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Dear editor,
Fractional calculus is the generalization of integer
order calculus that enables us to obtain a consid-
erably accurate description of several real world
systems because of its memory property and prac-
tical applications. The fractional-order systems
(FOS) have attracted significant attention in re-
cent years and have yielded several valuable re-
sults, especially with respect to stability and sta-
bilization [1–4]. The authors of [1–3] have inves-
tigated the robust stability and stabilization for
FOS with order 0 < α < 1 using linear matrix
inequalities (LMIs) and have obtained the state
feedback stabilization conditions in terms of LMIs.

In practical applications, the output feedback
can be extensively applied for system control be-
cause not all the system state variables are avail-
able for feedback and because the output feedback
considers only the output signal that can be de-
tected as the feedback signal. Further, the static
output feedback, dynamic output feedback, and
observer-based stabilization for FOS have been in-
vestigated in [5–8]. However, the conditions of dy-
namic output feedback stabilization are sufficient
until now and they result in various limitations in
case of practical applications. Therefore, the dy-
namic output feedback stabilization of FOS still

needs to be investigated, both in terms of theory
and practical applications.

In this study, we focus on the dynamic output
feedback stabilization of FOS with order 0 < α <

1. Further, a necessary and sufficient condition
is presented for the design of the dynamic output
feedback controller using LMIs, and we provide
a numerical example to illustrate our results. In
addition, we use the definition of the Caputo frac-
tional derivative.

Definition 1 ([9]). The Caputo derivative of or-
der α for a function f(t) can be defined as follows:

Dαf(t) =
1

Γ(N − α)

∫ t

0

f (N)(s)

(t− s)α−N+1
ds, (1)

where N is a positive integer that satisfies N−1 <

α 6 N ; further, Γ(·) denotes the Gamma function
that can be defined as Γ(τ) =

∫∞

0 e−ttτ−1dt.

Notation. X−1 and XT denote the inverse
and transpose of X , respectively. A > 0 (A <

0) indicates that a symmetric matrix A is pos-
itive definite (negative definite). The notation
sym{T } denotes T+TT. Pα(X,Y ) = {sin(απ2 )X+

cos(απ2 )Y, [ X Y

−Y X
] > 0} with α ∈ (0, 1) and X,Y

denoting the real square matrices is the matrix set
that will be used in the sequel. The matrices, if
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not explicitly stated, are assumed to exhibit com-
patible dimensions.

Problem formulation. Consider the FOS that is
described by

Dαx(t) = Ax(t) +Bu(t), (2)

y(t) = Cx(t) +Du(t), (3)

where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
q de-

note the state, the control input, and the mea-
surement, respectively. A,B,C and D are the
known real constant matrices with appropriate di-
mensions, where 0 < α < 1.

Our objective is to estimate a dynamic output
feedback controller.

Dαx̄(t) = AK x̄(t) +BKy(t), (4)

u(t) = CK x̄(t), (5)

where x̄(t) ∈ R
n is the controller state and AK , BK

and CK are the matrices that are to be determined,
by ensuring that the following closed-loop system
is stable:

Dαxc(t) = Acxc(t), (6)

where

xc(t)=

[

x(t)

x̄(t)

]

, Ac=

[

A BCK

BKC AK +BKDCK

]

. (7)

It is renowned (refer to [2, 3]) that the system
(6) is asymptotically stable if and only if there
exists a matrix, Pc ∈ Pα(Xc, Yc), i.e., Pc =

sin(απ2 )Xc + cos(απ2 )Yc, [ Xc Yc

−Yc Xc
] > 0, such that

sym{AcPc} < 0.
Main results. The following lemma plays an im-

portant role in the sequel.

Lemma 1 ([4]). (1) If P ∈ Pα(X,Y ), P is in-
vertible and P−1 ∈ Pα(X,Y ).

(2) If P ∈ Pα(X,Y ), M is a real matrix; further,
det(M) 6= 0 and MTPM ∈ Pα(X,Y ).

Theorem 1. There exists a dynamic output
feedback controller of the form (4) and (5) such
that the closed-loop system (6) is stable if and
only if there exist matrices P1 ∈ Pα(X1, Y1), P2 ∈
Pα(X2, Y2),Φ and Ψ such that

sym{AP1 +BΦ} < 0, (8)

sym{PT
2 A+ΨC} < 0. (9)

Furthermore, if Eqs. (8) and (9) hold, there exist
matrices P1, P2,Φ and Ψ such that Eqs. (8) and
(9) hold and P1−P−1

2 ∈ Pα(X12, Y12); further, the
desired stabilizing dynamic output feedback con-
troller in (4) and (5) can be computed using the
following parameters:

AK = (P−T
2 AT +AP1 +BΦ + P−T

2 ΨCP1)(P1

−P−1
2 )−1 + P−1

2 ΨDΦ(P1 − P−1
2 )−1, (10)

BK = P−T
2 Ψ, (11)

CK = Φ(P−1
2 − P1)

−1. (12)

First, to proof the necessity, we assume that there
exists a dynamic output feedback controller in (4)
and (5) such that the closed-loop system (6) is sta-
ble. Further, there exists a matrix Pc ∈ Pα(Xc, Yc)
such that

sym{AcPc} < 0. (13)

Let Pc = [ Pc1 Pc2
Pc3 Pc4

] = sin(απ2 )[ Xc1 Xc2
Xc3 Xc4

] +

cos(απ2 )[ Yc1 Yc2
Yc3 Yc4

], where the partition is compati-

ble with Ac in (6). Using [ Xc Yc

−Yc Xc
] > 0, we can

obtain [ Xc1 Yc1
−Yc1 Xc1

] > 0 and [ Xc4 Yc4
−Yc4 Xc4

] > 0, which

indicates that Pc1, Pc4 ∈ Pα(X,Y ). By Lemma 1,

Pc4 is invertible. Let U = [
I 0

−P
−1
c4

Pc3 I
]. By left-

and right-multiplying Pc with UT and U , we ob-
tain UTPcU =sin(απ2 )[ X̂c1 X̂c2

X̂c3 X̂c4
]+cos(απ2 )[ Ŷc1 Ŷc2

Ŷc3 Ŷc4
].

