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Abstract This paper addresses the obstacle avoidance problem of formation control for the multi-agent

systems modeled by double integrator dynamics under a directed interconnection topology. The control task

is finished by a leader-follower formation scheme combined with an artificial potential field (APF) method.

The leader-follower scheme is carried out by taking the desired trajectory with the desired velocity as virtual

leader, while the APF method is carried out by dealing with the obstacles as the high potential points. When

the obstacle avoidance tasks are finished, the artificial potential forces degrade the formation performance, so

their undesired effects are treated as disturbances, which is analyzed by the robust H∞ performance. Based

on Lyapunov stability theory, it is proved that the proposed formation approach can realize the control

objective. The result is also extended to the switching multi-agent formation. The effectiveness of the

proposed formation scheme is further confirmed by simulation studies.
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1 Introduction

Multi-agent systems are composed of multiple interacting intelligent individuals. By cooperation, the

system can achieve many large-scale and difficult tasks, and surpass the capability of multiple individual

agents. Owing to their excellent performances, such as flexibility, reliability, high efficiency, and ex-

tendibility to new capabilities, multi-agent systems are meeting the developing requirements of modern

agriculture, industry and military. Moreover, the cost reduction and emergence of new technologies will

facilitate the popularization of multi-agent techniques. To date, multi-agent systems have been widely

applied in various areas, such as sensor networks, satellite clusters, coordination control of unmanned air

vehicles, cooperation control of robot teams, and congestion control in communication networks [1–5].
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Multi-agent applications such as robot teams, autonomous vessels, and unmanned aircraft formations

are usually driven by formation control [6–8], which finds the cooperative control algorithm or protocol

that maintains the predefined formation pattern of the arriving agents. Formation control was originally

inspired by social animal behaviors, such as fish schooling, bird flocking, and ant swarming. Over the past

decades, several pioneer studies, such as the leader-follower strategy [9], virtual structure approach [10],

behavior-based method [11], are continuously spreaded and quickly developed to derive a great number

of results.

Recently, many multi-agent consensus approaches have been proposed [12–15]. Consensus control

guides all agents towards a favorable agreement by information-sharing among the neighbors. With the de-

velopment of multi-agent control, several excellent consensus methods have been extended to multi-agent

formation. For example, multi-agent systems have been proposed for single integrated dynamics [16–19]

and double integrated dynamics [20,21]. First-order multi-agent formation must only maintain a constant

formation velocity, but the second-order case is more complex and requires difficult treatment of the time

varying velocity.

As multi-agent formation must maintain a predefined shape, the interconnection topology for the

information exchange plays an important role. Unfortunately, most of the research results focused on

undirected communication topologies. Multi-agent formation is more challenging and realistic on directed

topologies than on undirected topologies. On the one hand, the stability analysis and convergence proof

are rendered complexly by the non-symmetric Laplacian matrix. On the other hand, directed topologies

are common and general in real-world multi-agent engineering.

For multi-agent formation, obstacle avoidance is one of the most practical and challenging research

topics. The objective can be fulfilled by the artificial potential field (APF) method, which was first

proposed by Khatib [22], has been well developed because of their simplicity and efficiency. Its basic

idea is to fill the working environment with a predefined APF. Recently, researchers have made many

breakthroughs in multi-agent formation with APFs [23–25]. Wen et al. [23] applied the APF method

to floating production storage and offloading-accommodation vessel systems for smooth gangway opera-

tion. In [24], APF method and behavior rule were combined for target tracking and obstacle avoidance.

Zavlanos and Pappas [25] applied an artificial potential force that repels all agents from an undesired

position, avoiding collisions among the agents.

It is well known that H∞ techniques play a crucial role for system robustness all the time, and it

has been well developed for the nonlinear and consensus control [26–29]. Its basic principle is that

the gain of mapping between exogenous input and system output is less or no larger than the prescribed

level. Recently, H∞ techniques have been incorporated into several formation control schemes for obstacle

avoidance [30,31]. Xue et al. [30] developed anH∞ technique for formation of a hybrid multi-agent system.

The H∞ control is to reflect the attenuation level of obstacle avoidance for analyzing the negative effect

on the formation. Meanwhile, Wen et al. [31] applied the APF method and H∞ technique to stochastic

multi-agent formation for obstacle-collision avoidance. However, all of these techniques were limited to

the first-order multi-agent systems. The second-order formation control under directed topology remains

unexplored thus far.

The paper addresses the obstacle avoidance problem of second-order multi-agent formation control

with directed topology. The main contributions are summarized below:

(i) The obstacle avoidance problem in the multi-agent formation is solved by applying an APF method.

To prove the theorem, a positive-definite function is found to satisfy ν̇ij(zij(t)) > 0, where zij(t) is the

relative position variable between agent i and obstacle j.

