)\right\| \leqslant \exp \left(-c_{3} \sum_{i=1}^{n} \frac{1}{i^{4 v}}\right)=O\left(\exp \left(-c_{4}(n+1)^{1-4 v}\right)\right), \tag{G2}
\end{equation*}
$$

where $c_{4}=\frac{c_{3}}{1-4 v}>0$.
For any n, there exists k_{n} such that

$$
\tau_{k_{n}} \leqslant n \leqslant \tau_{k_{n}+1},
$$

or

$$
k_{n}(h+m p)+1 \leqslant n \leqslant\left(k_{n}+1\right)(h+m p)+1 .
$$

So,

$$
k_{n}+1 \geqslant \frac{n-1}{h+m p}
$$

By (G2) we have

$$
\begin{equation*}
\|\Psi(n, 0)\| \leqslant\left\|\Psi\left(\tau_{k_{n}}, 0\right)\right\|=O\left(\exp \left(-c_{5}\left(k_{n}+1\right)^{1-4 v}\right)\right)=O\left(\exp \left(-\alpha n^{1-4 v}\right)\right) \tag{G3}
\end{equation*}
$$

where $c_{5}>0, \alpha>0$.
For $\Psi(n, k)$, by Lemma 5 , we have

$$
\left\|\Psi\left(\tau_{n}, \tau_{n-1}\right)\right\| \leqslant\left(1-c_{2}^{\prime} \frac{\delta^{2}}{M_{n}^{2}}\right)^{1 / 2}
$$

For any $1 \leqslant k \leqslant n$, by the definition of τ_{n}, there exists m such that $\tau_{m} \geqslant k$. So,

$$
\left\|\Psi\left(\tau_{n}, k\right)\right\| \leqslant\left\|\prod_{i=m+1}^{n} \Psi\left(\tau_{i}, \tau_{i-1}\right)\right\| \leqslant\left(\prod_{i=m+1}^{n}\left(1-c_{2}^{\prime} \frac{\delta^{2}}{M_{i}^{2}}\right)\right)^{1 / 2}
$$

From (16) and Lemma 6 there exists $c_{6}>0$ such that

$$
\begin{align*}
\left\|\Psi\left(\tau_{n}, k\right)\right\| & \leqslant \exp \left(-c_{6} \sum_{i=m+1}^{n} \frac{1}{i^{4 v}}\right) \\
& =O\left(\exp \left(-c_{7}(n+1)^{1-4 v}\right)\right) \tag{G4}
\end{align*}
$$

where $c_{7}>0$.
Hence, by (G2) and (G4) we can get

$$
\begin{equation*}
\|\Psi(n, k)\| \leqslant\left\|\Psi\left(\tau_{k_{n}}, k\right)\right\|=O\left(\exp \left(-c_{8}\left(k_{n}+1\right)^{1-4 v}\right)\right)=O\left(\exp \left(-\beta n^{1-4 v}\right)\right) \tag{G5}
\end{equation*}
$$

where $c_{8}>0, \beta>0$.
Therefore,

$$
\lim _{n \rightarrow \infty}\|\Psi(n, 1)\|+\cdots+\|\Psi(n, n)\|=O(1)
$$

which together with (C1), (G1), (G3) and (G5), implies

$$
\left\|\tilde{\theta}_{n}\right\|=O(\varepsilon), \text { as } n \rightarrow \infty
$$

Appendix H Simulation

Example 1. Tracking control with quantiezd outputs
Consider a system

$$
A(z) y(k)=B(z) u(k-1)+C(z) w(k), k=1,2, \ldots
$$

with

$$
A(z)=\left[\begin{array}{cc}
1+\frac{1}{2} z & 0 \\
0 & 1+\frac{1}{3} z
\end{array}\right], \quad B(z)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], \quad C(z)=\left[\begin{array}{cc}
1+\frac{1}{2} z & \frac{1}{2} z \\
\frac{1}{3} z & 1+\frac{1}{3} z
\end{array}\right]
$$

$w(k)$ being a 2-dimensional standard normal noise, the output $y(k)$ measured by (5) with $\varepsilon=0.3$, and $y^{*}(k)=[1,1]^{T}$. Then, under the tracking control (8), the tracking error is shown in H1.

Figure H1 Trajectory of $\frac{1}{n} \sum_{k=1}^{n}\left\|y_{1}(k)-y_{1}^{*}(k)\right\|^{2}$ and $\frac{1}{n} \sum_{k=1}^{n}\left\|y_{1}(k)-y_{1}^{*}(k)\right\|^{2}$

Example 2. Parameter identification with quantiezd outputs
Consider a system

$$
y(k)=a y(k-1)+b u(k-1), k=1,2, \ldots
$$

with $\theta=[a, b]^{T}=[-1,1]^{T}$ to be identified. The output $y(k)$ is measured by (5) with $\varepsilon=0.01$. The projection algorithm (13) is used with initial $\theta_{0}=[0,0]^{T}$ and the control $u(k)=-3,-1,1,-3,-1,1,-3 \ldots, k=1,2, \ldots$, and the $\left\|\tilde{\theta}_{n}\right\|$ is shown in H2.

Figure H2 Trajectory of $\left\|\tilde{\theta}_{n}\right\|$

References

1 Chen H F, Guo L. Adaptive control via consistent estimation for deterministic systems. Int. J. Control, 1987, 45: 2183-2202

[^0]: * Corresponding author (email: jif@iss.ac.cn)

