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Appendix A Mathematical models of synapses and neurons

Appendix A.1 Synapse model

In conventional neural networks, there are weights with positive and negative values. However, memristor conductance

is always positive in hardware implementation. In this letter, we adopt the scheme where each synapse comprises two

memristors, as shown in Figure 1. These two memristors are connected to the same output port of the pre-synaptic neuron

but are connected to different input ports of the post-synaptic neuron. One memristor is chosen to represent the positive

weight, which equals the conductance in value. The other represents the negative weight, which equals the conductance in

absolute value but has a negative sign. Therefore, the weight of a synapse can be expressed as follows:

ω = G+ −G−. (A1)

The maximum and minimum values of G+ and G− are Gmax and Gmin, respectively, and Gmax is usually hundreds

times greater than Gmin. Hence, ω has a range of [Gmin − Gmax , Gmax − Gmin]. Given that the weights of SNNs

usually have a large range, memristors with large conductance ranges are required. Here we assume the memristor shows

a conductance range of [10−7S, 10−4S], which is practical in experiments. Therefore, the weight range of a synapse is

[(10−7 − 10−4)S, (10−4 − 10−7)S].

Appendix A.2 Neuron model

We define the voltages integrated on the positive port and the negative port as V +(t) and V −(t), respectively. When the

voltage difference between V +(t) and V −(t) exceeds a predefined threshold( i.e., the neuron is activated), a spike shaped

step signal is generated by the neuron, which can be expressed by (A2) and (A3):

V (t) = V +(t)− V −(t), (A2)

Vout =

{
V DD, V (t) >= Vt,

0, otherwise,
(A3)

where VDD is the supplied voltage that does not change the conductance of memristors, and Vt is the predefined threshold.

When the step function is represented by ε(x), (A3) can be rewritten as follows:

Vout = V DD · ε(V (t)− Vt). (A4)

When the activation time of the neuron is noted as tj , (A4) also can be expressed as follows:

Vout = V DD · ε(t− tj). (A5)

We approximate the current flowing through a memristor as a product of voltage and conductance, which can be express as

i = V ×G. Then charges integrated on a capacitor can be expressed as Q = it, and the integrated voltage can be expressed

as Q/C.When there are several pre-synaptic neurons connected to a post-synaptic neuron via synapses, the integrated

voltages can be represented by following equation:

V +(t) =
V DD

C

∑
i

G+
i · (t− ti) · ε(t− ti), (A6)
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V −(t) =
V DD

C

∑
i

G−i · (t− ti) · ε(t− ti), (A7)

where C represents the capacitance of integrated capacitors, and {ti, i = 0, 1 · · · } are activation times of pre-synaptic

neurons. We then get (A8) according to (A1), (A2), (A6), and (A7). The schematic of temporal changes of the integrated

voltage is shown in Figure A1. The integrated voltage changes with a certain rate when the positive current i1 is applied,

the integrated voltage changes with a slower rate when the negative current i2 is applied, the integrated voltage changes

with a faster rate when the positive current i3 is applied, and the integrated voltage exceeds the threshold voltage finally.

V (t) = V +(t)− V −(t) =
V DD

C

∑
i

(G+
i −G

−
i ) · (t− ti) · ε(t− ti) =

V DD

C

∑
i

ωi · (t− ti) · ε(t− ti), (A8)

Figure A1 Temporal changes of neurons.

Spikes with specific shapes need more complex generators and controllers, e.g., spikes in [11] have two additional param-

eters: delay constant and decay constant. However, our neurons need no extra parameters. By simplifying spikes of the

memristor SNNs to step signals, an integrator and a comparator are enough for hardware implementation of a neuron, which

decreases design complexities and costs compared with previous studies. Hardware implementations of existing literatures

and this work are shown in Table A1.