By Lemma 1, [ X̂c1 Ŷc1
−Ŷc1 X̂c1

] > 0. The 1–1 block of

UTPcU is Pc1 − Pc2P
−1
c4 Pc3 and is invertible.

Based on the 1–1 block of (13), we can obtain

sym{APc1 +BCKPc3} < 0, (14)

which can be used to yield (8) by setting P1 =
Pc1, Φ = CKPc3. By left- and right-multiplying
(13) with UT and U , and by setting P2=(Pc1−
Pc2P

−1
c4 Pc3)

−1, we can obtain the 1–1 block in the
following manner:

sym{AP−1
2 − PT

c3P
−T
c4 BKCP−1

2 } < 0. (15)

By left- and right-multiplying (15) with PT
2

and P2, respectively, and by setting Ψ =
−PT

2 PT
c3P

−T
c4 BK , we can obtain (9).

In the proof of sufficiency, there exist matri-
ces P1 ∈ Pα(X1, Y1), P2 ∈ Pα(X2, Y2),Φ and Ψ
such that Eqs. (8) and (9) hold. Without the
loss of generality, we can assume that P1−P

−1
2 ∈

Pα(X12, Y12), i.e, P1 −P−1
2 =sin(απ2 )(X1−X̄2)+

cos(απ2 )(Y1−Ȳ2), [ X1 − X̄2 Y1 − Ȳ2
Ȳ2 − Y1 X1 − X̄2

] > 0. Other-

wise, if [ X1 − X̄2 Y1 − Ȳ2
Ȳ2 − Y1 X1 − X̄2

] > 0 is not set, there ex-
ist θ ∈ R and θ > 0, when P1 is replaced by θP1,
Φ is replaced by θΦ, Eq. (8) still holds, and

[ θX1 − X̄2 θY1 − Ȳ2
−θY1 + Ȳ2 θX1 − X̄2

] > 0. Using the dynamic output

feedback controller with parameters (10)–(12), we
can obtain the closed-loop system as

Dαxc(t) = Ācxc(t), (16)

where xc(t) is given in (7), and Āc =

[ A BΦ(P
−1
2 − P1)−1

P
−1
2

ΨC ∆
], where ∆ = (P−T

2 AT +
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AP1+BΦ+P−T
2 ΨCP1)(P1 −P−1

2 )−1. Further, we

set P̄c=[
P1 P

−1
2 −P1

P
−1
2

−P1 P1−P
−1
2

] = sin(απ2 )X̄c+cos(
απ
2 )Ȳc,

where X̄c = [ X1 X̄2 − X1
X̄2 − X1 X1 − X̄2

], Ȳc = [ Y1 Ȳ2 − Y1
Ȳ2 − Y1 Y1 − Ȳ2

].
Let

V =











I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I











.

We perform left- and right-multiplication of
[ X̄c Ȳc

−Ȳc X̄c
] with V T and V , respectively. By

[ X̄2 Ȳ2
−Ȳ2 X̄2

] > 0 and [ X1 − X̄2 Y1 − Ȳ2
Ȳ2 − Y1 X1 − X̄2

]> 0, we can ob-

tain [ X̄c Ȳc

−Ȳc X̄c
] > 0. Hence, P̄c ∈ Pα(X̄c, Ȳc).

With sym{AP1 + BΦ} < 0 and left- and right-
multiplication of sym{PT

2 A+ΨC} < 0 with P−T
2

and P−1
2 , based on Schur complement, we can ob-

tain

sym{ĀcP̄c} =

[

Ω1 −Ω1

−Ω1 Ω2 +Ω1

]

< 0, (17)

where Ω1 = sym{AP1 + BΦ}, Ω2 =
P−T
2 sym{PT

2 A+ΨC}P−1
2 .

The aforementioned fact implies that the closed-
loop system (16) is stable, and this completes the
proof.

Numerical example. Consider the system (2)
and (3) with parameters α = 0.8, and

A=

[

1 1

0 2

]

, B=

[

−2 2

−1 1

]

, C=

[

0 1

2 1

]

D=

[

0 0

0 0

]

.

There is no feasible solution for this system us-
ing the LMIs, as presented in [6]. However, using
Theorem 1, the desired dynamic output feedback
controller in (4) and (5) can be designed using the
following parameters by solving the LMIs (8) and
(9):

AK =

[

8.9028 −20.5694

−1.0233 −13.6787

]

,

BK =

[

5.5003 −0.7629

0.3430 −2.8687

]

,

CK = 103 ×

[

−1.8558 4.4151

−1.8606 4.4282

]

.

Therefore, using the dynamic output feedback con-
troller, the closed-loop system (6) is observed to be
stable.

Conclusion. In this study, we investigated
the dynamic output feedback stabilization of FOS
with order 0 < α < 1 and proposed a necessary
and sufficient condition for designing the dynamic
output feedback controller. The developed result
is observed to be more general and useful than that
of some of the existing studies, in which only the
sufficient conditions were presented. Further, the
effectiveness of the conditions can be verified using
a numerical example.
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