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Abstract In this study, some properties of a novel Halanay-type inequality that simultaneously contains

impulses and delayed impulses are investigated. Two concepts with respect to average impulsive gain are

proposed to describe hybrid impulsive strength and hybrid delayed impulsive strength. Then, using the

obtained results, two stability criteria are derived for the linear systems with impulses and delayed impulses.

It is found that the stability of impulsive systems is robust with respect to delayed impulses of which the

magnitude strength is relatively small. Whereas, if the impulse strength is small, the time-delayed impulses

can also promote the stability of unstable systems. Two numerical examples are employed to illustrate the

efficiency of our results.
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1 Introduction

When studying dynamic systems in nature and in the real world, we often find that transient disturbance

of a system state or a sudden change of states at a given moment will considerably affect the dynamic

behavior. Moreover, the duration of these rapid changes or mutations is very short compared to the entire

motion process. This transient disturbance or sudden change of the state value is called an impulsive

phenomenon. It is well-known that, the stability problems for impulsive dynamical systems (DSs) have

received a significant amount of attention for their application in many areas such as image processing [1],

optimization problems [2], biology [3], and harmonic oscillation generation [4]. In fact, there are many

stability phenomena in artificial systems and in nature, such as fireflies in the forest [5], routing messages

in the internet [6], and ecosystems management [7], and so on [8–13]. Many excellent achievements have

been obtained with respect to both theoretical analysis and applications of stability for DSs.

Several differential inequalities, such as the Halanay inequality [14], Hilger-type impulsive differential

inequality [15], and Lieb-Thirring-type inequality [16, 17], have received a significant amount of atten-

tion as powerful tools for studying impulsive dynamic behaviors of differential systems [18–21]. These

inequalities have proven to be effective in the investigation of stability problems for differential DSs. One

of these, the Halanay inequality, is presented:

u′(t) 6 α1u(t) + α2[u(t)]τ , −α1 > α2 > 0,

*Corresponding author (email: jqluma@seu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9809-y&domain=pdf&date_stamp=2019-8-1
https://doi.org/10.1007/s11432-018-9809-y
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9809-y
https://doi.org/10.1007/s11432-018-9809-y


Wang Y Q, et al. Sci China Inf Sci September 2019 Vol. 62 192206:2

and the generalized Halanay inequality is described by

u′(t) 6 α1(t)u(t) + α2(t)[u(t)]τ(t),

where τ(t) < t, −α1(t) > α2(t) > 0 and limt→∞ τ(t) = ∞. A new generalized Halanay-type inequality

without the restriction of limt→∞ a1(t) = 0 (uniform positiveness condition) was proposed in [22] to study

the global generalized exponential stability (ES) of nonlinear nonautonomous time-delayed systems. Song

et al. [23] introduced discrete Halanay-type inequalities and applied the results to establish the µ-stable

criteria for discrete delayed neural networks. He et al. [24] extended the Halanay inequality to the case

of fractional-order impulsive differential inequality using an integral inequality.

As a type of hybrid character, time-delayed impulses commonly arise in many different fields. In

general these may cause instability, chaos, or other undesirable performance in dynamical systems. The

analysis of dynamical behaviors of DSs with delayed impulses, including stability and asymptotic sta-

bility has attracted substantial attention. Many significant achievements have been reported [25–29].

Recently, impulsive differential inequalities with delays were established to study the stability problems

related to delayed DSs with impulsive effects. The greatest advantage of the impulsive delay differential

inequality-based method is that the derivatives of the discrete delays do not have any constraint. It was

reported in [30] that the global ES of impulsive DSs with delays could be accomplished via an impulsive

differential inequality with time-varying delays. By building a novel extended Halanay-type differential

inequality with delayed impulses, the ES of recurrent neural networks with delays via impulsive protocol

was analyzed [31]. Then, Yang et al. [32] extended this inequality to impulsive differential inequalities

with delays, where the time-varying delays in impulsive items are multiple. Using this result, exponential

synchronization problems of TS fuzzy complex networks [32] and complex-valued complex networks with

stochastic perturbations [33] were studied. It is natural and necessary to study the effects of delayed

impulses on differential systems.

