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Dear editor,
Memristors have attracted a lot of attention since
HP Labs first reported their memristive devices [1].
They have been employed in many fields, including
non-volatile memory, image processing, and neuro-
morphic computing [2–4]. In neuromorphic com-
puting, memristors are usually used as synapses
because they can store synaptic weights by their
conductance [4]. Most memristors have the struc-
ture of a crossbar array, which is area-efficient.
With the cooperation of memristors and comple-
mentary metal oxide semiconductor (CMOS) neu-
rons, it has become possible to implement low-
power and area-efficient hardware implementation
for neural networks [5].

Researchers consider spiking neural networks
(SNNs) promising alternatives for conventional ar-
tificial neural networks (ANNs) in the future [6].
Many learning algorithms have been proposed to
train SNNs. For instance, Bohte et al. [7] pre-
sented a method called SpikeProp that makes error
backpropagation possible. This method approxi-
mates the threshold function as a continuous func-
tion in a small region with an appropriate learning
rate. Moreover, spiking-time dependent plasticity
(STDP) is a popular brain-inspired learning algo-
rithm. Both supervised and unsupervised learning
methods have been proposed based on STDP [8].
Zhang et al. [8] obtained an accuracy of 98.52%
(the highest accuracy of spike-based SNNs) for
MNIST by a STDP-like method.

Although SNNs can be simulated by software,

this simulation involves multiple operations and
parameters that require Von Neumann architec-
ture with high computational capacity. If com-
putations can be implemented through physical
processes, fewer chip areas and less computational
power will be required. Many efforts have been
made to explore such a mode based on memris-
tors. For example, Nishitani et al. [9] successfully
trained SNNs based on three-terminal ferroelec-
tric memristors by using a simple learning algo-
rithm. However, complex spikes require complex
hardware implementation, i.e., more hardware re-
sources. To generate specific spikes, the hardware
implementation of neurons requires integrators,
comparators, spike generators, controllers, and so
on. Moreover, there are many sub-connections be-
tween a pre-synaptic neuron and a post-synaptic
neuron in SNNs [7, 9], which reduce the area ef-
ficiencies of crossbar arrays significantly during
hardware implementation.

In order to simplify the design and increase the
area efficiencies in hardware implementation, we
propose practical memristor SNNs with greater
area efficiency. Spikes in the memristor SNNs are
simplified as step signals, which can directly be
generated by comparators. Moreover, the num-
ber of synapses between a pre-synaptic neuron and
a post-synaptic neuron is limited to one. How-
ever, the step function is not differentiable for the
computation of the gradient descent. This means
that SpikeProp-like supervised learning algorithms
cannot be employed directly to train the proposed
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memristor SNNs. To overcome this issue, we ap-
proximate the step function as a modified sig-
moid function, which is differentiable for computa-
tion. We then derive the gradient descent for the
proposed memristor SNNs to implement training.
Therefore, our work differs from previous studies
in three key aspects: the spike function, the num-
ber of sub-connections, and the supervised learn-
ing method. To validate the proposed memristor
SNNs and supervised learning method, the XOR
problem, the Fisher Iris dataset and the MNIST
dataset are employed.

Memristor SNNs. To describe positive and neg-
ative weights, we adopt the scheme where each
synapse comprises two memristors, as shown in
Figure 1(a). These two memristors are connected
to the same output port of the pre-synaptic neuron
but to different input ports of the post-synaptic
neuron. One memristor is chosen to represent the
positive weight, which equals the conductance in
value. The other represents the negative weight,
which equals the conductance in absolute value but
has a negative sign.

Even though synapses are designed to have pos-
itive as well as negative values, implementation is
performed by neurons. The structure of the neu-
rons is also shown in Figure 1(a), and it has an
integrator and a comparator. The integrator in-
tegrates currents flowing through the positive and
negative memristors. We define the voltages in-
tegrated on the positive and the negative port as
V +(t) and V −(t), respectively. When the volt-
age difference between V +(t) and V −(t) exceeds a
predefined threshold (i.e., when the neuron is ac-
tivated), a spike shaped step signal is generated
by the neuron. Given that the clock frequency of
present CMOS circuits can achieve several GHz, it
is reasonable to think that neurons can generate
step signals in the range of microseconds. In addi-
tion, there is no delay between the activation time
and the spiking time.