Table A1 Comparison of different hardware implementations

Integrator Comparator Controller Spike generator

Wu [1]
√ √ √ √

Park [2]
√ √

\
√

Yu [11]
√ √ √ √

This paper
√ √

\ \

Appendix B Supervised learning method

To train the above memristor SNNs by error backpropagation, there should be a set of inputs and desired outputs. In the

above memristor SNNs, the desired outputs are defined as the desired activation times of output neurons, which can be

noted as td. The actual outputs are noted as to. Therefore, we can define the error function as follows:

E =
1

2

∑
o∈O

(to − td)2. (B1)

The weight adjustment of the synapse between the omth output neuron and the hnth hidden neuron is computed by

following equation:

∆ωomhn = −η
∂E

∂ωomhn

, (B2)

where η is the learning rate, which is positive, and ∂E/∂ωomhn is the gradient. We decompose the gradient as follows:

∂E

∂ωomhn

=
∂E

∂tom
·

∂tom
∂Vom (tom )

·
∂Vom (tom )

∂ωomhn

. (B3)

The first and third right-hand factors are easy to get as follows:

∂E

∂tom
= tom − tdm , (B4)
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∂Vom (tom )

∂ωomhn

=
V DD · (tom − thn ) · ε(tom − thn )

C
. (B5)

The second right-hand factors can be expressed as (B6) according to [5].

∂tom
∂Vom (tom )

= −
1

∂Vom (tom )

∂tom

. (B6)

We follow the derivation process of SpikeProp, therefore, Eqs. (B1)-(B6) are almost the same as SpikeProp except for the

step function. However, the step function is not differentiable, which prevents the computation of the gradient. To compute

the gradient, we approximate the step function as a modified sigmoid function, which is differentiable. The modified sigmoid

function is expressed by following equation:

f(t− ti) =
1

1 + e−s(t−ti)
, (B7)

where ti is the step time and s is used to modified the function shape. When we set s = 106, curves of the modified sigmoid

function and the step function are shown in Figure B1. We can find that the modified sigmoid function curve is almost

the same as the step function curve in the range of milliseconds. Hence, it is reasonable to replace the step function by

the modified sigmoid function. However, the modified sigmoid function is differentiable, which can be used in computation

of gradient. Then (B6) is rewritten to (B8). We obtain the gradient as (B9) by computing (B4), (B5), (B8) together.

Therefore, the weight adjustment is expressed as (B10).

∂tom
∂Vom (tom )

= −
C

V DD ·
∑

h∈H ωomh
(1+e−s(tom−th))+se−s(tom−th)(tom−th)

(1+e−s(tom−th))2

. (B8)

∂E

∂ωomhn

= −
(tom − tdm )(tom − thn )

(1 + e−s(tom−thn ))
∑

h∈H ωomh
(1+e−s(tom−th))+se−s(tom−th)(tom−th)

(1+e−s(tom−th))2

. (B9)

∆ωomhn =
η(tom − tdm )(tom − thn )

(1 + e−s(tom−thn ))
∑

h∈H ωomh
(1+e−s(tom−th))+se−s(tom−th)(tom−th)

(1+e−s(tom−th))2

. (B10)

Figure B1 Curves of the step function and the modified sigmoid function.

When the output neuron spikes after the hidden neuron, tom − thn > 0. Since the denominator of (B10) is positive, then

∆ωomhn > 0 when tom − tdm > 0 and ∆ωomhn < 0 when tom − tdm < 0. This means that the weight increases when the

actual spiking time of the output neuron is later than the desired time, and the weight decreases when the actual spiking

time of the output neuron is earlier than the desired time. When the output neuron spikes before the hidden neuron, which

means the hidden neuron has little influence on the output neuron, the weight is almost unchanged. From the analysis of

(B10), the weight can be adjusted correctly to make the actual time equal to the desired time finally.

Assume there is only one hidden layer, the weight adjustment of the synapse between the hmth hidden neuron and the

inth input neuron is computed by following equation:

∆ωhmin = −η
∂E

∂ωhmin

. (B11)

The gradient can be expressed as (B12), which can be computed similarly. Therefore, (B11) can be rewritten as (B13).

∂E

∂ωhmin

=
∑
o∈O

∂E

∂to
·

∂to

∂Vo(to)
·
∂Vo(to)

∂thm

·
∂thm

∂Vhm (thm )
·
∂Vhm (thm )

∂ωhmin

. (B12)
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∆ωhmin = η
∑
o∈O

(to−td)·
ωohm

(1+e
−s(to−thm

)
)+se

−s(to−thm
)
(to−thm )

(1+e
−s(to−thm

)
)2∑

h∈H ωoh
(1+e−s(to−th))+se−s(to−th)(to−th)

(1+e−s(to−th))2

·

(thm−tin )

(1+e
−s(thm

−tin
)
)∑

i∈I ωhmi
(1+e

−s(thm
−ti))+se

−s(thm
−ti)(thm−ti)

(1+e
−s(thm

−ti))2

.

