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Abstract In this study, the stability and stabilization problem of a colored Petri net based on the semi-

tensor product of matrices is investigated. First, the marking evolution equation of the colored Petri net in

a Boolean algebra framework is established, and the necessary and sufficient condition for the stability of

the equilibrium point of the colored Petri net is given. Then, the concept of the pre-k steps reachability set

is defined and is used to study the problem of marking feedback stabilization. Some properties of the pre-k

steps reachability set are developed. The condition of the stabilization of the colored Petri net is given. The

algorithm of the optimal marking feedback controller is designed. The proposed method in this paper could

judge the stability and stabilization of the colored Petri net by matrix approach. The obtained results are

simple and easy to implement by computer. An example is provided to illustrate the effectiveness of the

proposed method.
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1 Introduction

A Petri net is a kind of mathematical model and tool for the modelling and analysis of distributed

systems. It is especially convenient for describing the relationships of the sequence, concurrency, conflict,

and synchronization of the system process or component. It is a powerful and efficient formal method

for simulating, analyzing, and controlling discrete event systems (DESs). It supports a wide range of

interactive expressions, has intuitive graphic representation, and is relatively simple to implement. For a

review of the history of Petri nets and an extensive bibliography, the reader can refer to [1]. The colored

Petri net puts different colors on the tokes of the net. The aim of this method is to classify the tokes so

that we can fold the net. The colored Petri net is an advanced high-level Petri net. The main difference

between the colored Petri net and an ordinary Petri net is that, for the colored Petri net, a more compact

representation is achieved by equipping each token with an attached data value called the token color

that may be of an arbitrarily complex type. Therefore, it can describe complex systems in a manageable

way. Although this kind of net does not have stronger simulation ability than an ordinary Petri net, its

main merit model is that it makes the modeling of complex systems clearer and simpler. For a detailed

introduction to the concept, definition, analysis methods, and various applications of colored Petri nets,

please refer to [2–4].
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Classical control theory studies the time driven system, which is simulated by a differential equation

or differential equations. However, many complex dynamic systems in engineering and social fields are

discrete event driven. DESs are event-driven dynamical systems whose state transition mechanism is

triggered by the instantaneous occurrence of discrete events; such behavior can be found in many large

and complex systems, such as computer and communication networks, flexible manufacturing systems,

and intelligent transportation systems and queueing systems. DESs follow intricate man-made rules in-

stead of physical laws. As a result, performance analysis and control synthesis of DESs become very

difficult because their state evolution processes are not described by conventional differential and dif-

ference equations. Petri nets constitute a well-known formal paradigm for the modeling, analysis, and

control of DESs. They have received wide attention within the automatic control community according

to the difference of the system model. This approach has been adopted by many researchers, and it has

been proved to be very effective and useful. Thus, it has attracted the attention of many researches in

the Petri net field. Yamalidou et al. [5] studied the feedback control problem of a Petri net based on

place invariants in reference. In addition, other researchers have studied the properties of special Petri

nets. For example, Mahulea et al. [6,7] analyzed the observability problem of continuous Petri nets, and

Vázquez et al. [8] studied the controllability of timed continuous Petri nets.

Many control problems of ordinary Petri nets can be extended to colored Petri nets. Giua and Seatzu [9]

presented control problems of ordinary Petri nets, which also exist in the colored Petri net. Zhao et

al. [10] modeled the colored Petri net by using an algebraic method and studied its reachability and

controllability, but so far there are no related studies on other control issues, such as stability, stabilization,

and observability.

In recent years, a new matrix product called semi-tensor product of matrices has been proposed by

Cheng [11]. It generalizes the ordinary matrix product to the case where the column number of the fore

matrix is different from the row number of the hind matrix. The generalized product not only keeps the

main properties of the original matrix product, but also has a better pseudo commutativity property than

that before the generalization. Therefore, it is a convenient and powerful mathematical tool. By using

the semi-tensor product of the matrix, a DES can be transformed into a linear algebraic equation form, so

that the classical control theory and method can be used to analyze and control the DES. The semi-tensor

product of matrix has been widely used in Boolean networks [12, 13], finite automata [14, 15], network

game theory [16–18] and other fields, and it has solved many logic dynamic system control problems

that were difficult to solve before. In the Petri net field, the semi-tensor product of matrices has obvious

advantages in the representation of the structure properties of the Petri net. Han et al. [19] used the

semi-tensor product of matrices to calculate the siphon of Petri nets. Han et al. [20] used the semi-tensor

product of matrices to described the dynamic behavior of a Petri net and obtained a discrete-time linear

equation. Then, the Petri net was analyzed by using the traditional analysis method. Some conditions

for reachability and controllability of ordinary Petri net were obtained.

In this study, we investigate the stability and stabilization analysis of a colored Petri net based on the

semi-tensor product of matrices. The major novel contributions of this work are as follows.

(1) Definitions of the equilibrium point, k-steps pre-reachability set, stability of equilibrium point, and

stabilizability of a colored Petri net are determined.

(2) The marking evolution equation of colored Petri nets in the framework of Boolean algebra is

developed. By using the obtained marking evolution equation, the condition for the stability of colored

Petri nets is obtained.

(3) In order to study the stabilizability problem of colored Petri net, the concept of the k-step pre-

reachability set of the colored Petri net is given, and the condition of the stabilizability of the equilibrium

point is also obtained.

(4) By using the marking evolution equation and k-steps pre-reachability set, an algorithm is designed

to calculate the marking feedback controller.
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2 Preliminaries

2.1 Notations

• N is a set of natural numbers.