(ii) The double integrator multi-agent formation containing a directed interconnection topology is

developed. Because second-order multi-agent control considers both position and velocity, it is more

practical and challenging than the first-order case.

(iii) By applying the H∞ technique to multi-agent formation, we guarantee a highly robust system.
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2 Preliminaries

2.1 System description

The multi-agent system of double integrator dynamics is described as

χ̇i(t) = νi(t), ν̇i(t) = ui(t), i = 1, 2, . . . , n, (1)

where ui(t) = [ui1(t), . . . , uim(t)]
T
∈ R

m is the control variable; χi(t) = [χi1(t), . . . , χim(t)]
T
∈ R

m and

νi(t) = [νi1(t), . . . , νim(t)]
T
∈ R

m are the position and velocity states, respectively.

The reference signals of the formation movement are given as

χ̇r(t) = νr(t), ν̇r(t) = f(χr, νr, t), (2)

where χr(t) ∈ R
m and νr(t) ∈ R

m are position and velocity of the reference signals, and f ∈ R
m is a

sufficiently smooth vector-valued function.

Assumption 1. f ∈ L2[0, th], ∀th ∈ [0,∞) in (2) is bounded by a constant ǫ, i.e., ‖f‖ < ǫ, where

L2[0, th] denotes square integrable function space such that
∫ th
0

‖f‖2dt <∞.

To steer the formation along the given route and velocity, leader-follower strategy is adopted in the

control by taking the reference signal (2) as the virtual leader.

Definition 1 ([32]). Assume the initial states of multi-agent system (1) being bounded. If the solutions

satisfy limt→∞ ‖χi(t) − χr(t) − ξi‖ = 0, limt→∞ ‖νi(t) − νr(t)‖ = 0, i = 1, . . . , n, then the multi-agent

formation is said to be achieved, where ξi = [ξi1, ξi2, . . . , ξim]T is the relative position vector between

agent i and the reference signals (2), which describes the desired formation pattern.

Define the position and velocity tracking error variables as

eχi = χi(t)− χr(t)− ξi, eνi = νi(t)− νr(t), i = 1, . . . , n, (3)

where eχi(t) is with respect to position, eνi(t) is with respect to velocity.

Using dynamic equations (1) and (2), the following error dynamics are directly obtained:

ėχi(t) = eνi(t), ėνi(t) = ui(t)− f(χr, νr, t), i = 1, . . . , n. (4)

Rewrite the error dynamics (4) in compact form as

ė(t) =

[[

0n In

0n 0n

]

⊗ Im

]

e(t)−

[

0nm

F (t)

]

+

[

0nm

u(t)

]

, (5)

where e(t) = [eTχ(t), e
T
ν (t)]

T, eχ(t) = [eTχ1(t), . . . , e
T
χn(t)]

T, eν(t) = [eTν1(t), . . . , e
T
νn(t)]

T, F (t) = [fT, . . . ,

fT]T, u(t) = [uT1 (t), . . . , u
T
n(t)]

T, 0nm is an nm-dimensional zero vector, and ⊗ is Kronecker product.

Definition 2 (H∞ performance [27]). Find the formation control u(t) for the multi-agent system (1)

such that the error variable e(t) = [eTχ(t), e
T
ν (t)]

T
and bounded disturbance ω(t) ∈ L2[0, th], th ∈ [0,∞)

satisfy
∫ th

0

‖e(t)‖2dt 6 γ

∫ th

0

‖ω(t)‖2dt+ V (0), ω(t) ∈ L2[0, th], (6)

where γ is a given positive constant, and V (0) is the initial value of the system energy function V (t).

The control objective. Design the H∞ formation control protocol for which the multi-agent system

(1) maintains the predefined formation patterns while moving along the desired trajectory at the desired

velocity, and avoiding collision with obstacles.

Remark 1. The robustH∞ control described in Definition 2 means that the impacts of disturbance ω(t)

on the system states are attenuated to a desired level. If the system dynamics of (1) initializes with zero

states, i.e., V (0) = 0, then the H∞ performance (6) can be re-expressed as supω∈L2[0,th]

∫ th
0 ‖e(t)‖2dt

∫ th
0 ‖ω(t)‖2dt

6 γ.

It implies that the gain between e(t) and ω(t) is attenuated to the predefined level γ, i.e., the system

states can be robust to the disturbances.
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2.2 Algebraic graph theory

The communication graph of multi-agent system (1) is a strongly connected directed graph G containing

n nodes. The node set, edge set, and adjacency matrix are denoted as Ξ = {ζ1, ζ2, . . . , ζn}, ε ⊆ Ξ × Ξ,

and A = [aij ]; then the graph G can be represented as G = (Ξ, ε, A). The edge εij = (ζi, ζj) ∈ ε if and

only if information is communicated from node ζj to node ζi, where the node ζj is said being a neighbor

of node ζi, and all neighbors of the node ζi are represented by the set Ni = {ζj ∈ Ξ : εij ∈ ε, j 6= i}. A

directed network G is said strongly connected if there exits a directed path for any two distinct nodes ζi
and ζj , i.e., (ζi, ζi1), (ζi1 , ζi2 ), . . . ,(ζil , ζj).