Note that the above literature only discussed robustness with respect to delayed impulses, where the

delayed impulses were regarded as a type of instantaneous perturbation or some destabilizing source.

However, not all delayed impulses destabilize systems. Li et al. [34] found that time-delayed impulses

may contribute to the stabilization of delayed systems by restricting the impulse interval and impulsive

gain. Subsequently, Yang et al. [35] used this result to design a distributed delayed impulsive controller to

investigate the exponential synchronization for nonlinear complex dynamical systems. However, few work

considered dynamical systems with hybrid impulses and hybrid delayed impulses, including simultaneous

stabilizing and destabilizing cases. A natural question can be proposed: Under what circumstances would

both normal impulses and delayed impulses enhance stability?

Motivated by the above arguments, this paper focuses on establishing a novel Halanay-type inequality

with simultaneous impulses and delayed impulses, and then employs the results of the Halanay-type

inequality to study the exponential stability problems of linear DSs with impulsive effects. The main

contributions of the current results are as follows. First, this paper presents an investigation of the impact

of the relationship of the average delayed impulsive gain and average impulsive gain on the stability of

impulsive systems. Second, to depict the hybrid impulsive gain and hybrid delayed impulsive gain, two

novel concepts concerning the average impulsive gain are proposed. Finally, we apply the obtained results

of the Halanay-type inequality to study ES problems for linear impulsive DSs. The remainder of this

article is organized as follows. Section 2 formulates the model description and two important definitions.

In Section 3, we describe our study of the dynamical behaviors of the Halanay-type inequality. The

applications of the obtained results to linear impulsive systems are presented in Section 4. Section 5

presents two examples to validate our theoretical results.

Notation. The symbol D+ represents the upper right-hand Dini derivative, whereas R
n×m, Rn, and

R
+ denote the set of n×m real matrices, the n-dimensional Euclidean space, and the set of positive real

numbers, respectively. Set PC(U, V ) = {u : U → V is continuous everywhere except at a finite number of

point t, at which right hand limit u(t+) and left hand limit u(t−) exist, and u(t+) = u(t)}. I denotes the

identity matrix with suitable order, and superscript T represents the transpose of a vector or a matrix.
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| · | represents the Euclidean norm. The minimum and maximum eigenvalues of a symmetric matrix P

are represented as λmin(P ) and λmax(P ), respectively.

2 Model formulation and some preliminaries

The following differential inequality with hybrid impulsive effects and delayed impulsive effects are con-

sidered:

{
D+u(t) 6 pu(t), t 6= tk,

u(tk) 6 bku(t
−
k ) + dk[u(tk)

−]τ ,
(1)

where u ∈ PC(R,R+), p ∈ R, bk > 0, dk > 0, τ > 0, and the impulsive sequence ζ = {t1, t2, t3, . . .}. The

impulsive sequence satisfies limk→∞ tk = ∞ and tk+1 − tk > τ .

Remark 1. In the above inequality, p is not restricted to being negative, which relaxes the restrictions

in the existing Halanay-type inequalities. However, different time-dependent parameters bk and dk are

adopted to illustrate the impulsive strength and delayed impulsive strength, which is more general and

has a broader range of applications.

In previous studies, the range of an impulsive interval was restricted to study the impulsive effects on

the stability of DSs. In 2010, the concept known as the average impulsive interval (AII) was proposed [36],

which can be used to adjust the impulsive frequency. This technique has attracted a significant amount

of attention and has been used in many types of impulsive systems. Then, Wang et al. [37] extended this

concept to a form of limited as following, which is more general.

Definition 1 ([36, 37]). The limit form of AII Tα of the impulsive sequence ζ is defined as follows:

Tα = lim
t→∞

t− t0

Nζ(t, t0)
,

where Nζ(t, t0) denotes the number of impulses in the impulsive sequence ζ for the interval (t0, t).

In general, there are two types of impulses for a DS, stabilizing impulses and destabilizing impulses.

In [37], the concept of average impulsive gain was first proposed to delineate the hybrid impulsive gain,

which is a powerful method for investigating impulsive systems with two types of impulses. Motivated

by [37], for the Halanay-type inequality (1), the following definition is proposed to illustrate the hybrid

impulsive gain and hybrid delayed impulsive gain.