• |X | is the potential of a set.

• N+ is a set of positive integers.

• Rn is a set of all vectors of dimension n.

• Mm×n is a set of m× n real matrices.

• M(i,j) denotes the (i, j) element of matrix M .

• Rowi(M) is the i-th row of matrix M .

• Coli(M) is the i-th column of matrix M .

• Col(M) is the set of all columns of matrix M .

• D := {0, 1}.

• If B ∈ Mm×n and B(i,j) ∈ D, ∀i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}, then B is called the Boolean

matrix.

• Bm×n is a set of m× n Boolean matrices.

• 1k := [1, 1, . . . , 1︸ ︷︷ ︸
k

], δ0n := [0, 0, . . . , 0︸ ︷︷ ︸
n

]T.

• δkn denotes the k-th column of In, 1 6 k 6 n.

• ∆n := {δ1n, δ
2
n, . . . , δ

n
n}, ∆̃n := {δ0n}

⋃
∆n.

• L ∈ Mm×n is a logical matrix; if Col(L) ⊆ ∆m, Lm×n denotes the set of m× n logical matrices.

• L ∈ Mm×n is a generalized logical matrix; if Col(L) ⊆ ∆̃m, L̃m×n denotes the set ofm×n generalized

logical matrix.

• If L ∈ L̃m×n, then it can be expressed as L = [δi1m, δi2m, . . . , δinm ], and it is briefly denoted by L =

δm[i1, i2, . . . , in], where ik ∈ {0, 1, . . . ,m}, 1 6 k 6 n.

• If A ∈ L̃n×m, Ξ(A) := {i|Coli(A) ∈ ∆n}.

• If A = (aij)m×n ∈ Bm×n, B = (bij)m×n ∈ Bm×n, then the matrix A ∨ B := ((aij) ∨ (bij))m×n,

A ∧B := ((aij) ∧ (bij))m×n, where ∨ and ∧ are the logical disjunctive operation and logical conjunctive

operation, respectively.

• If A ∈ Bm×n, Θ(A) := {A ∈ Lm×n|A ∧A = A}, then x ∈ Bm×1, Θ(x) := {y ∈ △m|y ∧ x = y}.

2.2 Semi-tensor product (STP) of matrices

We give some definitions for the semi-tensor product of matrices, which will be used in the sequel.

Definition 1 ([11]). Given A ∈ Mm×n, B ∈ Mp×q, the semi-tensor product of A and B is defined as

A⋉B = (A⊗ It/n)(B ⊗ It/p),

where t = lcm(n, p) is the least common multiple of n and p, and ⊗ is the Kronecker product.

Remark 1. When n = p, A ⋉ B = AB. Therefore, the STP is a generalization of the conventional

matrix product.

Definition 2 ([11]). A swap matrix W[m,n] is an mn×mn matrix, which is defined as

W[m,n] = δmn[1,m+1, 2m+1, . . . , (n−1)m+1, 2,m+2, 2m+2, . . . , (n−1)m+2, . . . ,m, 2m, 3m, . . . , nm].

Lemma 1 ([11]). Let X ∈ Rm and Y ∈ Rn be two column vectors. Then

W[m,n]XY = Y X, W[n,m]Y X = XY.
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2.3 Boolean algebra

Definition 3 ([21]). Given α, β ∈ D, the Boolean addition and Boolean multiplication of α and β are

defined as

α+B β := α ∨ β, α×B β := α ∧ β,

where ∨ and ∧ are the logical disjunctive operation and logical conjunctive operation, respectively.

{D,+B,×B} forms a algebraic system that we call Boolean algebra. Then we can define the Boolean

addition and Boolean multiplication.

Definition 4 ([21]). Assume A = (aij)m×n ∈ Bm×n, B = (bij)m×n ∈ Bm×n. Then

A+B B = (aij +B bij)m×n ∈ Bm×n.

Definition 5 ([21]). Assume A = (aij)m×n ∈ Bm×n, B = (bij)n×s ∈ Bn×s. Then

A⋉B B := C = (cij)m×s ∈ Bm×s,

where cij = (ai1 ×B b1j) +B (ai2 ×B b2j) +B · · · +B (ain ×B bnj). In particular, the Boolean power of

A ∈ Bn×n can be expressed as

A(k) :=A⋉B A⋉B · · ·⋉B A︸ ︷︷ ︸
k

, ∀k ∈ N+.

2.4 Colored Petri net (CPN)

In this subsection, we introduce some concepts about the colored Petri net [2].

The function m ∈ [S → N] is a multi-set m over a non-empty set S. The number of appearances

of the element s in the multi-set m is denoted by a non-negative integer m(s) ∈ N. The formal sum:∑
s∈S m(s)′s represents the multi-set m. The SMS represents the set of all multi-sets over S. The

expression is one kind of colored Petri nets representation. The expression representation uses arcs and

guards, while the function representation uses linear functions between multi-sets.

Before giving the abstract definition of a colored Petri net, we fix the concrete syntax in which the

modeler writes the net expressions.

• The type(v) represents the type of a variable v.

• Type(expr) represents the type of an expression expr.

• Var(expr) represents the set of variables in an expression expr.

• A binding of a set of variables: V associates each variable v ∈ V with an element b(v) ∈ Type(v).

Var(expr) is required to be a subset of the variables of b; the value of variable v can be obtained by

substituting for each variable v ∈ Var(expr) the value b(v) ∈ Type(v), which is determined by the

binding.