With respect to the edge εij , the element aij of adjacency matrix A is valuated as aij > 0 ⇔ εij ∈ ε,

aij = 0 otherwise, and aii = 0. The communication weights between agents and the leader are described

by B = diag{b1, . . . , bn}, where bi > 0 if and only if agent i communicates with the leader, and bi = 0

otherwise. It is assumed that at least an agent communicates with the leader, i.e., b1 + b2 + · · ·+ bn > 0.

Laplacian matrix L of the graph G can be generated as

L = C −A, (7)

where C = diag{c1, c2, . . . , cn} and ci =
∑n

j=1 aij . As all rows of the matrix sum to 0, 0 is an eigenvalue

associating with eigenvector 1n = [1, 1, . . . , 1]
T
∈ R

n.

2.3 Artificial potential fields and repulsive forces

In the obstacle avoidance procedure, each obstacle is viewed as a high-potential point. If any agent is

sufficiently close to an obstacle, the repulsive forces will be generated to push the multi-agent system

away from the obstacle.

For agent i and obstacle k, define the relative position variate zik(t) as

zik(t) = χi(t)− ok, i = 1, . . . , n, k = 1, . . . , q, (8)

where ok ∈ R
m denotes the kth obstacle.

From the system dynamics of (1), time derivative of zij(t) is generated as

żik(t) = νi(t), ν̇i(t) = ui(t), i = 1, . . . , n, k = 1, . . . , q. (9)

The repulsive potential functions are defined below.

Definition 3 ([33]). A repulsive potential function associated with obstacle k is a nonnegative and

differentiable function Ψk(‖zik(t)‖) satisfying the following conditions:

(a) When ‖zik‖ 6 d̄k, the valid repulsion potential is triggered, and when ‖zik‖ → dk, Ψk(‖zik‖) →

+∞, where d̄k is the distance threshold, dk is the minimal separation distance from the obstacle k, and

d̄k > dk.

(b) When ‖zik‖ > d̄k, Ψk(‖zik‖) is weakened.

The repulsive force ψik(t) is generated from the negative gradient of Ψk(‖zik‖) as

ψik(t) = −∇zikΨk(‖zik‖), k = 1, . . . , q, (10)

where ∇zikΨk(‖zik‖) denotes the gradient with respect to the relative position variable zik.

Because ∂zik
∂χi

= Im, the repulsive force term ψik(t) can also be expressed as

ψik(t) = −∇χi
Ψk(‖zik‖), k = 1, . . . , q, (11)

where ∇χi
Ψk(‖zik‖) denotes the gradient with respect to the position state χi(t).

Remark 2. When χi ∈ Ωk, where Ωk = {χi|‖zik‖ = ‖χi(t)− ok‖ 6 d̄k} is a compact set, agent i moves

into the area of possible collision with obstacle k. Then the repulsive force ψik(t) will be triggered to

compel the agent to maintain a respectable distance from obstacle k, and thus the possible collisions with

obstacles are avoided. When {χ1, . . . , χn} /∈ Ωk, according to Definition 3, the corresponding repulsive

forces ψik(t), i = 1, . . . , n, are weakened, and ψik(t) ∈ L2[0, th].
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2.4 Supporting Lemmas

Lemma 1 ([34]). The directed graph G is irreducible if and only if its Laplacian matrix L is strongly

connected.

Lemma 2 ([35]). If a matrix L = (lij) ∈ R
n×n has the following properties:

(a) lij 6 0, i 6= j, lii = −
∑n

j=1 lij , i = 1, 2, . . . , n, and

(b) The matrix L is irreducible,

then the following results can be obtained:

(1) There is a zero eigenvalue with multiplicity 1, and all nonzero eigenvalues have the positive real

parts;

(2) [1, . . . , 1]
T
is a right eigenvector associated with eigenvalue 0;

(3) Let σ = [σ1, . . . , σn]
T be a normalized left eigenvector with respect to the eigenvalue 0. Then it

can be chosen such that σi > 0 for all i = 1, 2, . . . , n.

Lemma 3 ([36]). If the matrix L = [lij ] ∈ R
n×n, where lij = lji 6 0 for i 6= j and lii = −

∑n
j=1,i6=j lij ,

is an irreducible matrix, then

L =









l11 + b1 · · · l1n
...

. . .
...

ln1 · · · lnn + bn









is a positive definite matrix, where b1, b2, . . . , bn are nonnegative constants to satisfy b1+b2+ · · ·+bn > 0.