Definition 2. The average impulsive gain µb and the average delayed impulsive gain µd of impulsive

sequence ζ in inequality (1) are respectively defined as follows:

µb = lim
t→∞

|b1|+ |b2|+ · · ·+ |bNζ(t,t0)|

Nζ(t, t0)
, (2)

and

µd = lim
t→∞

|d1|+ |d2|+ · · ·+ |dNζ(t,t0)|

Nζ(t, t0)
. (3)

3 Main results

Some results concerning the Halanay-type inequality (1) are presented in this section.

Theorem 1. For the impulsive inequality (1), if there exists M > 0 such that

bk > Mdke
−pτ , (4)
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then it follows that, for any solution u(t) of inequality (1),

u(t) 6

(
1 +

1

M

)Nζ(t,t0) Nζ(t,t0)∏

i=1

bie
p(t−t0)u0, (5)

where u0 = supt0−τ6s6t0
u(s).

Proof. When t ∈ [t0, t1),

u(t) 6 u0e
p(t−t0),

and

u(t1) 6 b1u(t
−
1 ) + d1[u(t

−
1 )]τ− 6 [b1e

p(t1−t0) + d1e
p(t1−τ−t0)]u0.

When t ∈ [t1, t2), we have

u(t) 6 ep(t−t1)u(t1) 6 [b1e
p(t−t0) + d1e

p(t−τ−t0)]u0,

and

u(t2) 6 b2u(t
−
2 ) + d2[u(t

−
2 )]τ−

6 [b1b2e
p(t2−t0) + b2d1e

p(t2−τ−t0) + b1d2e
p(t2−τ−t0) + d1d2e

p(t2−2τ−t0)]u0

6

(
1 +

1

M

)2

b1b2e
p(t2−t0)u0.

Suppose that Eq. (5) holds for N(t, t0) = k. We will prove that Eq. (5) holds if N(t, t0) = k + 1. In

fact,

u(t−k+1) 6

(
1 +

1

M

)k k∏

i=1

bie
p(tk+1−t0)u0,

and from (4),

u(tk+1) 6 bk+1u(t
−
k+1) + dk+1[u(t

−
k+1)]τ

6

(
1 +

1

M

)k k+1∏

i=1

bie
p(tk+1−t0)u0 + dk+1

(
1 +

1

M

)k k∏

i=1

bie
p(tk+1−τ−t0)u0

6

(
1 +

1

M

)k k+1∏

i=1

bie
p(tk+1−t0)u0 +

1

M

(
1 +

1

M

)k k+1∏

i=1

bie
p(tk+1−t0)u0

6

(
1 +

1

M

)k+1 k+1∏

i=1

bie
p(tk+1−t0)u0.

For t ∈ [tk+1, tk+2), we have

u(t) 6 ep(t−tk+1)u(tk+1) 6

(
1 +

1

M

)k+1 k+1∏

i=1

bie
p(t−t0)u0.

From the above discussion and using mathematical induction,

u(t) 6

(
1 +

1

M

)Nζ(t,t0)

u0e
p(t−t0)

Nζ(t,t0)∏

i=1

bi.

Hence, the proof is complete.
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Corollary 1. Suppose that Eq. (4) holds. For any solution u(t) of inequality (1), there exists a sufficient

large T > 0 such that the following inequality holds:

u(t) 6 eη1(t−t0)u0, t > T ,

where η1 > η =
ln M

M+1µb

Tα
+ p, Tα is the average impulsive interval and µb is defined as (2).

Proof. From the mean value inequality, we have

u(t) 6

Nζ(t,t0)∏

i=1

(
M + 1

M
bi

)
ep(t−t0)u0

6

(
M + 1

M

)Nζ(t,t0)( |b1|+ |b2|+ · · ·+ |bNζ(t,t0)|

Nζ(t, t0)

)Nζ(t,t0)

ep(t−t0)u0

=

(
M + 1

M
·
|b1|+ |b2|+ · · ·+ |bNζ(t,t0)|

Nζ(t, t0)

)Nζ(t,t0)

ep(t−t0)u0

= e
Nζ(t,t0) ln(

M
M+1

(|b1|+|b2|+···+|bNζ(t,t0)|)