A colored Petri net is a tuple CPN = (Σ, P, T,A,N,C,G,E, I) satisfying the following conditions:

(i) Color sets Σ is a finite set of non-empty types.

(ii) P represents a finite set of places.

(iii) T represents a finite set of transitions.

(iv) A represents a finite set of arcs such that: P
⋂
T = P

⋂
A = T

⋂
A = ∅.

(v) N represents a node function. It is defined from A into P × T ∪ T × P .

(vi) C represents a color function. It is defined from P into Σ.

(vii) G represents a guard function. It is defined from T into expressions such that ∀t ∈ T :

[Type(G(t)) = B(t) ∧ Type(Var(G(t))) ⊆ Σ].

(viii) E represents an arc expression function. It is defined from A into expressions such that ∀a ∈ A :

[Type(E(a)) = C(p(a))MS ∧ Type(Var(E(a))) ⊆ Σ], where p(a) is the place of N(a).

(ix) I represents an initialization function. It is defined from P into closed expressions such that:

∀p ∈ P : [Type(I(p)) = C(p)MS].
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A binding of a transition t is a function b defined on Var(t), such that (i) ∀v ∈ Var(t) : b(v) ∈ Type(v).

(ii) G(t)〈b〉. B(t) represents the set of all bindings for t. A place instance is a pair (p, c), where p ∈ P

and c ∈ C(p). A transition instance is a pair (t, b), where t ∈ T and b ∈ B(t). TE represents the

set of all place instances. BE represents the set of all transition instances. A marking is a multi-set

over TE. A step is a non-empty and finite multi-set over BE. The sets of all markings and steps are

denoted by M and Y, respectively. A step Y is enabled in a marking M if the following property

is satisfied: ∀p ∈ P :
∑

(t,b)∈Y
E(p, t)〈b〉 6 M(p). When a step Y is enabled in a marking M1, it

may occur, changing the marking M1 to another marking M2, which is defined by ∀p ∈ P : M2(p) =

(M1(p) −
∑

(t,b)∈Y
E(p, t)〈b〉) +

∑
(t,b)∈Y

E(t, p)〈b〉. The first sum is called the removed tokens and the

second is called the added tokens. If M2 is directly reachable from M1 by the occurrence of the step Y ,

we mark it as M1[Y > M2. We call a transition and a binding for all variables a control quantity. In

order to obtain a better understanding of how a colored Petri net runs, please refer to example 1 in [10],

which is a colored Petri net about dining philosophers.

Lemma 2 ([10]). Assume the number of the markings of the state space is finite. Then the marking

evolution equation of 〈CPN,M0〉 could be expressed as the following linear form:

x(k + 1) = Lu(k)x(k),

where L ∈ L̃s×sr is the control quantity marking transfer matrix; u(k) and x(k) are the vector of the

control quantity and marking at the k-th step, respectively; r is the number of control quantities; and s

is the number of markings.

3 The stability of the colored Petri net

Definition 6. Assume M is a marking of the colored Petri net 〈CPN,M0〉, that is M ∈ R(CPN,M0).

If there exists an enable transition t ∈ T , and M [t > M , we call M an equilibrium point of 〈CPN,M0〉.

Definition 7. Mp is an equilibrium point of 〈CPN,M0〉, and M is a marking of 〈CPN,M0〉. If all the

marking traces starting from M converge to Mp after finite steps, then the marking M is stable at the

equilibrium point Mp. If every marking of 〈CPN,M0〉 is stable at Mp, then 〈CPN,M0〉 is stable at the

equilibrium point Mp.

Let X(M, δ, k) be the set of markings that are reached after k steps from M , and X(M, δ, 0) = M ,

where δ is the firing sequence of length k.

From the above definition, the marking M is stable at the equilibrium point Mp if and only if there

exists T (M) ∈ N+, such that X(M, δ, k) = {Mp}, ∀k > T (M). Let Tp(M) be the smallest positive

integer that makes the above formula hold; we call Tp(M) the transient period of M . If the transient

period of the colored Petri net system is defined as Tp :=maxM∈R(CPN,M0)Tp(M), then we can conclude

that Tp < |R(CPN,M0)|.

Let Γ(M) be the set of enable control quantity under marking M . We then have Lemma 3.

Lemma 3. Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Lu(k)x(k), M := δis ∈

R(CPN,M0) is a marking of 〈CPN,M0〉, and Ξ(LW[s,m]δ
i
s) = {i1, i2, . . . , iq}. Then

Γ(M) = Γ(δis) = {δi1m, δi2m, . . . , δ
iq
m},

where s = |R(CPN,M0)|, and δ
ij
m is the vector form of the control quantity tij , 1 6 j 6 q.

In fact, Γ(M) is a set value functions from M to 2T , that is, Γ : M → 2T , where 2T is the power set

of the control quantity T . By resorting to the semi-tensor product of matrices, Γ(M) could be obtained

in the following way: ũ(k) = Hx(k), where x(k) is the vector form of the marking of step k.

ũ(k) = (u1(k), u2(k), . . . , ur(k))T is the vector form of set function Γ at step k. uj(k) = 1 indicates

that the control quantity tj is enabled at marking x(k); otherwise uj(k) = 0. H ∈ Bm×n is called the

control quantity enable matrix of the colored Petri net 〈CPN,M0〉. We can easily obtain Lemma 4.

Lemma 4. Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Lu(k)x(k) and M :=

δis ∈ R(CPN,M0) is a marking of 〈CPN,M0〉. Then
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Figure 1 The colored Petri net. Figure 2 The state space of the colored Petri net.

