
SCIENCE CHINA
Information Sciences

September 2019, Vol. 62 199102:1–199102:3

https://doi.org/10.1007/s11432-018-9539-6

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. LETTER .

Zoning search using a hyper-heuristic algorithm

Qinqin FAN1,2, Ning LI1*, Yilian ZHANG3 & Xuefeng YAN4

1Key Laboratory of System Control and Information Processing, Ministry of Education of China,
Shanghai Jiao Tong University, Shanghai 200240, China;

2Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China;
3Key Laboratory of Marine Technology and Control Engineering, Ministry of Communications,

Shanghai Maritime University, Shanghai 201306, China;
4Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,

East China University of Science and Technology, Shanghai 200237, China

Received 14 June 2018/Revised 27 June 2018/Accepted 31 July 2018/Published online 29 July 2019

Citation Fan Q Q, Li N, Zhang Y L, et al. Zoning search using a hyper-heuristic algorithm. Sci China Inf Sci,

2019, 62(9): 199102, https://doi.org/10.1007/s11432-018-9539-6

Dear editor,
With the development of high-performance com-
puting techniques, run time of meta-heuristic al-
gorithms can be reduced effectively. However, im-
proved computation power has not been indirectly
converted into search capability in most of previ-
ous studies [1]. Moreover, the solution precision
of an optimization problem is directly determined
by the algorithm performance and problem com-
plexity. On one hand, giving enough computa-
tional resources does not mean that a single meta-
heuristic algorithm can find a high-quality solu-
tion for complex problems due to performance lim-
itation. Therefore, using an algorithm that has
good robustness and performance is important [2].
On the other hand, the problem complexity is de-
termined by both the search and the objective
spaces. However, in reality, it is hard to reduce
the problem complexity according to the objective
space. Therefore, partitioning the search space is a
promising approach for reducing the problem com-
plexity, i.e., dividing the entire search space into
some subspaces, especially when parallel comput-
ing, distributed computing, and cloud computing
are used to assist the algorithms.

In the present study, a recently proposed hyper-
heuristic algorithm [3], which uses differential evo-
lution algorithm (DE) as a search engine, is ap-
plied to search a good-quality solution in each sub-
space. The hyper-heuristic algorithm can auto-

matically select a suitable algorithm from an algo-
rithm pool for solving a particular problem. More-
over, search space partition can reduce the prob-
lem complexity. Therefore, current studies not
only use a well-performing algorithm, but also re-
duce the problem complexity by search space par-
tition. To the best of our knowledge, a hyper-
heuristic algorithm is first used in zoning search.
Further, the effectiveness of the proposed algo-
rithm is evaluated on a widely used test suite pro-
posed in IEEE CEC2014. The results indicate that
the proposed algorithm is effective and efficient.

Differential evolution. Without loss of general-
ity, a single objective minimization problem can
be defined as follows:

f(x) = min
xi∈Ω

f(xi), xi ∈ S ⊆

D
∏

j=i

[Lj , Uj], (1)

where f denotes the objective function; xi =
(xi,1, . . . , xi,D) is a D-dimensional decision vector;
Ω ⊆ R

D; Lj and Uj (j = 1, 2, . . . , D) are the min-
imum and maximum bounds of the j-th decision
variable of xi, respectively; and S is the search
space.

The procedure of DE can be formulated as:
(1) Initialization. Set mutation control pa-

rameter F , crossover control parameter CR, pop-
ulation size NP, and maximum number of gener-
ations Gmax. Initial individuals x

0
i (i = 1, 2, . . . ,

NP) are generated randomly from S. The current
generation G is set to be 0.

*Corresponding author (email: ning li@sjtu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9539-6&domain=pdf&date_stamp=2019-7-29
https://doi.org/10.1007/s11432-018-9539-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9539-6
https://doi.org/10.1007/s11432-018-9539-6


Fan Q Q, et al. Sci China Inf Sci September 2019 Vol. 62 199102:2

Optimization

 

Search space partition

 

Entire search space 

Subspace 1

Subspace 2

Subspace 4

Subspace 3

Hyper-heuristic algorithm

Hyper-heuristic algorithm

Hyper-heuristic algorithm

Hyperheuristic algorithm

Selection Output 

Figure 1 (Color online) An illustrative example of ZS.