Nζ(t,t0)
)
ep(t−t0)u0

= e
A
B
(t−t0)ep(t−t0)u0,

where A = ln(
M+1
M

(|b1|+|b2|+···+|bNζ(t,t0)|)

Nζ(t,t0)
) and B = t−t0

Nζ(t,t0)
. For any η1 satisfying η1 > η =

ln M+1
M

µb

Tα
+ p,

there exists T > 0 such that when t > T , we have

u(t) 6 e(
ln M+1

M
µb

Tα
+η1−η+p)(t−t0)u0 = eη1(t−t0)u0.

Theorem 2. Consider inequality (1); then any solution u(t) of inequality (1) satisfies

u(t) 6

[(
1 +

1

M̃

)
e−pτ

]Nζ(t,t0) Nζ(t,t0)∏

i=1

die
p(t−t0)u0, (6)

if there exists a positive constant M̃ such that

dk > M̃bke
pτ , (7)

where u0 = supt0−τ6s6t0
u(s).

Proof. When t ∈ [t0, t1), u(t) 6 ep(t−t0)u0 and

u(t1) 6 b1u(t
−
1 ) + d1[u(t

−
1 )]τ− 6 [b1e

p(t1−t0) + d1e
p(t1−τ−t0)]u0.

For t ∈ [t1, t2), from (1) and (7),

u(t) 6 ep(t−t1)u(t1) 6 [b1e
p(t−t0) + d1e

p(t−τ−t0)]u0,

and

u(t2) 6 b2u(t
−
2 ) + d2[u(t

−
2 )]τ

6 [b1b2e
p(t2−t0) + b2d1e

p(t2−τ−t0) + b1d2e
p(t2−τ−t0) + d1d2e

p(t2−2τ−t0)]u0

6

(
1 +

1

M̃

)2

d1d2e
p(t2−2τ−t0)u0.

Assume that Eq. (6) holds for N(t, t0) = k. Next, analyze the condition of N(t, t0) = k + 1. From (7)

we have

u(t−k+1) 6

[(
1 +

1

M̃

)
e−pτ

]k k∏

i=1

die
p(tk+1−t0)u0,
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and

u(tk+1) 6 bk+1u(t
−
k+1) + dk+1[u(t

−
k+1)]τ

6 bk+1

[(
1 +

1

M̃

)
e−pτ

]k k∏

i=1

die
p(tk+1−t0)u0 +

[(
1 +

1

M̃

)
e−pτ

]k k+1∏

i=1

die
p(tk+1−τ−t0)u0

6
1

M̃
e−pτ

[(
1 +

1

M̃

)
e−pτ

]k k+1∏

i=1

die
p(tk+1−t0)u0 +

[(
1 +

1

M̃

)
e−pτ

]k k+1∏

i=1

die
p(tk+1−τ−t0)u0

6

[(
1 +

1

M̃

)
e−pτ

]k+1 k+1∏

i=1

die
p(tk+1−t0)u0.

When t ∈ [tk+1, tk+2),

u(t) 6 ep(t−tk+1)u(tk+1) 6

(
1 +

1

M̃

)k+1 k+1∏

i=1

bie
p(t−t0)u0.

Using mathematical induction, we obtain

u(t) 6

[(
1 +

1

M̃

)
e−pτ

]Nζ(t,t0)

u0

Nζ(t,t0)∏

i=1

die
p(t−t0).

Hence, the proof is complete.

Corollary 2. Suppose that Eq. (7) holds. Then, for any solution u(t) of inequality (1), there exists

T > 0 such that

u(t) 6 eη1(t−t0)u0, t > T,

where η1 > η =
ln M̃+1

M̃
e−pτµd

Tα
+ p, Tα is the average impulsive interval and µd is defined as (3).