Γ(M) = Γ(δis) = Θ(Coli(H)), 1 6 i 6 s.

Example 1. The colored Petri net and its state space form can be seen in Figures 1 and 2. Following

is the definition:

val n = 2;

colset A = with a;

colset B = index b with 1, . . . , n;

colset C = product A×B;

var p : A;

var q : B.

The markings of the state space are as follows:

[1] P1 : 1′a, P2 : 1′b(1) + +1′b(2), P3 : 2′(a, b(1)), P4 : empty;

[2] P1 : 1′a, P2 : 1′b(2), P3 : 1′(a, b(1)), P4 : 1′b(1);

[3] P1 : 2′a, P2 : 2′b(1) + +1′b(2), P3 : 1′(a, b(1)), P4 : empty;

[4] P1 : empty, P2 : 1′b(2), P3 : 3′(a, b(1)), P4 : empty;

[5] P1 : empty, P2 : 1′b(1), P3 : 2′(a, b(1)) + +1′(a, b(2)), P4 : empty;

[6] P1 : 2′a, P2 : 1′b(1) + +1′b(2), P3 : empty, P4 : 1′b(1);

[7] P1 : empty, P2 : empty, P3 : 1′(a, b(1)) + +1′(a, b(2)), P4 : 1′b(1);

[8] P1 : 3′a, P2 : 3′b(1) + +1′b(2), P3 : empty, P4 : empty;

[9] P1 : 1′a, P2 : 2′b(1), P3 : 1′(a, b(1)) + +1′(a, b(2)), P4 : empty;

[10] P1 : 1′a, P2 : 1′b(1), P3 : 1′(a, b(2)), P4 : 1′b(1);

[11] P1 : 2′a, P2 : 3′b(1), P3 : 1′(a, b(2)), P4 : empty.

The manners how the state transfers from one to another:
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[1] 1 → 2 t3 q = b(1) p = a u = 5, [2] 1 → 3 t2 q = b(1) p = a u = 3,

[3] 1 → 4 t1 q = b(1) p = a u = 1, [4] 1 → 5 t1 q = b(2) p = a u = 2,

[5] 2 → 2 t4 q = b(1) u = 7, [6] 2 → 6 t2 q = b(1) p = a u = 3,

[7] 2 → 7 t1 q = b(2) p = a u = 2, [8] 3 → 6 t3 q = b(1) p = a u = 5,

[9] 3 → 8 t2 q = b(1) p = a u = 3, [10] 3 → 1 t1 q = b(1) p = a u = 1,

[11] 3 → 9 t1 q = b(2) p = a u = 2, [12] 4 → 1 t2 q = b(1) p = a u = 3,

[13] 5 → 7 t3 q = b(1) p = a u = 5, [14] 5 → 1 t2 q = b(2) p = a u = 4,

[15] 5 → 9 t2 q = b(1) p = a u = 3, [16] 6 → 6 t4 q = b(1) u = 7,

[17] 6 → 2 t1 q = b(1) p = a u = 1, [18] 6 → 10 t1 q = b(2) p = a u = 2,

[19] 7 → 7 t4 q = b(1) u = 7, [20] 7 → 2 t2 q = b(2) p = a u = 4,

[21] 7 → 10 t2 q = b(1) p = a u = 3, [22] 8 → 11 t1 q = b(2) p = a u = 2,

[23] 8 → 3 t1 q = b(1) p = a u = 1, [24] 9 → 10 t3 q = b(1) p = a u = 5,

[25] 9 → 11 t2 q = b(1) p = a u = 3, [26] 9 → 3 t2 q = b(2) p = a u = 4,

[27] 9 → 5 t1 q = b(1) p = a u = 1, [28] 10 → 10 t4 q = b(1) u = 7,

[29] 10 → 6 t2 q = b(2) p = a u = 4, [30] 10 → 7 t1 q = b(1) p = a u = 1,

[31] 11 → 8 t2 q = b(2) p = a u = 4, [32] 11 → 9 t1 q = b(1) p = a u = 1.

The reachable set of this colored Petri net is R(CPN,M1) = {M1,M2,M3, . . . ,M11}. Let Mi ∼ δi11,

1 6 i 6 11; tj ∼ δj4, 1 6 j 6 4; q(k) = δk2 , k = 1, 2. Then the control quantity can be expressed as

u = δj4 ⋉ δk2 , 1 6 j 6 4, k = 1, 2. The marking evolution equation of the colored Petri net is

x(k + 1) = Lu(k)x(k),

L1 = δ11[4 0 1 0 0 2 0 3 5 7 9], L2 = δ11[5 7 9 0 0 10 0 11 0 0 0],

L3 = δ11[3 6 8 1 9 0 10 0 11 0 0], L4 = δ11[0 0 0 0 1 0 2 0 3 6 8],

L5 = δ11[2 0 6 0 7 0 0 0 10 0 0], L6 = δ11[0 0 0 0 0 0 0 0 0 0 0],

L7 = δ11[0 2 0 0 0 6 7 0 0 10 0], L8 = δ11[0 0 0 0 0 0 0 0 0 0 0],

L = [L1 L2 L3 L4 L5 L6 L7 L8],

L=δ11[4 0 1 0 0 2 0 3 5 7 9 5 7 9 0 0 10 0 11 0 0 0 3 6 8 1 9 0 10 0 11 0 0 0 0 0 0 1 0 2 0 3 6 8 2 0 6 0 7 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 6 7 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0], u(k) = Hx(k), and the control

quantity enable matrix is

H =




1 0 1 0 0 1 0 1 1 1 1

1 1 1 0 0 1 0 1 0 0 0

1 1 1 1 1 0 1 0 1 0 0

0 0 0 0 1 0 1 0 1 1 1

1 0 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0




.

