Design and hovering control of a twin rotor tail-sitter UAV

Wufan WANG¹, Jihong ZHU¹, Minchi KUANG¹, Xiaming Yuan¹, Yunfei TANG¹, Yaqing LAI¹, Lyujie CHEN¹, Yunjie YANG¹

¹Department of Computer Science and Technology Tsinghua University

Introduction

X47-B

MQ-8

Fixed Wing UAV:

High speed Efficient cruise flight Inflexible take-off and landing

Tilt-rotor UAV

VTOL Fixed Wing UAVs

Tilt-body UAV

Rotary Wing UAV:

low speed Inefficient cruise flight Vertical take-off and landing

Tilt-wing UAV

Tail-sitter UAV

Developed Tail-sitter

Flight Envelope

The designed tail-sitter can achieve comparable or even higher control capability without requiring any extra devices.

In our design, elevons can take the most of high-speed airflow to generate adequate control torque to stabilize the aircraft.

Pressure Contour ($\alpha = 2^{\circ}$, $\beta = 0^{\circ}$, speed=15m/s)

- (a) fuselage without truncation
- (b) truncated fuselage without rotors
- (c) truncated fuselage with rotors

Lift Coefficient ($\beta = 0^{\circ}$, speed=15m/s)

Lift-drag-ratio ($\beta = 0^{\circ}$, speed=15m/s)

Truncation of the wing leads to decrease of cruise flight efficiency but to an acceptable degree. Our design strikes a balance between control capability and cruise flight efficiency.

Performance Data

Performance Parameter	Value
m	1.36 <i>kg</i>
b_{ref}	0.9 m
c_{ref}	0.69 m
S_{ref}	$0.621 m^2$
$V_{ m max}$ $_{cruise}$	30 m/s
$(\frac{L}{D})_{cruise}$	12.3
$T_{\max cruise}$	1 h
Thrust-to-weight ratio	1.6
Propeller	10 × 47
Motor kv	980
Battery capacity	3300 mAh

Developed Tail-sitter

Simplified Model

$$\dot{p} = v$$

$$\dot{v} = ge_3 + \frac{R(q)^T f_F}{m}$$

$$\dot{q} = \frac{1}{2} \begin{bmatrix} 0 \\ \omega \end{bmatrix} \otimes q$$

$$\begin{array}{ll}
 & 2 \left[\omega \right] & 0 \\
I \dot{\omega} &= -\omega \times I \omega + f_M
\end{array}$$

$$I\dot{\omega} = -\omega \times I\omega + f_M$$

Force and moment functions

$$\dot{p} = v$$

$$\dot{v} = ge_3 + \frac{R(q)^T f_F}{m}$$

$$f_F = \begin{bmatrix} T_l \left(1 - \frac{SC_{D_{\delta_e}} \delta_l}{S_{disk}} \right) + T_r \left(1 - \frac{SC_{D_{\delta_e}} \delta_r}{S_{disk}} \right) \\ 0 \\ \frac{T_l \delta_l + T_r \delta_r}{S_{disk}} \end{bmatrix}$$

$$\dot{g} = \frac{1}{S_{disk}} \begin{bmatrix} 0 \\ S_{disk} \end{bmatrix}$$

$$f_{M} = \begin{bmatrix} \tau(T_{r} - T_{l}) + \frac{l_{x}(T_{l}\delta_{l} + T_{r}\delta_{r})SC_{L_{\delta_{e}}}}{S_{disk}} \\ l_{y}(\frac{(T_{l}\delta_{l} + T_{r}\delta_{r})SC_{L_{\delta_{e}}}}{S_{disk}}) \\ l_{z}T_{l}(1 - \frac{SC_{D_{\delta_{e}}}\delta_{l}}{S_{disk}}) - l_{z}T_{r}(1 - \frac{SC_{D_{\delta_{e}}}\delta_{r}}{S_{disk}})) \end{bmatrix}$$

Lift and drag coefficients of elevon

Fitting result of propeller thrust data

Assumptions:

Accelerations caused by the rotation of the aircraft are negligible. The term I_{xz} is far smaller than diagonal terms I_{xx} , I_{yy} , I_{zz} and is eliminated.