Proof. Applying the mean value inequality yields

u(t) 6

Nζ(t,t0)∏

i=1

(
M̃ + 1

M̃
e−pτdi

)
ep(t−t0)u0

6

(
M̃ + 1

M̃
e−pτ

)Nζ(t,t0)(
|d1|+ |d2|+ · · ·+ |dNζ(t,t0)|

Nζ(t, t0)

)Nζ(t,t0)

ep(t−t0)u0

= e
Nζ(t,t0) ln(

M̃+1

M̃
e−pτ (|d1|+|d2|+···+|dNζ(t,t0)|)

Nζ(t,t0)
)
ep(t−t0)u0

= e
Ã

B̃
(t−t0)ep(t−t0)u0,

where Ã = ln(
M̃+1

M̃
e−pτ(|d1|+|d2|+···+|dNζ(t,t0)|)

Nζ(t,t0)
) and B̃ = t−t0

Nζ(t,t0)
. For any η1 satisfying η1 > η =

ln M̃+1

M̃
e−pτµd

Tα
+ p, there exists T > 0 such that when t > T we have

u(t) 6 e(
ln

M̃+1

M̃
e−pτµd

Tα
+η1−η+p)(t−t0)u0 = eη1(t−t0)u0.

Remark 2. In the real world, the effects of impulses and delayed impulses on the stability of DSs can be

very complex. Impulses can not only promote the stability of DSs but also suppress the stability. Previous

study [34] showed that the delayed impulses could destabilize the DS. For example, to guarantee stability,

the delayed impulsive gain in [33] should be kept as small as possible. Although Li et al. [34] proved that

the delayed impulses may facilitate stability, the DS in this case only contains delayed impulses without

delay-free impulses. The systems considered in the current study incorporate both hybrid impulses and

hybrid delayed impulses simultaneously to stabilize the system. Comparison of their parameters, the

influences of impulses and delayed impulses on the stability, will be discussed later.
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Remark 3. Zhang et al. [33] noted that the delayed impulsive gain should be as small as possible, which

is consistent with Theorem 1 and Corollary 1. Moreover, our results presented the explicit relationship

between impulsive parameters and delayed impulsive parameters. On the other hand, considering the

stabilizing delayed impulses, Theorem 2 and Corollary 2 concerned the dynamical behavior of impulsive

inequality with stabilizing delayed impulses.

4 Applications

Using the results obtained in Section 3, this section studies the stability problems of a linear time-invariant

system




ẋ(t) = Ax(t), t 6= tk,

x(tk) = Ckx(t
−
k ) +Dkx(t

−
k − τk),

x(t) = ϕ(t), t ∈ [t0 − τ, t0],

(8)

where x(t) ∈ R
n is the state variable, A, Ck, Dk ∈ R

n×n are constant matrices, 0 < τk < τ , and

ϕ(t) ∈ C([t0 − τ, t0],R
n) is the initial function. The impulsive sequence ζ = {t1, t2, t3, . . .} is the same as

that in impulsive differential inequality (1).

Theorem 3. System (8) is globally exponentially stable if there exist constants β ∈ R, bk > 0, dk > 0,

and a positive-definite matrix P such that (2), (4), and the following LMIs hold:

PA+ATP − βP < 0, (9)

(
CT

k PCk − bkP CT
k PDk

DT
k PCk DT

k PDk − dkP

)
< 0, (10)

where

0 > η1 > η =
ln M

M+1µb

Tα

+ β.

Proof. Consider the function V (t) = xT(t)Px(t). We have

D+V (t) = xT(t)PAx(t) + xT(t)ATPx(t).

From (9), we have

D+V (t) 6 βV (t).

Furthermore, substituting (10) into (8) yields

V (tk) = xT(t−k )C
T
k PCkx(t

−
k ) + xT(t−k )C

T
k PDkx(t

−
k − τk)

+xT(t−k − τk)D
T
k PCkx(t

−
k ) + xT(t−k − τk)D

T
k PDkx(t

−
k − τk)

6 bkx
T(t−k )Px(t−k ) + dkx

T(t−k − τk)Px(t−k − τk)

= bkV (t−k ) + dkV (t−k − τk).

Then, from Corollary 1 we can deduce that

V (t) 6 V0e
η1(t−t0),

where V0 = supt0−τ6s6t0
V (s). Then

‖x(t)‖2 6
λmax(P )

λmin(P )
‖ϕ‖2eη(t−t0). (11)

Hence, one can conclude that the ES of system (8) is obtained from (11).
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Figure 1 Impulsive sequence with average impulsive interval Tα = 0.25. This sequence is repeated.