Lemma 4 ([36]). The inequality
[

Q(x) N(x)

NT(x) P(x)

]

> 0 holds if and only if either of the following inequalities

hold:

(a) Q(x) > 0, P (x)−NT(x)Q−1(x)N(x) > 0;

(b) P (x) > 0, Q(x)−N(x)P−1(x)NT(x) > 0, where Q(x) = QT(x), P (x) = PT(x).

Lemma 5 ([36]). L(t) ∈ R is a positive function with bounded initial value L(0). If L̇(t) < −aL(t) + c

is satisfied, where a, c > 0 are two constants, then the following inequality holds:

L(t) < e−atL(0) +
c

a
(1 − e−at).

Lemma 6. L(t) ∈ R is a positive definite continuous function with bounded initial value L(0). If it

holds that L̇(t) > bL(t) (or L̇(t) 6 bL(t)) for t > t0, where b is a positive constant, then we have

L(t) > eb(t−t0)L(t0) (or L(t) 6 eb(t−t0)L(t0)). (12)

Proof. From the fact L̇(t) > bL(t) (or L̇(t) 6 bL(t)), the following result can be obtained:

L̇(t)

L(t)
> b

(

or
L̇(t)

L(t)
6 b

)

.

Integrating the above inequality from t to t0 yields

ln(L(t))|tt0 > b(t− t0) (or ln(L(t))|tt0 6 b(t− t0)). (13)

Calculate the exponent on both sides of (13) and perform some simple manipulations. Then the

inequality (12) can be obtained.

3 Main results

3.1 Fixed formation control

Define the formation errors concerning position and velocity as

ηχi(t) =
∑

j∈Ni

aij(χi(t)− ξi − χj(t) + ξj) + bi(χi − χr − ξi),



Wen G X, et al. Sci China Inf Sci September 2019 Vol. 62 192205:6

ηνi(t) =
∑

j∈Ni

aij(νi(t)− νj(t)) + bi(νi(t)− νr(t)),

i = 1, 2, . . . , n, (14)

where aij and bi are the communication weights of agent i connected to neighbor agent j and the leader,

respectively, which are associated with the adjacency matrices A and B (defined in Subsection 2.2).

Using the error variables defined in (3), the two coupling terms, ηχi(t) and ηνi(t), can be re-described

as follows:

ηχi(t) =
∑

j∈Ni

aij(eχi(t)− eχj(t)) + bieχi(t),

ηνi(t) =
∑

j∈Ni

aij(eνi(t)− eνj(t)) + bieνi(t),

i = 1, 2, . . . , n. (15)

Design the distributed formation controller for the system (1) as follows:

ui(t) = −α(ηχi(t) + ηνi(t))−

q
∑

k=1

βkψik(zik), i = 1, 2, . . . , n, k = 1, 2, . . . , q, (16)

where α > 0 and βk > 0 are two design constants.

Remark 3. In the formation control (16), the graph-based coupling terms −α(ηχi(t)+ηνi(t)) is utilized

to maintain the predefined formation patterns and follow the desired reference signals. The repulsive force

term −
∑q

k=1 ψik(zik) is utilized to achieve the obstacle avoidance. Because they are two conflicting terms

in non-obstacle environment, H∞ control strategy is applied for guaranteeing the system robustness.

By substituting (16) into (5) and (9), the following equations can be obtained:

ė(t) = −

[[

0n×n −In

αL̃ αL̃

]

⊗ Im

]

e(t)−

[

0nm

ψ(t)

]

−

[

0nm

F (t)

]

, (17)

żij(t) = νi(t), ν̇i(t) = −α (ηχi + ηνi)−

q
∑

k=1

βkψik (zik), i = 1, 2, . . . , n, k = 1, . . . , q, (18)

where L̃ = L+B, and ψ(t) = [(
∑p

k=1 βkψ1k)
T, . . . , (

∑p
k=1 βkψnk)

T]T.

In recent years, H∞ robust techniques have been implemented in several consensus control methods,

such as [28, 29]. In [28], the H∞ consensus method for the first-order multi-agent with directed graph

G is developed by transforming original system to the reduced-order form. Finally, the consensus and

H∞ robust performance are proven. In [29], the H∞ consensus control is extended to the second-order

system that contains parameter uncertainties and disturbances.

In [30, 31], H∞ techniques are extended to multi-agent formation for the first-order system under

undirected communication topology. Because of the coupling of position and velocity states, it is much

difficult to analyze the system stability and error convergence for second-order multi-agent under the

directed communication graph. The challenging work is addressed in this paper. The main conclusions

are described by the following theorems.