Assume the current marking isM6 = δ611, Γ(M6) = Θ(Col6(H)) = {δ18 , δ
2
8 , δ

7
8}, δ

1
8 = δ14⋉δ12 , δ

2
8 = δ14⋉δ22 ,

δ78 = δ44 ⋉ δ12 . Then when the current marking is M6, the transition is t1, q is b1 or b2, or the transition

is t4, q is b1, and M6 could transfer to other marking.

The marking evolution equation can be transformed into the following form:

x(k + 1) = Lu(k)x(k) = LHx2(k) = LHΦnx(k).

Let A := LHΦn, L = [Blk1(L),Blk2(L), . . . ,Blkr(L)], where Blkj(L) ∈ Bn×n is the j-th sub block of

L and 1 6 j 6 r. According to the definition of L, H , Φn, we have Lemma 5.
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Lemma 5. If the marking evolution equation of the colored Petri net is x(k + 1) = Lu(k)x(k), then

A = LHΦn =
∑r

j=1 Blkj(L),

where H is the control quantity enable matrix of the colored Petri net 〈CPN,M0〉.

In the general case, the matrix A = LHΦn is not a Boolean matrix; therefore it is not convenient to

judge the stability of the colored Petri net 〈CPN,M0〉 by using x(k + 1) = LHΦnx(k). We, therefore,

consider x(k+1) = LHΦnx(k) in the framework of Boolean algebra. The equation could be expressed as

x(k + 1) = Ã⋉B x(k),

where Ã := L⋉BH⋉BΦn = Blk1(L)+BBlk2(L)+B · · ·+BBlkr(L), and x(k) = (x1(k), x2(k), . . . , xn(k))T

is the vector form of the marking of step k.

xj(k) = 1 if and only if the initial marking can reach Mj−1 = δjn under the input sequence of k steps;

otherwise xj(t) = 0. In particular, x(0) = (x1(0), x2(0), . . . , xn(0))T is the initial marking of 〈CPN,M0〉.

Theorem 1. Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Ã ⋉B x(k), and

Mi−1 = δis ∈ R(CPN,M0). Then the reachable set of k steps from Mi−1 is

Rk(CPN,Mi−1) = Θ(Coli(Ã
k)),

where Ãk is the k times Boolean power of Ã.

Proof. As x(k + 1) = Ã⋉B x(k), (Ã)(j,i) = 1 iff Mj−1 = δjs is reachable from Mi−1 = δis. That is there

exists a control quantity tj1 such that Mi−1[tj1 > Mj−1. Thus, in the framework of Boolean algebra

(Ãk)j,i = 1, if there exists a control quantity sequence δ = tj1tj2 · · · tjk ∈ T ∗ of length k, such that

Mi−1[σ > Mj−1, Theorem 1 holds.

Theorem 2. Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Ã ⋉B x(k), and

Mp−1 := δps ∈ R(CPN,M0) is a equilibrium point of 〈CPN,M0〉.

(1) The marking Mi−1 = δis is stable at Mp−1 iff

δps ∈ Θ(Coli(Ã
k)), ∀k > Tp(Mi−1),

where Tp(Mi−1) is the transient period of the marking Mi−1;

(2) The colored Petri net 〈CPN,M0〉 is stable at Mp−1 iff

δps ∈ Θ(Col(Ãk)), ∀k > Tp,

where Tp is the transient period of 〈CPN,M0〉.

Proof. Statement (2) can be inferred from (1); therefore, we prove (1) holds.

If the marking Mi−1 = δis is stable at the equilibrium point Mp−1, now that X(M, δ, k) = {Mp},

∀k > T (M), then there exists Tp(Mi−1) ∈ N+ such that X(Mi−1, δ, k) = {Mp−1}, ∀k > Tp(Mi−1). From

the above Theorem 1, the reachable set from the marking Mi−1 = δis under greater than or equal to

Tp(Mi−1) steps is Θ(Coli(Ã
k)) = {δps}, so that (1) holds, which implies that all the state trajectories

converge to Mp−1 under finite steps starting from Mi−1 = δis. So the marking Mi−1 = δis is stable at

Mp−1.

Example 2. Consider the above colored Petri net, and judge the stability at the equilibrium point

M7 = δ711.

x(k + 1) = Ã⋉B x(k),
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where

Ã =




0 0 1 1 1 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0

1 0 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0

0 1 1 0 0 1 0 0 0 1 0

0 1 0 0 1 0 1 0 0 1 0

0 0 1 0 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0 1

0 0 0 0 0 1 1 0 1 1 0

0 0 0 0 0 0 0 1 1 0 0




.

A positive integer T7 ∈ [1, 11] does not exist, such that ∀k > T7, δ
7
11 ∈ Θ(Col(Ãk)), so the colored Petri

net is not stable at the equilibrium point M7 = δ711.

4 The stabilizability of a colored Petri net

In this section, we study the feedback stabilization of a colored Petri net. First, we study the k-steps

pre-reachability set of the colored Petri net and its related properties. By using these properties, we give

the condition of stabilization of the colored Petri net and design an algorithm to calculate the feedback

controller.