(2) Mutation. After the initialization opera-
tion, for each target vector xG

i in the current pop-
ulation, a mutation strategy is utilized to generate
a mutant vector v

G
i . One of the most frequently

used mutation strategy is described as follows:

v
G
i = x

G
r1

+ F
(

x
G
r2

− x
G
r3

)

, (2)

where r1, r2, and r3 are mutually exclusive integers
randomly chosen within the range [1, 2, . . . ,NP],
and are also different from the index i, i.e., r1 6=
r2 6= r3 6= i.

(3) Crossover. For each target vector x
G
i , a

trial vector uG
i is generated as follows:

uG
ij =

{

vGij , randj 6 CR or j = jrand;

xG
ij , otherwise,

(3)

where randj and jrand are random numbers uni-
formly generated within the range [0, 1] and [1, D],
respectively.

(4) Selection. The trial vector u
G
i competes

with its target vector x
G
i and then the better in-

dividual will survive for the next generation

x
G+1
i =

{

u
G
i , f(uG

i ) 6 f(xG
i );

x
G
i , otherwise.

(4)

(5) Implement steps (2) to (4) repeatedly until
the number of generations is equal to Gmax.

Zoning search (ZS). To improve the solution
precision of an optimization problem, two ap-
proaches are usually adopted in previous studies.
One way is to develop powerful algorithms, while
the other is to simplify the problem. Overall, most
previous studies have focused on improving the al-
gorithm performance. In the present work, a ZS
strategy, which can obtain some reduced search
spaces, is proposed. Two main operations are im-
plemented in the proposed algorithm. (1) Search
space partition. The entire search space is di-
vided into some subspaces. (2) Optimization. A
hyper-heuristic algorithm is employed to locate a

promising solution in each subspace. Based on the
above two steps, it can be observed that, search
space partition can effectively reduce the problem
complexity and using a hyper-heuristic algorithm
can improve the probability of finding a good so-
lution. Additionally, high-performance computing
techniques can be implemented in the proposed al-
gorithm easily. The detailed steps are described as
follows.

Step 1. Search space partition. For a D-
dimensional optimization problem, the first step is
to choose h (1 6 h 6 D) variables randomly. Sub-
sequently, each selected variable is divided into m

(m > 1) segment vectors. Hence, the entire search
space is divided into n = mh subspaces.

Step 2. Using a hyper-heuristic algorithm
within each subspace. A hyper-heuristic algorithm
is used to find a high-quality solution within each
subspace. Clearly, because information in each
subspace does not need to exchange with each
other, high-performance computing techniques can
be used in ZS, such as parallel computing, dis-
tributed computing, and graphics process unit
(GPU).

To further introduce the proposed algorithm, an
illustrative example of ZS is presented in Figure 1.
The entire search space is divided into four sub-
spaces in this example.

Experimental study. A frequently used test suite
proposed in IEEE CEC2014 is employed to test
the effectiveness of ZS. A hyper-heuristic algo-
rithm (named as ASM-JADE-SSCPDE) proposed
in [3] is used. The performance of ZS-based
ASM-JADE-SSCPDE is compared with that of
JADE [4], SSCPDE [5], ZS-JADE, and ZS-
SSCPDE. Additionally, four nonparametric statis-
tical analysis approaches using a significance level
of 5%, which contain the Wilcoxon’s rank sum test,
the Bonferroni-Dunn’s test, the Holm’s procedure,
and the Hochberg’s procedure, are employed to an-
alyze the obtained experimental results. The more
detailed parameter settings of the selected algo-



Fan Q Q, et al. Sci China Inf Sci September 2019 Vol. 62 199102:3

rithms are presented in Table A1.

In the present work, the maximum number of
function evaluations (MFEs) is set to be 10000×D.
The problem dimensionality is set to be 30. It
should be noted that, we assume that computa-
tional resource is enough, thus MFEs is set to
be 10000 × D in each subspace. All compared
algorithms are run for 30 independent times on
each test function. Additionally, eight variables
are randomly selected in the proposed algorithm,
i.e., h = 8. Moreover, each variable is uniformly
divided into two segment vectors. Namely, the
number of subspaces is 28 = 256.