Theorem 1. The multi-agent system (1) is with bounded initial states under the strongly connected

graph G. If the following condition (19) for parameters α and βk, k = 1, . . . , q holds, then the control

objective can be achieved by the proposed formation protocol (16), i.e., the multi-agent system can

maintain a predefined formation pattern following the desired route and velocity, while avoiding collision

with obstacles.

α >
2max16i6n(σi) + 1

λmin(Γ)
, βk > 0, (19)
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where λmin(Γ) is the minimum eigenvalue of matrix Γ, Γ = L̃T∆ + ∆L̃ = LT∆ + ∆L + 2∆B, ∆ =

diag{σ1, σ2, . . . , σn}, and σ = [σ1, σ2, . . . , σn]
T
with σi > 0 is the normalized left eigenvector of L associ-

ated with the eigenvalue 0 (Lemma 2).

Remark 4. The proof of Theorem 1 contains two parts. Part 1 proves the formation behaviors for the

case of {χ1, . . . , χn} /∈
⋃q

k=1 Ωk, where Ωk = {χi|‖zik‖ 6 d̄k} is a compact set, and part 2 proves the

obstacle avoidance behaviors for the case of ∀χi ∈ ∀Ωj .

The case of part 1 implies all agents move out the area of possible collision with obstacles. According

to the definition of artificial potential function (Definition 3), the repulsive forces term
∑q

k=1 βkψik(zik)

attains to handled level, which implies
∑q

k=1 βkψik(zik) ∈ L2[0, th]. Therefore, the artificial repulsive

forces can be treated as the disturbance inputs and be analyzed by the H∞ performance (Definition 2).

The case of part 2 implies agent i moves into the area of possible collision with obstacles, and the

repulsive forces
∑q

k=1 βkψik(zik) will be triggered rapid growth to compel the multi-agent system away

from the obstacles.

Proof. Part 1. The following function is considered as the Lyapunov function candidate:

V (t) = eT(t)

([

αΓ ∆

∆ ∆

]

⊗ Im

)

e(t). (20)

First, the function (20) can be positive definite if the condition (19) holds. It is proven as follows.

Because [αΓ ∆

∆ ∆
] is a symmetric matrix, [αΓ ∆

∆ ∆
] > 0 is equivalent to αΓ − ∆ = α(L̃T∆ + ∆L̃) − ∆ =

α(LT∆+∆L + 2∆B)−∆ > 0 in accordance with Lemma 4.

From the definitions of the matrices L and ∆, the following fact can be obtained:

(LT∆+∆L)1n = LTσ +∆L1n = 0, (21)

which implies LT∆+∆L is a zero row-sum matrix. According to Lemma 3, Γ = LT∆+∆L + 2∆B is

a positive definite matrix, and thus αΓ−∆ > 0 is guaranteed when the design constant α satisfies (19).

Hence V (t) is a positive definite function.

Taking the time derivative of V (t) along with (17), we have

V̇ (t) =− eT(t)









[

0n×n −In

αL̃ αL̃

]T [

αΓ ∆

∆ ∆

]

+

[

αΓ ∆

∆ ∆

][

0n×n −In

αL̃ αL̃

]



⊗ Im



 e(t)

− 2eT(t)

([

αΓ ∆

∆ ∆

]

⊗ Im

)[

0nm

ψ + F (t)

]

. (22)

Using the following facts that

[

0n×n −In

αL̃ αL̃

]T [

αΓ ∆

∆ ∆

]

+

[

αΓ ∆

∆ ∆

] [

0n×n −In

αL̃ αL̃

]

=

[

αΓ 0n×n

0n×n αΓ− 2∆

]

, (23)

eT(t)

([

αΓ ∆

∆ ∆

]

⊗ Im

)[

0nm

ψ + F (t)

]

= eTχ(t) (∆⊗ Im) (ψ + F (t)) + eTν (t) (∆⊗ Im) (ψ + F (t))

= eT(t)

([

∆ 0n×n

0n×n ∆

]

⊗ Im

)[

ψ(t) + F (t)

ψ(t) + F (t)

]

, (24)

Eq. (22) can be rewritten as

V̇ (t) = −eT(t)

([

αΓ 0n×n

0n×n αΓ− 2∆

]

⊗ Im

)

e(t)− 2eT(t)

([

∆ 0n×n

0n×n ∆

]

⊗ Im

)[

ω(t)

ω(t)

]

, (25)
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where ω(t) = ψ(t) + F (t).