Step 1: Position Control

Suppose the continuous signals p_d and \dot{p}_d are known, consider the following dynamics

$$\dot{\tilde{p}} = v_c + \tilde{v} - \dot{p}_d$$

where

$$\tilde{p} = p - p_d$$
 $\tilde{v} = v - v_c$

Considering the following Lyapunov function

$$V_1 = \frac{1}{2} \tilde{p}^T \tilde{p}$$

whose derivative is

$$\dot{V}_1 = \tilde{p}^T (v_c + \tilde{v} - \dot{p}_d)$$

Let $v_c = -K_1 \tilde{p} + \dot{p}_d$, it can be obtained that

$$\dot{V}_1 = -\tilde{p}^T K_1 \tilde{p} + \tilde{p}^T \tilde{v}$$

Step 2: Velocity Control

Suppose the continuous signals v_c and \dot{v}_c are known, consider the following dynamics

$$\dot{\tilde{v}} = ge_3 + \frac{R(q)^T f_F}{m} - \dot{v}_c$$
$$= ge_3 + \mu_c + \tilde{\mu} - \dot{v}_c$$

Where the desired thurst T_{l_c} , T_{r_c} and attitude q_c are identified by μ_c .

Considering the following Lyapunov function

$$V_2 = V_1 + \frac{1}{2}\tilde{v}^T\tilde{v}$$

whose derivative is

$$\dot{V}_2 = \dot{V}_1 + \tilde{v}^T (ge_3 + \mu_c + \tilde{\mu} - \dot{v}_c)$$

Let
$$\mu_c = -K_2 \tilde{v} - g e_3 + \dot{v}_c - \tilde{p}$$
 yeilds

$$\dot{V}_2 = -\tilde{p}^T K_1 \tilde{p} - \tilde{v}^T K_2 \tilde{v} + \tilde{v}^T \tilde{\mu}$$

Step 3: Attitude Control

Error quaternion dynamics are given by

$$\dot{\tilde{q}} = \frac{1}{2} \begin{bmatrix} 0 \\ \omega_c + \widetilde{\omega} - R(\widetilde{q})\widehat{\omega} \end{bmatrix} \otimes \widetilde{q}$$

where $\omega = \omega_c + \widetilde{\omega}$, $\widehat{\omega}$ is the rotational rate of q_c . Let the Lyapunov function be

$$V_3 = V_2 + \frac{1}{2}(1 - \tilde{q}_0^2)$$

whose derivative is

whose derivative is
$$\dot{V}_3 = -\tilde{p}^T K_1 \tilde{p} - \tilde{v}^T K_2 \tilde{v} + \tilde{v}^T \tilde{\mu} + \vec{\tilde{q}}^T \frac{1}{2} \bar{S} [\omega_c + \tilde{\omega} - R(\tilde{q}) \hat{\omega}]$$
 where

$$\bar{S} = S(\vec{\tilde{q}}) + \tilde{q}_0 I_3 \qquad S(\vec{\tilde{q}}) = \begin{bmatrix} 0 & -\tilde{q}_3 & \tilde{q}_2 \\ \tilde{q}_3 & 0 & -\tilde{q}_1 \\ -\tilde{q}_2 & \tilde{q}_1 & 0 \end{bmatrix}$$

Assume $T_l = T_{lc'}$, $T_r = T_{rc'}$ it can be obtained

$$\tilde{\mu} = \frac{[(R(\tilde{q}) - I_3)R(q_c)]^T f_F}{m}$$

$$= \frac{2R(q_c)^T (\tilde{q}_0 I_3 - S(\tilde{q}))^T S(f_F) \tilde{q}}{m}$$

$$= M\tilde{q}$$

As a result, it can be obtained

$$\dot{V}_3 = -\tilde{p}^T K_1 \tilde{p} - \tilde{v}^T K_2 \tilde{v} + \tilde{v}^T M \tilde{q} + \tilde{q}^T \frac{1}{2} \bar{S} [\omega_c + \tilde{\omega} - R(\tilde{q}) \hat{\omega}]$$