4.1 Pre-reachability set of colored Petri net

Definition 8. Assume M ∈ R(CPN,M0) is a marking of 〈CPN,M0〉. The k-steps pre-reachability set

of M , denoted by PRk(CPN,M), is defined as {M ′ ∈ R(CPN,M0) | ∃δ = tj1tj2 · · · tjk ∈ T ∗, such that

M ′[δ > M}, that is

PRk(CPN,M) = {M ′ ∈ R(CPN,M0) | ∃δ = tj1tj2 · · · tjk ∈ T ∗, such that M ′[δ > M}.

Proposition 1. Assume M ∈ R(CPN,M0) is a marking of the colored Petri net 〈CPN,M0〉 and

M ∈ PR1(CPN,M). Then

PRk(CPN,M) ⊆ PRk+1(CPN,M), ∀k > 1.

Proof. If the k-steps pre-reachability set of M is PRk(CPN,M), then ∀Mi ∈ PRk(CPN,M), Mi could

reach M by k steps, and M could reach M by 0 step. Mi could reach M by k + 1 steps, that is,

Mi ∈ PRk+1(CPN,M); therefore PRk(CPN,M) ⊆ PRk+1(CPN,M), ∀k > 1.

Proposition 2. Assume M ∈ R(CPN,M0) is a marking of 〈CPN,M0〉.

(1) If PR1(CPN,M) = {M}, then PRk(CPN,M) = {M}, ∀k > 1;

(2) If there exists i ∈ N+ such that PRi(CPN,M) = PRi+1(CPN,M), then PRk(CPN,M) =

PRi(CPN, M), ∀k > i.

Proof. Statement (1) obviously holds. Next we prove that (2) holds.

We only need to prove that (2) holds when k = i + 2; other cases can be proved in a similar way. On

the one hand, because PRi(CPN,M) = PRi+1(CPN,M), PRi+1(CPN,M) ⊆ PRi+2(CPN,M), that is

PRi(CPN,M) ⊆ PRi+2(CPN,M).

On the other hand, if the marking M ′ ∈ PRi+2(CPN,M), then there exists a firing sequence δ =

tj1tj2 · · · tjitji+1tji+2 ∈ T ∗, such that M ′[δ > M . There must exist two markings M ′′ ∈ PRi+1(CPN,M)

and M ′′′ ∈ PRi(CPN,M), such that M ′′[tj2 > M ′′′ and M ′[tj1 > M ′′. Because M ′′ ∈ PRi+1(CPN,M)
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and PRi(CPN,M) = PRi+1(CPN,M), M ′′ ∈ PRi(CPN,M) and M ′ ∈ PRi+1(CPN,M). Thus M ′ ∈

PRi(CPN,M), that is

PRi+2(CPN,M) ⊆ PRi(CPN,M).

So PRi(CPN,M) = PRi+2(CPN,M) holds.

We can calculate the k-steps pre-reachability set of the colored Petri net by using Proposition 3.

Proposition 3. Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Ã ⋉B x(k) and

Mi−1 = δis ∈ R(CPN,M0) is a marking of 〈CPN,M0〉. Then

PRk(CPN,Mi−1) = Θ((Rowi(Ã)
k)T),

where s = |R(CPN,M0)|, and Ã is a Boolean matrix.

Proof. From the marking evolution equation x(k+1) = Ã⋉Bx(k), (Ã)(i,j) = 1 iff Mi−1 = δis is reachable

from Mj−1 = δjs, that is, there exists an enable control quantity tj1 ∈ T such that Mj−1[tj1 > Mi−1;

then in the framework of Boolean algebra, (Ãk)i,j = 1 iff there exists an enable control quantity sequence

δ = tj1tj2 · · · tjk ∈ T ∗ of k steps, such that Mj−1[δ > Mi−1. The theorem holds.

Proposition 4. Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Lu(k)x(k), and

Mi−1 = δis ∈ R(CPN,M0) is a marking of 〈CPN,M0〉, where s = |R(CPN,M0)| and the control quantity

marking transfer matrix is L := δs[α1, α1, . . . , αrs]. Then

(1) PR1(CPN,Mi−1) = {δps |α(j−1)s+p = i, 1 6 j 6 r};

(2) PRk+1(CPN,Mi−1) = ∪{PR1(CPN,M
′) |M ′ ∈ PRk(CPN,Mi−1)}, k = 1, 2, 3, . . ..

Proof. The marking evolution equation of colored Petri net is x(k+1) = Lu(k)x(k). Then L⋉δjm⋉δps =

δ
α(j−1)s+p

s . δps ∈ PR1(CPN,Mr−1) iff there exists an enable control quantity tj = δjm ∈ T , such that

δ
α(j−1)s+p

s = δrs ; therefore (1) holds. The status of (2) can be concluded from the definition of a pre-

reachability set.

4.2 Marking feedback stabilization

Consider the colored Petri net 〈CPN,M0〉; the marking evolution equation is x(k + 1) = Lu(k)x(k). If

〈CPN,M0〉 is stable, we want to find an optimal marking feedback controller u(k) = f(x(k)) under which

the colored Petri net could be stabilized to M ∈ R(CPN,M0), where the controller function f has one to

one mapping. By resorting to the semi-tensor product of matrices, the marking feedback controller can

be expressed as follows:

u(k) = Kx(k).

We call the logical matrix K ∈ Mr×s the marking feedback matrix and it has the following form:

K = δr[k1, k2, . . . , ks],

where s = |R(CPN,M0)|, kj ∈ {1, 2, . . . , r}, and 1 6 j 6 s.