(B13)

The weight adjustment of the synapse between the hmth hidden neuron and the inth input neuron is more complex

because the final sign is depended on to − td, ωohm , and thm − tin . However, it can train the SNNs to correct direction.

Though we only consider the SNNs with one hidden layer, the computation is similar when there are multiple hidden layers,

which is not shown in this paper.

Appendix C Simulation results

Appendix C.1 The XOR problem

The XOR problem is a classic nonlinear problem which is usually employed as a benchmark to test SNNs [5,7]. The inputs

and outputs of the XOR problem are binary. There are 4 groups of inputs: {1, 1}, {0, 0}, {0, 1}, and {1, 0}, and their

corresponding outputs are 0, 0, 1, and 1 respectively. The simulation time is 15ms, and the time step is 0.01ms. The

capacitance of the capacitor is 1nF, the supplied voltage is 1V, and the predefined threshold is 0.8V. The spiking times

of inputs and desired outputs after temporal-coding are shown in Table C1. The input neuron spikes at 0 ms when its

corresponding input is 1, and it does not spike (i.e., the spiking time is ∞) when its corresponding input is 0. There is a

bias neuron that is always activated in the input layer and the hidden layer respectively. Therefore, the memristor SNN

for the XOR problem has three input neurons (one bias neuron), three hidden neurons (one bias neuron) and two output

neurons. Differ with [5], there are two output neurons representing two kinds of outputs respectively and there is a bias

neuron in hidden layer. The numbers of neurons and synapses employed in the memristor SNN and existing literatures are

shown in Table C2. The numbers of neurons employed in different works are almost the same. However, the numbers of

synapses vary greatly because the numbers of sub-connections vary. Our memristor SNN only employs 12 synapses while [5]

and [11] employ 320 synapses and [7] uses 80 synapses, which means our memristor SNN is more area-efficient.

Table C1 Spiking times of inputs and desired outputs.

inputs outputs

a1 a2 a3 b1 b2

0ms 0ms 0ms 10ms ∞
∞ ∞ 0ms 10ms ∞

0ms ∞ 0ms ∞ 10ms

∞ 0ms 0ms ∞ 10ms

Table C2 Neurons and synapses employed in different algorithms for XOR.

Input neuron Hidden neuron Output neuron sub-connection Synapse

Bohte [5] 3 5 1 16 320

Ghosh-Dastidar [7] 3 5 1 4 80

Yu [11] 3 5 1 16 320

This paper 3 5 2 1 12

Learning results of the memristor SNN for the XOR problem are shown in Figure C1. The learning goal is that the

memristor SNN converges to a mean squared error (MSE) of 0.25. It can be seen that the memristor SNN converge fastest

when the learning rate is 0.005 and it achieves the goal at the 30th epoch. It is obvious that the memristor SNN converges

more rapidly than [5, 7, 11], according to Table C3. Additionally, our learning method and [11] are proposed for hardware

implementation while [5] and [7] are for software implementation.

Table C3 Learning results of different algorithms for XOR.

Learning rate MSE for convergence (ms2) No. of epochs for convergence

Bohte [5] 0.01 0.25 250

Ghosh-Dastidar [7] 0.005 0.5 78

Yu [11] \ 1 2500

This paper 0.005 0.25 30
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Figure C1 Convergence curves of the XOR problem.

Appendix C.2 The Fisher Iris dataset

The classification problem of the Fisher Iris dataset is more practical than the XOR problem, which classifies three classes

by four features. The dataset contains 150 samples (each class has 50 samples). 75 samples (25 samples for each class) are

selected randomly as training set and the remaining samples are employed as testing set. However, features are expressed

by real values rather than logic values, which means features should be converted to binary. By analyzing the values of

four features, we employ eight bits to express each feature (three bits for the integer part and five bits for the decimal

part). Therefore, the memristor SNN for the Fisher Iris dataset has 33 input neurons (one bias neuron) and three output

neurons. Then, the number of hidden neurons is selected as nine (one bias neuron). The simulation time, step time, the

capacitance of the capacitor, the supplied voltage, and the predefined threshold are consistent with the configurations in

the XOR problem. The input neurons spike at 0 ms when their corresponding inputs are 1, and they do not spike when

their corresponding input are 0. Similarly, when the data belong to a class, the corresponding output neuron spikes at 10

ms, and others do not spike. The number of neurons employed in the memristor SNN is close to [5–7], as shown in Table

C4. However, the synapses used in the memristor SNN are several times less than [5–7], which means the memristor SNN

is more area-efficient. Note that less neurons and synapses will be employed if input neurons are reduced properly.

