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Dear editor,
Unmanned aerial vehicles (UAVs) have generated
significant research interest in recent years [1–3],
in particular to obtain more accurate orientation
estimations. A visual compass (VC) does this by
using image features only, which avoids magnetic
field interferences commonly experienced when us-
ing traditional magnetic compasses.

Most VC algorithms employ omnidirectional or
panoramic cameras with a wide field of view. For
instance, Refs. [4,5] rely on a calibrated catadiop-
tric camera and traditional image features. Ref. [6]
uses pixel intensity over the entire image. The
problem with these cameras is that they are not
only challenging to install and to use for computa-
tion [4] but will fail easily in dynamic situations [7].
Another method uses pinhole cameras to obtain
images similar to omnidirectional views but has
more requirements on employment. For example,
Ref. [8] uses a purely rotating camera and Ref. [9]
uses multi-cameras in unknown dynamic environ-
ments. However, the horizontal view is of limited
use for capturing suitable image features.

We devised a novel VC algorithm that applies
image sequences taken by a downward-looking
low-cost uncalibrated monocular camera, and a
cluster-based method to obtain real point features
from oriented FAST and rotated BRIEF (ORB)
keypoints. Then the yaw angle of the camera can
be computed. Outdoor experiments verified the
suitability of the algorithm for UAVs.

Contributions. Relative to the conventional VC
algorithms cited, our new method offers the fol-
lowing advantages. (a) In terms of computation
and memory use, it has a much more economi-
cal approach towards defining point features from
matched cluster centers, which not only decreases
the required number of keypoints but also reduces
the influences of individual points. (b) It enhances
robustness towards camera jitter by computing
yaw angles using line vectors defined from clus-
ter centers. (c) It employs a new camera installa-
tion method that could maximize image informa-
tion. (d) This uncalibrated algorithm and the con-
venient plug-and-play sensor assist the optimized
operation of the UAV navigation system, particu-
larly in hostile environments.

Statement. A UAV hovering in real situation
with lots of jitters and little translations may in-
validate the plane hypothesis. And most lines in
3D space transfer to different planes. This is prob-
lematic, as a homography matrix can only be used
when the plane hypothesis is valid, and essential
matrix cannot be used for a purely rotating cam-
era. While the changes in inclination angle of these
3D lines can always fully represent the rotated yaw
angle of the camera, which means depending on ge-
ometry, our method can eliminate the impacts of
translation and installation offsets of the camera.

Real point features. First, we extract a large
numberm of ORB keypoints, unevenly distributed
in the raw image of current frame, to form initial
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algorithm [10] is handled so that most ORB key-
points are sorted into n clusters. Hence, neglecting
sparse noise points, an ORB keypoint cluster can
be represented by a single point (center):
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Then a set of cluster centers can be easily con-
structed using point positions in each cluster, de-
noted as Dc
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Thus, hundreds of keypoints are reduced to
tens of more robust cluster centers that are much
less sensitive to individual keypoints. Afterwards,
ORB descriptors are computed for these cluster
centers. Each frame is matched to a keyframe ini-
tially by brute force to reduce cumulative errors.
If cci matches to ckj , the two clusters C

c
i and C

k
j

are matched accordingly. The following two crite-
ria are applied to remove erroneous matches in the
initial matching results:

N c
cp −Nk
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d(cci , c
k
j ) =

√

(xc
i − xk

i )
2 + (yci − yki )

2 6 T∆cd,
(3)

where N c
cp is the size of the matched cluster in

current frame (described by the number of clus-
ter points), Nk

cp is the size of the matched cluster
in keyframe, T∆cs is the maximum size difference
for each matched cluster, d(cci , c

k
j ) is the distance

between cci and ckj , and T∆cd is the maximum dis-
tance between matched cluster centers.