Adding and subtracting the term

[

ω(t)

ω(t)

]T








[

∆ 0n×n

0n×n ∆

]T [

∆ 0n×n

0n×n ∆

]



⊗ Im





[

ω(t)

ω(t)

]

on the right hand side of the inequality (25) yields

V̇ (t) =− eT(t)

([

αΓ− In 0n×n

0n×n αΓ− 2∆− In

]

⊗ Im

)

e(t)

−

∥

∥

∥

∥

∥

e(t) +

([

∆ 0n×n

0n×n ∆

]

⊗ Im

)[

ω(t)

ω(t)

]∥

∥

∥

∥

∥

2

+

[

ω(t)

ω(t)

]T








[

∆ 0n×n

0n×n ∆

]T [

∆ 0n×n

0n×n ∆

]



⊗ Im





[

ω(t)

ω(t)

]

. (26)

Further, Eq. (26) can become the following one:

V̇ (t) < −eT(t)

([

αΓ− In 0n×n

0n×n αΓ− 2∆− In

]

⊗ Im

)

e(t) +

[

ω(t)

ω(t)

]T([

∆T∆ 0n×n

0n×n ∆T∆

]

⊗ Im

)[

ω(t)

ω(t)

]

. (27)

By choosing the control parameter α to satisfy the condition (19), the matrix
[

αΓ − In 0n×n

0n×n αΓ − 2∆ − In

]

is

positive definite. Let γ1 be the minimum eigenvalue of the matrix
[

αΓ − In 0n×n

0n×n αΓ − 2∆ − In

]

, and let γ2 be the

maximum eigenvalue of the matrix
[

∆T∆ 0n×n

0n×n ∆T∆

]

, i.e., γ2 = 2max{σ2
1 , . . . , σ

2
n}. The inequality (27) can be

rewritten as follows:

V̇ (t) < −γ1‖e(t)‖
2 + γ2‖ω(t)‖

2. (28)

Integrating the inequality (28) from t = 0 to t = th, we have

V (th)− V (0) < −γ1

∫ th

0

‖e(t)‖2dt+ γ2

∫ th

0

‖ω(t)‖2dt. (29)

Based on V (th) > 0, rewrite the inequality (29) to the following one:

∫ th

0

‖e(t)‖2dt <
1

γ1
V (0) +

γ2
γ1

∫ th

0

‖ω(t)‖2dt. (30)

From Assumption 1 and Definition 3, it can be concluded that ω(t) ∈ L2[0, th] in this case. Therefore,

the H∞ performance (6) is satisfied, and it is proven that the proposed formation control method has

good robustness.

After several simple manipulations, the inequality (28) can be rewritten as

V̇ (t) < −γV (t) + γ2‖ω(t)‖
2, (31)

where γ = γ1/λmax, and λmax is the maximum eigenvalue of matrix [αΓ ∆

∆ ∆
].

From Assumption 1 and Definition 3, the term ‖ω(t)‖2 can be bounded by a constant δ for this case,

i.e., ‖ω(t)‖2 6 δ. Further, the inequality (31) can become

V̇ (t) < −γV (t) + γ2δ. (32)

According to Lemma 5, the following inequality can be obtained based on (32).

V (t) < e−γtV (0) +
γ2δ

γ
(1− e−γt). (33)
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Inequality (33) implies that V (t) can reach a desired small range by choosing the appropriate de-

sign parameters. It means that the desired formation behavior can be obtained for the non-obstacle

environment.

Part 2 (The collision avoidance behaviors are analyzed only for agent i and obstacle j). Based on the

relative position variable zij(t), design an energy function:

Vij(t) =
1

2
zTij(t)zij(t) +

1

2
νTi (t)νi(t). (34)

Taking the time derivative of Vij along with (18), we have

V̇ij(t) = zTij(t)νi(t)− ανTi (t) (ηχi(t) + ηνi(t)) −

q
∑

k=1,k 6=j

βkν
T
i (t)ψik (zik)− βjν

T
i (t)ψij (zij). (35)

Because the dwell time of all agents is finite in the region of Ωj = {χi|‖zij‖ 6 d̄j}, these continuous

terms zik(t), νi(t), ηχi(t), ηνi(t) and
∑q

k=1,k 6=j βkν
T
i (t)ψik(zik) are bounded in the region. In addition,

if agent i is close to obstacle j, the agent is moving along gradient direction of the artificial repulsive

potential Ψj(t). By Definition 3, −νTi (t)ψij(t) = νTi ∇χi
Ψj(t) → +∞ if ‖zij‖ → dj . Therefore, the

following inequality is satisfied if agent i is close to obstacle k sufficiently:

−νTi (t)ψij(t) >
1

2
zTij(t)zij(t) +

1

2
νTi (t)νi(t)−

1

βj
zTij(t)νi(t)

+
α

βj
νTi (t) (ηχi(t) + ηνi(t)) +

1

βj

q
∑

k=1,k 6=j

βkν
T
i (t)ψik (zik). (36)

Substituting (36) into (35), we have

V̇ij(t) > βjVij . (37)

According to Lemma 6, the following result can be obtained from (37):

zTij(t)zij(t) > 2eβj(t−t0)Vij(t0)− νTi (t)νi(t). (38)

As the term νTi (t)νi(t) is continuous, it is bounded in the compact set Ωj. Therefore, by designing

the parameter βj > 0 large enough and setting appropriate initial positions, it can be guaranteed that

2eβj(t−t0)Vij(t0) − νTi (t)νi(t) > d2j , and that there exists ‖zij(t)‖ > dj , i.e., the multi-agent system can

avoid collision with obstacles by the proposed formation control scheme.