With the marking feedback controller acting on the 〈CPN,M0〉, the dynamic behavior of the colored

Petri net could be expressed as

x(k + 1) = LKΦnx(k).

If the marking feedback matrix K = δr[k1, k2, . . . , ks] satisfies K ∈ Θ(H), then the marking feedback

controller u(k) = Kx(k) is permissible. Let F := LKΦn; then the marking feedback matrix is permissible

iff F = LKΦn is a logical matrix.

Definition 9. Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Lu(k)x(k) and

M ∈ R(CPN,M0) is an equilibrium point of 〈CPN,M0〉. If there exists a marking feedback controller,

such that 〈CPN,M0〉 is stable at M , then the colored Petri net could be stabilized to the equilibrium

point M .

We could use Theorem 3 to judge the stabilizability of a colored Petri net.



Zhao J T, et al. Sci China Inf Sci September 2019 Vol. 62 192202:11

Theorem 3. Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Lu(k)x(k) and

Mp−1 := δps ∈ R(CPN,M0) is an equilibrium point. Then the colored Petri net could be stabilized to the

equilibrium point Mp−1 iff there exists τ ∈ N+ (1 6 τ 6 s− 1), such that

PRτ (CPN,Mp−1) = ∆s,

where ∆s is the vector form of the pre-reachability set of 〈CPN,M0〉 and s = |R(CPN,M0)|.

Proof. The necessity is obviously set up. Next, we prove the sufficiency. Assume PRτ (CPN,Mp−1) = ∆s

is set up, where 1 6 τ 6 s− 1.

∆s = PRτ (CPN,Mp−1)

= [PRτ (CPN,Mp−1) \ PRτ−1(CPN,Mp−1)] ∪ [PRτ−1(CPN,Mp−1)]

= [PRτ (CPN,Mp−1) \ PRτ−1(CPN,Mp−1)] ∪ [PRτ−1(CPN,Mp−1) \ PRτ−2(CPN,Mp−1)]

∪ [PRτ−2(CPN,Mp−1)]

= [PRτ (CPN,Mp−1) \ PRτ−1(CPN,Mp−1)] ∪ [PRτ−1(CPN,Mp−1) \ PRτ−2(CPN,Mp−1)]

∪ [PRτ−2(CPN,Mp−1) \ PRτ−3(CPN,Mp−1)] ∪ [PRτ−3(CPN,Mp−1)]

...

= [PRτ (CPN,Mp−1) \ PRτ−1(CPN,Mp−1)] ∪ [PRτ−1(CPN,Mp−1) \ PRτ−2(CPN,Mp−1)]

∪ [PRτ−2(CPN,Mp−1) \ PRτ−3(CPN,Mp−1)] ∪ · · · ∪ [PR1(CPN,Mp−1)].

For any marking δis and i ∈ {1, 2, . . . , s}, there exists a unique li ∈ [1, τ ], such that δis ∈ [PRli(CPN,

Mp−1) \ PRli−1(CPN,Mp−1)], PR0(CPN,Mp−1) = ∅.

When li = 1, there exists 1 6 ki 6 r, such that Lδki
r δis = δ

α(ki−1)s+i

s = δps .

When 2 6 li 6 τ , there exists 1 6 ki 6 r, such that Lδki
r δis = δ

α(ki−1)s+i

s /∈ [PRli(CPN,Mp−1) \

PRli−1(CPN,Mp−1)]. By repeating this process, the marking δis could stabilize to the equilibrium point

δps .

Assume the marking feedback controller is k := δr[k1, k2, . . . , ks] and Mi−1 = δis ∈ ∆s.

When Mi−1 = δis ∈ PR1(CPN,Mp−1), L(kδ
i
s)δ

i
s = Lδki

r δis = δps .

When Mi−1 = δis ∈ [PRli(CPN,Mp−1) \ PRli−1(CPN,Mp−1)], 2 6 li 6 τ , L(Kδis)δ
i
s = Lδki

r δis =

δ
α(ki−1)s+i

s /∈ [PRli(CPN,Mp−1) \ PRli−1(CPN,Mp−1)]. By repeating this process, the marking δis could

be stabilized to the equilibrium point δps . The marking feedback controller could be calculated by Algo-

rithm 1.

Algorithm 1 Calculating the marking feedback controller of a colored Petri net

Assume the marking evolution equation of 〈CPN,M0〉 is x(k + 1) = Lu(k)x(k), and Mp−1 = δ
p
s ∈ R(CPN,M0) is an

equilibrium point of 〈CPN,M0〉. We could calculate the marking feedback controller u(k) = Kx(k) by the following steps.

Under the marking feedback controller, the colored Petri net 〈CPN,M0〉 could be stabilized to the equilibrium point Mp−1.

Step 1: Calculate the k-steps pre-reachability set PRk(CPN,Mp−1). Verify whether there exists a positive integer 1 6

τ 6 s− 1, such that PRτ (CPN,Mp−1) = ∆s. If τ does not exist, the algorithm terminates. Otherwise, go to the next step.

Step 2: Express the ∆s as the union of the pre-reachability set.

Step 3: For every i ∈ {1, 2, . . . , s}, use δis ∈ PRli
(CPN,Mp−1) \ PRli−1(CPN,Mp−1) to calculate li.

Step 4: Calculate ki, i = 1, 2, . . . , s.

Thus, we can obtain the marking feedback controller u(k) = Kx(k).

Example 3. Consider the stabilizability of a colored Petri net at the equilibrium point M6.