Cluster-center pairs satisfying both matching
conditions are denoted D

c
C
∗ = {cc1

∗, cc2
∗, . . . , ccNc

∗ }

and D
k
C

∗
= {ck1

∗
, ck2

∗
, . . . , ckNc

∗
}, where the super-

script ∗ represents a good match between current
frame and keyframe (same as the following), and
Nc is the number of well-matched points. Im-
proper matches are regarded as outliers and dis-
carded. Finally, Dc

C
∗ represents the real point fea-

tures in current image. The proposed method is
outlined in Figure 1 and the algorithm is described
in Appendix A.
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Figure 1 (Color online) Extraction of real point features.

Line vectors constructed from real point fea-

tures. Writing D
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∗ and D
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to denote the real

point features in current frame and keyframe re-
spectively. Two points in D
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corresponding points in D
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and end points to construct two sets of matched
line vectors, which are matched accordingly and
denoted as Dc
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,

Nv = Nc − 1,

where Nv is the number of line vectors.
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(4)

Then a set of yaw angle increments is derived
from the differences between the inclination angles
of each matched line vector. To enhance robust-
ness and reduce the influences of mismatching, a
median filter is used to obtain the yaw angle in-
crement ∆Ψ of the frame relative to keyframe:

∆Ψ = median
(

D
c
θv

∗ −D
k
θv

∗)
. (5)
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Subsequently, the final output ∆Ψc can be re-
trieved as follows:

Ψ1
c = Ψ1

k +∆Ψ, Ψc = Ψ1 +Ψ1
c , (6)

where Ψ1 is the absolute yaw angle of the first
frame provided by an extra sensor, Ψ1

k and Ψ1
c are

the yaw angles of keyframe and current frame rela-
tive to Ψ1, Ψc is the absolute yaw angle of current
frame.

Updating keyframes too frequently can signif-
icantly increase cumulative errors, especially in
dramatically dynamic environments in which mis-
matching might result in inaccuracies or even fail-
ures. Therefore, it is advisable to update keyframe
only when either of these conditions is satisfied

{

Nf > TkN , (i)

NP 6 TpN , Nl 6 TNl
, (ii)

(7)

where Nf is the number of interval frames between
two keyframes, TkN is the maximum number of in-
terval frames between two keyframes, and TpN is
the minimum number of point features.

Experiments. A UAV was equipped with a
downward-looking monocular camera and a PX4
flight controller (see Appendix B) that provided
accurate attitude estimations by fusing three low-
cost inertial measurement units (IMUs), global po-
sitioning system (GPS), compass, and barometer.
Outdoor experiments were conducted to compare
the proposed VC algorithm with the fusion al-
gorithm in PX4 and the algorithm using essen-
tial matrix. The results of these experiments are
shown in Appendix B.

In most situations, the VC algorithm yielded
a similar accuracy with the PX4 algorithm even
when the visual scene included dynamic objects;
however, it did not always work well with the al-
gorithm of essential matrix. Our VC uses only an
unaligned, uncalibrated, low-cost monocular cam-
era, while the fusion algorithm in PX4 requires
various sensors that mostly need calibration. The
use of a GPS also results in a loss of autonomy. Ad-
ditionally, the essential-matrix-based algorithm re-
quires calibration parameters and cannot be used
for a UAV undergoing pure rotation. Despite the
continual vibrations of the UAV during the exper-
iments, our VC algorithm responded robustly to
interferences.

Conclusion and future work. We presented a
novel VC algorithm to estimate the yaw angle of an
uncalibrated downward-looking camera mounted
on UAVs. Outdoor experiments highlighted some
of its attractive features: it is uncalibrated, robust

to noise and illumination changes, resilient to in-
terference from magnetic fields and visual scenes,
capable of real-time operation, and versatile. It
can assist existing navigation systems. Whereas
the essential-matrix-based method is slightly more
imprecise and cannot be used when dealing with
pure rotations. Future work will focus on devel-
oping it to estimate 3D attitude by fusing other
sensors.

Remark. In addition to the VC, UAVs require
other sensors (e.g., a magnetic compass) to correct
inevitable long-term drifts globally.
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