3.2 Switching formation control

The proposed formation control scheme can also be extended to switching formation. Suppose that the

whole process [0, th] of the formation control is divided into a time sequence of uniformly bounded non-

overlapping sub-processes: [ts, ts+1), s = 1, . . . , l with t1 = 0, tl+1 = th, ts+1 − ts > τ0, where τ0 is called

the minimal dwell time. In each time interval [ts, ts+1), formation pattern is fixed. For the convenience of

analysis, a piecewise constant function ϕ(t) : [0, th] → M = {1, 2, . . . , N} is introduced, where N denotes

the total number of all possible formation patterns. ξ
ϕ(t)
i ∈ R

m denotes the formation patterns at time

t. The interconnection graph is assumed to be invariable.

For this case, the formation tracking error vectors are redefined as eϕχi(t) = χi(t) − χr(t) − ξ
ϕ(t)
i ,

eνi(t) = νi(t)− νr(t), and the error dynamics is

ėϕχi(t) = eνi(t), ėνi(t) = ui(t)− f, i = 1, . . . , n. (39)

Then the formation errors become

ηϕχi(t) =
∑

j∈Ni

aij
(

eϕχi(t)− eϕχj(t)
)

+ bie
ϕ
χi,
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ηνi(t) =
∑

j∈Ni

aij (eνi(t)− eνj(t)) + bieνi(t),

i = 1, 2, . . . , n. (40)

Using the above errors, the switching formation control for the time interval [ts, ts+1) is constructed as

ui(t) = −α
(

ηϕχi(t) + ηνi(t)
)

−

q
∑

k=1

βkψik (zik), i = 1, 2, . . . , n. (41)

The main conclusion is summarized by Theorem 2.

Theorem 2. Consider the multi-agent system (1) with the bounded initial states and switching forma-

tion pattern ξ
ϕ(t)
i under the strongly connected graph G. If the design parameters α and βk satisfy (19)

and the minimal dwell time τ0 is long enough, then the switching formation controller (41) can guarantee

the multi-agent system to achieve the desired formation, while avoiding collision with obstacles.

Proof. Choose the following function as the common Lyapunov function for all time intervals:

V (t) = (eϕ(t))T

([

αΓ ∆

∆ ∆

]

⊗ Im

)

eϕ(t), (42)

where eϕ(t) = [(eϕχ(t))
T, (eν(t))

T]T, and eϕχ(t) = [(eϕχ1(t))
T, . . . , (eϕχn(t))

T]T.

Similar to the proof of Theorem 1, the time derivative of (42) for t ∈ [ts, ts+1) is

V̇ (t) < −γ1‖e
ϕ(t)‖2 + γ2‖ω(t)‖

2, (43)

where γ1 = λmin([
αΓ − In 0

0 αΓ − 2∆ − In
]), γ2 = 2max{σ2

1 , . . . , σ
2
n}.

Integrating (43) from ts to ts+1, we obtain

∫ ts+1

ts

‖eϕ(t)‖
2
dt <

1

γ1
(V (ts)− V (ts+1)) +

γ2
γ1

∫ ts+1

ts

‖ω(t)‖
2
dt. (44)

Furthermore, we have

∫ th

0

‖eϕ(t)‖2dt =
l
∑

s=1

∫ ts+1

ts

‖eϕ(t)‖2 dt <
1

γ1
V (0) +

γ2
γ1

∫ th

0

‖ω(t)‖2dt, (45)

and then the H∞ performance (6) is satisfied.

From (43), we obtain

V̇ (t) < −γV (t) + γ2 ‖ω(t)‖
2 , (46)

where γ = γ1/λmax, and λmax is the maximum eigenvalue of matrix [αΓ ∆

∆ ∆
].

Because ‖ω(t)‖2 can be bounded by a constant δ, according to Lemma 5, the following inequality can

be obtained:

V (t) < e−γ(t−ts)V (ts) +
γ2δ

γ

(

1− e−γ(t−ts)
)

. (47)

From (47), the formation tracking error e(t) can arrive the desired accuracy by designing the minimal

dwell time τ0 large enough.

It had been proven that a switched system is stable if it is stabilized in all individual intervals and the

dwell time is sufficiently long [37], so stability can be guaranteed for the whole control process by the

proposed formation control protocol.

The proof of the obstacle avoidance control is similar to the proof of Theorem 1.
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Figure 1 (Color online) The formation behavior in non-

obstacle environment.

Figure 2 (Color online) The position tracking errors in

non-obstacle environment.