Table C4 Neurons and synapses employed in different algorithms for Fisher Iris.

Input neuron Hidden neuron Output neuron sub-connection Synapse

Bohte [5] 50 10 3 16 8480

Xu [6] 21 8 3 5 960

Ghosh-Dastidar [7] 17 8 3 4 640

This paper 33 9 3 1 291

Convergence curves with different learning rates are shown in Figure C2. The learning goal is that the memristor SNN

converges to a MSE of 0.25. It can be seen that the memristor SNN converges fastest when the learning rate is 0.005 and

it achieves the goal at about the 200th epoch. Details of different learning algorithms are shown in Table C5. Our learning

algorithm is faster than [6] but slower than [7]. However, [7] decomposes the three-class problem into three two-class

problems, which decreases training epochs but increases classification steps. What’s more, the memristor SNN can classify

all classes correctly after training. Classification accuracies of different algorithms are shown in Table C6. Obviously, our

learning method obtains the highest accuracy compared to existing literatures.

Table C5 Learning results of different algorithms for Fisher Iris.

Learning rate MSE for convergence (ms2) No. of epochs for convergence

Xu [6] 0.0001-0.0004 0.4 234

Ghosh-Dastidar [7] 0.01 0.2 60

This paper 0.005 0.25 200

Appendix C.3 The MNIST dataset

The MNIST dataset contains 70000 grayscale images of handwritten digits. Each image contains 28×28 pixels. The training

set has 60000 images, and the testing set comprises the remaining images. In training and testing, each pixel corresponds

to an input neuron. For simplicity, pixels of all images are binarized to two classes: pixels with grayscale values that are

not lower than 15 generate spikes at time t = 0, pixels with lower grayscale values do not generate spikes. Here the spike

is the step signal as above. The number of hidden layers is chosen as one, and the number of hidden neurons is selected as
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Figure C2 Convergence curves of the Fisher Iris.

Table C6 Classification accuracies of different algorithms.

Training set(%) Testing set(%) Total(%)

Lin [3] 98.1 96.7 97.4

Sporea [4] 96 94 95

Bohte [5] 97.4 96.1 \
Xu [6] 99.96 94.44% 95.54

Ghosh-Dastidar [7] \ \ 95.87

This paper 100 100 100

101(one bias neuron). Similarly, there is a bias neuron in the input layer. Therefore, the structure of the memristor SNN

is 785− 101− 10. Note that bias neurons in the input layer and the hidden layer generate spikes at time t = 0. Simulation

setup is the same as the Fisher Iris dataset.

Table C7 Performance results and comparison with other learning methods.

Architecture Encoding type Learning type Learning rule Accuracy(%)

Kheradpisheh [8] Convolutional SNN Spike-based Unsupervised STDP 98.4

Diehl [9] Two layer network Spike-based Unsupervised STDP 95.0

Zhao [10] Convolutional SNN Spike-based Supervised Tempotron rule 91.3

Lee [12] Convolutional SNN Rate-based Supervised Back-propagation 99.31

Diehl [13] Convolutional SNN Rate-based Supervised Back-propagation 99.12

Hussain [14] Dendritic neurons Rate-based Supervised Morphology learning 90.3

O’Connor [15] Spiking RBM Rate-based Supervised Contrastive divergence 94.1

Zhang [16] Voltage-driven three-layer Spike-based Supervised Equilibrium and STDP 98.52

This paper Three layer network Spike-based Supervised Back-propagation 97.61

Performance results and comparison with other learning methods are shown in Table C7. Note that the learning methods

compared are not SpikeProp-like. We can find that the highest accuracy is given by the convolutional, rate-based SNN

in [12]. However, rate-based SNNs usually generate amount of spikes, and require many time steps to get an answer [8].

As we all know, convolutional ANNs usually get better performances than feedforward fully connected ANNs. SNNs also

have similar phenomena. The highest accuracy with STDP learning method is reported in [16]. The accuracy of our

paper is 97.61%, slightly lower than 98.52% in [16]. Though the performance of our memristor SNN is not the highest, the

significant advantage of our memristor SNN and learning method is that they are designed for hardware implementation.

What’s more, our paper only uses one hidden layer with 101 hidden neurons while other literatures employ several hidden

layers or thousands of neurons.
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