Choosing $\omega_c = -2\bar{S}^{-1}(K_3\tilde{q} - M^T\tilde{v}) + R(\tilde{q})\hat{\omega}$ leads to

$$\dot{V}_3 = -\tilde{p}^T K_1 \tilde{p} - \tilde{v}^T K_2 \tilde{v} - \vec{\tilde{q}}^T K_3 \vec{\tilde{q}} + \vec{\tilde{q}}^T \bar{S} \tilde{\omega}$$

Step 4: Angular Rate Control

The dynamics of the angular rate error $\widetilde{\omega}$ is given by

$$I\dot{\widetilde{\omega}} = \Sigma\widetilde{\omega} + S(I\omega_c)\omega_c - I\dot{\omega}_c + W\delta$$

where

$$\Sigma = S(I\widetilde{\omega}) + S(I\omega_c) - S(\omega_c)I$$

$$W = \frac{1}{S_{disk}} \begin{bmatrix} -\tau S_{disk} & l_x SC_{L_{\delta_e}} & l_x SC_{L_{\delta_e}} \\ 0 & l_y SC_{L_{\delta_e}} & l_y SC_{L_{\delta_e}} \\ l_z S_{disk} & l_z SC_{D_{\delta_e}} & l_z SC_{D_{\delta_e}} \end{bmatrix}$$

$$\delta = \begin{bmatrix} T_l - T_r \\ T_l \delta_l \\ T_r \delta_r \end{bmatrix}$$

Let the Lyapunov function be

$$V_4 = V_3 + \widetilde{\omega}^T I \widetilde{\omega}$$

whose derivative is

$$\dot{V}_4 = \dot{V}_3 + \widetilde{\omega}^T [\Sigma \widetilde{\omega} + S(I\omega_c)\omega_c - I\dot{\omega}_c + W\delta]$$

Choosing

$$\delta = W^{-1}(-K_4\widetilde{\omega} - \bar{S}^T\vec{\tilde{q}} + S(\omega_c)I\widetilde{\omega} - S(I\omega_c)\omega_c + I\dot{\omega}_c)$$

leads to

$$\dot{V}_4 = -\tilde{p}^T K_1 \tilde{p} - \tilde{v}^T K_2 \tilde{v} - \vec{\tilde{q}}^T K_3 \vec{\tilde{q}} - \tilde{\omega}^T K_4 \tilde{\omega}$$

Step 5: Control Allocation

Since $\mu_c = \frac{1}{m} R(q_c)^T f_F$, we can have

$$||f_F|| = m||\mu_c||$$

Along with the constraint of thrust difference of two rotors, the desired thrust T_{l_c} and T_{r_c} can be determined.

Revisiting the Nonlinear Backstepping Controller

Linear attitude controller

$$\delta = \underbrace{K_1^l \vec{\tilde{q}} - K_2^l \omega}_{feedback}$$

Our designed controller

$$\delta = \underbrace{W^{-1}}_{actuation \ model} \left(\underbrace{-K_4 \widetilde{\omega} - \overline{S}^T \widetilde{q} + S(\omega_c) I \widetilde{\omega}}_{feedback} + \underbrace{I \dot{\omega}_c + S(\omega_c) I \omega_c}_{feedforward} \right)$$

- > Naturally address nonlinear dynamics through feedforward control
- > Theoretically guarantee system stability
- > Automatically handle all flight modes in a unified framework

Indoor Hover Flight. (Only IMU and ultrasonic sensors are used for measurements)

Both attitude and altitude can be well controlled in a tight range of corresponding reference inputs even in the presence of large disturbances.

Conclusion

- ➤ A new configuration with high control effectiveness is designed for the twin rotor tail-sitter UAV.
- ➤ A nonlinear backstepping controller is derived based on a simplified yet effective dynamic model directly in the quaternion space using the Lyapunov theory.
- ➤ Effectiveness of both the proposed configuration and controller performance are verified through indoor flight experiments.

Future work will be focused on the transition flight control.

Thanks Science Chima Internation Sciences