4 Simulation examples

In this section, a numerical multi-agent instance is implemented for demonstrating effectiveness of the

proposed formation scheme. In this instance, the multi-agent system has four agents and they move on the

2-D plane. The initial states are designed as χ1(0) = [5.5, 4.8]T, χ2(0) = [−3.9, 5.2]T, χ3(0) = [5.6,−4.6]T,

χ4(0) = [−4.6,−5.6]T and νi=1,2,3,4(0) = [1, 1]T.

The desired reference signal is

χ̇r(t) = νr(t), ν̇r(t) =

[

2 sin(0.7t)

2 cos(0.7t)

]

, (48)

with initial values of χr(0) = [−1.2, 1.3]T, νr(0) = [0.8, 1]T.

For the strongly connected graph G, the adjacency matrix A and Laplacian matrix L are given as

A =













0 0.5 0 0.8

0.6 0 0.8 0

0.8 0 0 0.9

0 0.7 0.9 0













, L =













1.3 −0.5 0 −0.8

−0.6 1.4 −0.8 0

−0.8 0 1.7 −0.9

0 −0.7 −0.9 1.6













.

The connection weight matrix between agents and the leader is B = diag{1, 0, 0, 0}.

The potential functions are specified as

Ψk(‖zik‖) = ‖zik‖e
(‖zik‖−4)−2

, k = 1, 2. (49)

The potential repulsive forces derived from the negative gradient are

ψik (‖zik‖) = −∇zikΨik (‖zik‖)

= −
(

‖zik‖
−1

e(‖zik‖−4)−2

− 2(‖zik‖ − 4)
−3

e(‖zik‖−4)−2
)

(χi − ok),

i = 1, 2, 3, 4, k = 1, 2. (50)

4.1 Formation control with fixed pattern

In this case, the formation patterns are described as ξ1 = [4.5; 4.5]T, ξ2 = [−4.5; 4.5]T, ξ3 = [4.5;−4.5]T,

ξ4 = [−4.5;−4.5]T. There are two obstacles o1 and o2 located at t = 5 and t = 15, respectively.

Figures 1–4 show the formation control performances. Figure 1 shows the multi-agent formation for the

non-obstacle case, with the control parameter α = 50. Figures 2 and 3 show the tracking errors with
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Figure 3 (Color online) The velocity tracking errors in

non-obstacle environment.

Figure 4 (Color online) The formation with obstacle

avoidance behavior.
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Figure 5 (Color online) The switching formation behav-

ior in non-obstacle environment.

Figure 6 (Color online) The position errors of switching

formation in non-obstacle environment.

respect to the position and velocity, respectively. Figure 4 displays the formation control results for

obstacle environment, with the control parameters α = 27, β1 = 18, β2 = 32. Figures 1–4 comfirms the

performance of the proposed formation approach.

4.2 Formation control with switching shapes

In this case, the switching formation is performed by variating the formation patterns in two time intervals:

[0, 15) and [15, 30]. The formation pattern in the time interval [0, 15) is ξ11 = [4; 4]T, ξ12 = [−4; 4]T,

ξ13 = [4;−4]T, ξ14 = [−4;−4]T, and in the time interval [15, 30] it is ξ21 = [0; 2]T, ξ22 = [0; 6]T, ξ23 = [0;−6]T,

ξ24 = [0;−2]T. Two obstacle points are located at t = 5 and t = 20, respectively.

Figures 5–8 show the formation performances of the proposed scheme. Figure 5 shows the switching

formation performance in the non-obstacle environment, with the control parameter α = 50. Figures

6 and 7 show the position and velocity errors between agents and the reference signal, respectively.

The switching formation performance of obstacle environment is shown in Figure 8, where the design

parameters of the switching controller (41) are α = 49, β1 = 23, β2 = 15. Figures 5–8 further demonstrate

that the control objective can be achieved using the proposed control protocol (41).
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Figure 7 (Color online) The velocity errors of switching

formation in non-obstacle environment.

Figure 8 (Color online) The switching formation with ob-

stacle avoidance behavior.

5 Conclusion

In the paper, a second-order formation of the multi-agent system under directed topology was proposed to

solve the obstacle avoidance problem by using APF method. The obstacle avoidance problem was solved

by employing the repulsive potential forces, which compelled the agents keeping off these obstacles, and

the H∞ method was utilized to analyze the unwanted potential effect. Then, the proposed control

approach was proven that it can steer the multi-agent system to maintain the predefined formation

patterns moving along with the desired route and velocity, meanwhile, avoiding collision with obstacles.

Finally, a numerical instance was implemented and the desired results were shown. The future work

will extent the study to nonlinear multi-agent systems by using neural networks or fuzzy logical systems,

which have been applied in various classes of nonlinear systems, such as [38, 39].
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