Similarly, one can deduce the following result by Corollary 2.

Theorem 4. System (8) is globally exponentially stable if there exist constants β1 ∈ R, bk > 0, dk > 0,

and a positive-definite matrix P ∈ R
n×n such that (3), (7), and the following LMIs hold:

PA+ATP − β1P < 0, (12)

(
CT

k PCk − bkP CT
k PDk

DT
k PCk DT

k PDk − dkP

)
< 0, (13)

where

0 > η1 > η =
ln M

M+1e
−β1τµd

Tα

+ p. (14)

Remark 4. The above two theorems show two different delayed impulses. Theorem 3 states that the

ES of impulsive DS (8) is robust with respect to delayed impulses, while the impulses without delays

contribute to stabilization. Theorem 4 shows that the stability of an unstable system can be achieved

under delayed impulsive control, which illustrates that delayed impulses can promote the stability of DSs.

5 Numerical simulations

In this section, we validate our theoretical results with two examples.

Example 1. Consider the following DS:
{

ẋ(t) = Ax(t), t 6= tk,

x(tk) = Ckx(t
−
k ) +Dkx(t

−
k − τk),

(15)

where A = ( 1 1

−2 0.7
). It follows from Re(λA) > 0 that this linear system is unstable without impulses.

According to Theorem 3, we will design some parameters to stabilize the system. Let the time decay

τk = τ = 0.3, Tα = 0.25, M = 2, and α = 0.3. The impulsive sequence is shown in Figure 1. The matrices

Ck can be chosen from the set {0.2I, 0.4I, 0.3I} and Dk ∈ {0.3I, 0.2I, 0.2I} with equal probability. Let

impulsive parameters bk ∈ {0.3, 0.5, 0.4} and delayed impulsive parameters dk ∈ {0.16, 0.27, 0.21}; then

µb = 0.4 and µd = 0.213. Using the LMI toolbox of MATLAB, we can find

P =

(
26.0614 0.7118

0.7118 25.672

)
,

which satisfies (9) and (10). From Theorem 3, we can deduce that the system (15) is stable. The

corresponding trajectory of x(t) is depicted in Figure 2.
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Figure 2 (Color online) Trajectory of system (15) in Ex-

ample 1.

Figure 3 (Color online) Trajectory of system (15) in Ex-

ample 2.

Example 2. This example considers linear system (8) with A = ( 0.2 0.1

0.06 0.04
). By simple calculation,

A is not Hurwize; hence, the system is unstable without impulses. Let Ck ∈ {0.3I, 0.1I, 0.15I} and

Dk ∈ {0.8I, 0.4I, 0.3I}. The impulsive sequence is the same as in Example 1. Let the impulsive delays

τk = τ = 0.2 and M̃ = 2. The impulsive parameters are chosen as bk ∈ {0.18, 0.14, 0.23} and delayed

impulsive parameters are chosen as dk ∈ {0.4, 0.3, 0.35}. Then, we can obtain µb = 0.183, µd = 0.35, and

p = 0.3, which satisfy (7) and (14). Using the LMI toolbox of MATLAB, we can find

P =

(
0.3903 0.0947

0.0947 0.2723

)
,

satisfying (12) and (13). From Theorem 4, we can see that this system is stable under delayed impulses,

and Figure 3 shows the trajectory of x(t).

6 Conclusion and further work

In this study, a novel Halanay-type inequality with hybrid impulses and hybrid delayed impulses was

investigated. Two concepts were proposed to describe the average impulsive and delayed impulsive gains.

To study the effects of impulses and delayed impulses on the stability, the impulsive parameters and

the delayed impulsive parameters were compared. Stabilizing impulses and stabilizing delayed impulses

were analyzed to study the stability problem for impulsive DSs. Using the obtained results concerning

Halanay-type inequality, we derived a few sufficient conditions for the ES of linear DSs with hybrid

impulsive effects. In addition, although the stability problem for DSs with hybrid impulses was considered

in this study, many issues should be considered in further work. For example, it is interesting to consider

the stability of delayed systems with hybrid impulsive effects and hybrid delayed impulsive effects.
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