First, we verify whether the colored Petri net is stable at the equilibrium point M6 = δ611. From the

above proposition, we can get the pre-reachability set of M6 = δ611, that is

PR1(CPN,M6) = {M2,M3,M6,M10},

PR2(CPN,M6) = {M1,M2,M3,M6,M7,M8,M9,M10},

PR3(CPN,M6) = {M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11},
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Table 1 Pre-reachability set of M6

3 2 1 0

M4,M5,M11 M1,M7,M8,M9 M2,M3,M6,M10 M6

PR3(CPN,M6) = ∆11.

Therefore, the colored Petri net can be stabilized to M6. The pre-reachability set of M6 can be seen

in Table 1.

PR1(CPN,M6) = {M2,M3,M6,M10},

PR2(CPN,M6) \ PR1(CPN,M6) = {M1,M7,M8,M9},

PR3(CPN,M6) \ PR2(CPN,M6) = {M4,M5,M11}.

It can be seen that the pre-reachability set is disjoint.

L = δ11[4 0 1 0 0 2 0 3 5 7 9 5 7 9 0 0 10 0 11 0 0 0 3 6 8 1 9 0 10 0 11 0 0 0 0 0 0 1 0 2 0 3 6 8 2 0 6 0 7 0

0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 6 7 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0].

When LKδ411δ
4
11 = δ111, k4 = δ38 . When LKδ411δ

4
11 = δ711, LKδ411δ

4
11 = δ811, and LKδ411δ

4
11 = δ911, k4 does

not exist.

When LKδ511δ
5
11 = δ111, k5 = δ48 ; when LKδ511δ

5
11 = δ711, k5 = δ58 ; when LKδ511δ

5
11 = δ911, k5 = δ38 ; and

when LKδ511δ
5
11 = δ811, k5 does not exist.

When LKδ1111δ
11
11 = δ111 and LKδ1111δ

11
11 = δ711, k11 does not exist. When LKδ1111δ

11
11 = δ811, k11 = δ48 ; and

when LKδ1111δ
11
11 = δ911, k11 = δ18 .

When LKδ111δ
1
11 = δ211, k1 = δ58 ; when LKδ111δ

1
11 = δ311, k1 = δ38 ; and when LKδ111δ

1
11 = δ611 and

LKδ111δ
1
11 = δ1011 , k11 does not exist.

When LKδ711δ
7
11 = δ211, k7 = δ48 ; when LKδ711δ

7
11 = δ1011 , k7 = δ38 ; and when LKδ711δ

7
11 = δ311 and

LKδ711δ
7
11 = δ611, k7 does not exist.

When LKδ811δ
8
11 = δ1011 , LKδ811δ

8
11 = δ611, and LKδ811δ

8
11 = δ211, k8 does not exist. When LKδ811δ

8
11 = δ311,

k8 = δ18 .

When LKδ911δ
9
11 = δ611 and LKδ911δ

9
11 = δ211, k9 does not exist. When LKδ911δ

9
11 = δ311, k9 = δ48 ; and

when LKδ911δ
9
11 = δ1011 , k9 = δ58 .

When LKδ211δ
2
11 = δ611, k2 = δ38 ; when LKδ311δ

3
11 = δ611, k3 = δ58 ; when LKδ611δ

6
11 = δ611, k6 = δ78 ; and

when LKδ1011δ
10
11 = δ611, k10 = δ48 . Therefore,

K =




0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 1 1 1

1 0 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0




.

The marking feedback controller is

∀u(t) = K̃x(t),
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where K̃ ∈ Θ(K). For example,

K̃ =




0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0




.

Assume the current marking is M5 = δ511.

L⋉ k ⋉ δ511 ⋉ δ511 = L⋉ δ38 ⋉ δ511 = δ911, L⋉ k ⋉ δ911 ⋉ δ911 = L⋉ δ48 ⋉ δ911 = δ311,

L⋉ k ⋉ δ311 ⋉ δ311 = L⋉ δ58 ⋉ δ311 = δ611, L⋉ k ⋉ δ611 ⋉ δ611 = L⋉ δ78 ⋉ δ611 = δ611.

Then, via the marking sequence M5 → M9 → M3 → M6, M5 can reach M6.

Then, K̃ has the following value:

K̃ =




0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 1

1 0 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0




.

Assume the current marking is M11 = δ1111 .

L⋉ k ⋉ δ1111 ⋉ δ1111 = L⋉ δ48 ⋉ δ1111 = δ811, L⋉ k ⋉ δ811 ⋉ δ811 = L⋉ δ18 ⋉ δ811 = δ311,

L⋉ k ⋉ δ311 ⋉ δ311 = L⋉ δ58 ⋉ δ311 = δ611, L⋉ k ⋉ δ611 ⋉ δ611 = L⋉ δ78 ⋉ δ611 = δ611.

Then, via the marking sequence M11 → M8 → M3 → M6, M11 could reach M6. There are 162 marking

feedback controllers, and via any one of them, the current marking could be stabilized to the equilibrium

point M6.

5 Conclusion

In this paper, a study on the stability and stabilization problem of colored Petri net is described. The

condition of stability and stabilization of the equilibrium point based on the semi-tensor product of

matrices is given. An algorithm is presented to calculate the marking feedback controller. Two examples

are given to illustrate the feasibility and effectiveness of the proposed method. By using the proposed

method, we can judge the stability and stabilization of a colored Petri net by the matrix approach.

The focus of the current study has been the stability of a single marking. In the future, we shall study

the stability of a marking set, which is also a meaningful topic.
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