The values of the mean and standard deviation
for all compared algorithms are summarized in Ta-
ble A2. Moreover, the statistical analysis results
achieved by the Wilcoxon’s rank sum test are also
listed in Table A2. It can be observed that, the
results of the proposed algorithm are significantly
better than that of JADE and SSCPDE without
using ZS on 23 and 25 test functions, respectively.
Therefore, ZS and ASM-JADE-SSCPDE can sig-
nificantly improve the solution precision. Addi-
tionally, Table A2 indicates that JADE outper-
forms the proposed algorithm on four functions.
The reason is twofold: (1) JADE performs well
on some simple unimodal and multimodal prob-
lems, whereas F1CEC2014 − F3CEC2014 are uni-
modal functions, and F4CEC2014−F16CEC2014 are
simple multimodal functions; (2) SSCPDE has
good performance on complex problems, but it
may perform poorly on some unimodal and mul-
timodal test functions. Therefore, SSCPDE in
ASM-JADE-SSCPDE may waste some computa-
tional budgets. It can be observed from Ta-
ble A2 that the overall performance of the pro-
posed algorithm is similar to that of ZS-JADE.
The main reason may be that, although ASM-
JADE-SSCPDE can automatically select a suit-
able algorithm to solve a particular optimization
problem, a poorly performing individual algorithm
would wastes some computational budgets during
the evolutionary process. Therefore, the results
achieved by ASM-JADE-SSCPDE are between
JADE and SSCPDE on most functions. However,
the performance of ASM-JADE-SSCPDE is more
robust when compared with JADE. Table A2 also
shows that the performance of the proposed algo-
rithm is slightly better than that of ZS-SSCPDE.
This is because ASM-JADE-SSCPDE is capable of
selecting JADE to solve some unimodal and multi-
modal functions. Moreover, ASM-JADE-SSCPDE
can inherit the capability of SSCPDE on some
functions, thus the proposed algorithm is compet-

itive when compared with SSCPDE by using ZS.
Table A3 indicates that the average performance
of the proposed algorithm is significantly better
than that of JADE and SSCPDE, and is similar
to that of ZS-JADE and ZS-SSCPDE.

Based on the above comparisons, we can see
that ZS can reduce the problem complexity and
ASM-JADE-SSCPDE improves the algorithm ro-
bustness. Therefore, the proposed algorithm is ef-
fective and efficient.

Conclusion and future work. This study pro-
posed a zoning search strategy and uses a hyper-
heuristic algorithm for finding a promising solution
in each subspace. A famous test suite introduced
in IEEE CEC2014 is employed to verify the perfor-
mance of the proposed algorithm. The experimen-
tal results indicate that the proposed algorithm
is a competitive optimization method for solving
complex optimization problems. In the future, we
will try to extend the work for solving other types
of optimization problems, such as multi-modal op-
timization problems, multi-/many-objective opti-
mization problems, and large-scale optimization
problems. Moreover, how to use advanced ma-
chine learning methods to select variables of an
optimization problem is vital.

Acknowledgements This work was supported in part

by National Natural Science Foundation of China (Grant

Nos. 61590925, 61603244, 61773260), and in part

by China Postdoctoral Science Foundation (Grant No.

2018M642017).

Supporting information Tables A1–A3. The sup-

porting information is available online at info.scichina.com

and link.springer.com. The supporting materials are pub-

lished as submitted, without typesetting or editing. The

responsibility for scientific accuracy and content remains

entirely with the authors.

References

1 Lin F, Phoa F. A performance study of parallel pro-
gramming via CPU and GPU on swarm intelligence
based evolutionary algorithm. In: Proceedings of In-
ternational Conference on Intelligent Systems, Meta-
heuristics and Swarm Intelligence, 2017

2 Laili Y J, Zhang L, Tao F, et al. Rotated neigh-
bor learning-based auto-configured evolutionary algo-
rithm. Sci China Inf Sci, 2016, 59: 052101

3 Fan Q Q, Yan X F, Zhang Y L. Auto-selection mech-
anism of differential evolution algorithm variants and
its application. Eur J Oper Res, 2018, 270: 636–653

4 Zhang J Q, Sanderson A C. JADE: adaptive differ-
ential evolution with optional external archive. IEEE
Trans Evol Comput, 2009, 13: 945–958

5 Fan Q Q, Yan X F. Differential evolution algorithm
with self-adaptive strategy and control parameters for
P-xylene oxidation process optimization. Soft Com-
put, 2015, 19: 1363–1391

info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-015-5372-0
https://doi.org/10.1016/j.ejor.2017.10.013
https://doi.org/10.1109/TEVC.2009.2014613
https://doi.org/10.1007/s00500-014-1349-y