The architecture of memristor SNNs is shown in
Figure 1(b), and they comprise memristor crossbar
arrays and neurons. To understand the proposed
memristor SNNs in greater detail, Figure 1(b) is
reduced to Figure 1(c), in which, there are in-
put neurons, hidden neurons, and output neu-
rons. There is only one synapse between each pre-
synaptic neuron and post-synaptic neuron. The
black blocks represent neurons, and the lines be-
tween neurons represent synapses. Note that there
may be several hidden layers, which are not shown
in Figure 1. When spikes (step signals) are gener-
ated by input neurons, they are propagated to hid-
den neurons via synapses. When the voltage dif-
ference of a hidden neuron exceeds the predefined

threshold, the hidden neuron generates a spike and
propagates it to neurons in the next layer. All in-
puts are binary in the proposed memristor SNNs;
input neurons generate step signals at t = 0 ms
when their inputs are 1 and generate nothing when
their inputs are 0.

Detailed mathematical expressions of synapses
and neurons are provided in Appendix A.

Supervised learning method. For convenience,
the activation times of input, hidden, and output
neurons are defined as ti, th, and to, respectively.
The weight of a synapse between the output layer
and the hidden layer is represented as ωoh, and
the weight of a synapse between the hidden layer
and the input layer is represented as ωhi. We can
define the error function as follows:

E =
1

2

∑

o∈O

(to − td)
2, (1)

where td represents the desired activation times of
the output neurons. The weight adjustment of the
synapse between the output neuron om and the
hidden neuron hn is then computed by following
equation:

∆ωomhn
= −η

∂E

∂ωomhn

, (2)

where η is the learning rate, which is positive, and
∂E/∂ωomhn

is the gradient. We follow the deriva-
tion process of SpikeProp. However, the step sig-
nal is not differentiable, which prevents the com-
putation of the gradient. To compute the gradi-
ent, we approximate the step function as a modi-
fied sigmoid function, which is differentiable. The
modified sigmoid function is expressed as follows:

f(t− ti) =
1

1 + e−s(t−ti)
, (3)

where ti is the step time, and s is used to mod-
ify the function shape. Therefore, ∆ωomhn

can be
computed. Similarly, the weight adjustment of the
synapse between the hidden neuron hm and the
input neuron in can be computed. The detailed
derivation is described in Appendix B.

Applications. To validate the proposed mem-
ristor SNNs and supervised learning method, the
XOR problem, the Fisher Iris dataset, and the
MNIST dataset are employed. All simulations are
implemented in MATLAB.

For the XOR problem, the numbers of neu-
rons employed in different studies are approx-
imately the same. However, the numbers of
synapses vary greatly because the numbers of sub-
connections vary. Our memristor SNN employs
only 12 synapses, whereas Refs. [7, 9] used 320
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Figure 1 (a) Structures of the synapse and the neuron; (b) architecture of the memristor SNNs; and (c) schematic
representation of the proposed memristor SNNs.

synapses. This shows that our memristor SNN
uses 26 times fewer synapses, and our memristor
SNN is more area-efficient.

In the case of the classification problem of the
Fisher Iris dataset, we use several times fewer
synapses in our memristor SNN than in [7], which
means our memristor SNN is more area-efficient.
Furthermore, we achieve an accuracy of 100% for
the training set as well we the testing set with our
memristor SNN, proving that our learning method
obtains the highest accuracy compared with pre-
vious methods.

For the MNIST dataset, the accuracy of our
study is 97.61%, slightly lower than 98.52% in [8].
Though the performance of our memristor SNN is
not the highest, the significant advantage of our
memristor SNN and the learning method is that
they are designed for hardware implementation.

Detailed simulation results are described in Ap-
pendix C.

Conclusion. We propose an area-efficient mem-
ristor SNN for hardware implementation, the
spikes of which are simplified as step signals. The
number of synapses between a preneuron and a
postneuron is limited to one. To train the memris-
tor SNN, we present a supervised learning method
that approximates the step function as a modified
sigmoid function. Simulation results show that the
memristor SNN is area efficient and the learning
method can train the memristor SNN successfully.
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