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Abstract This paper addresses the stabilization problem of sector-bounded nonlinear systems with sampled

measurements via discrete-time stochastic feedback control. Unlike the previous studies, the closed-loop

system is modeled as an impulsive stochastic differential equation. By developing a quasi-periodic polynomial

Lyapunov function and sampling-time-dependent Lyapunov function based methods, two sufficient conditions

for almost sure exponential stability are derived in terms of differential matrix inequalities (DMIs) and linear

matrix inequalities (LMIs). It is shown that the DMI-based conditions can be formulated as a sum of squares

(SOSs). Moreover, the obtained results are adapted to sampled-data stochastic/deterministic systems. The

numerical examples illustrate the theoretical results.
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1 Introduction

In stochastic modeling, noise is typically regarded as an undesirable disturbance to dynamical systems.

However, stochastic noise can also provide positive effects if used appropriately. Stochastic stabilization,

which has been successfully applied to many research fields such as finance [1], ecology [2], and automatic

control [3, 4], is a typical application of the beneficial use of noise. From the perspective of control

theory, the framework of stochastic stabilization is to design an artificial multiplicative noise such that

the closed-loop system is almost surely asymptotically stable. Since Has’minskii [5] employed two white

noise sources to stabilize an unstable system, a significant number of research results on this topic have

been reported. According to Arnold et al. [6], linear time-invariant systems can be stabilized by a zero-

mean stationary parameter noise if and only if the trace of its system matrix is less than zero. Mao et

al. [2, 7–10] developed a general theory on stochastic stabilization and the destabilization of (functional)

differential equations. Compared with [7, 10], Huang [11] proposed improved results on the stochastic

stabilization and destabilization of nonlinear differential equations. Nishimura [12] utilized Gaussian

white noise to control dynamical systems to meet the locally almost sure asymptotic stability. Based on

the stochastic control Lyapunov function, a stabilizing controller together with the Wiener process for

deterministic nonlinear systems was designed in [4]. The authors of [13] showed that unstable differential

equations can be stabilized by a stochastic delay feedback controller if the time delay is sufficiently small.

All the aforementioned state-feedback controllers are designed in a continuous-time manner. Re-

cently, for the first time, Mao [14] proposed a discrete-time stochastic feedback controller Kx(k∆)ẇ(t),

*Corresponding author (email: shixianluo@126.com, aufqdeng@scut.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9557-x&domain=pdf&date_stamp=2019-7-30
https://doi.org/10.1007/s11432-018-9557-x
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9557-x
https://doi.org/10.1007/s11432-018-9557-x


Luo S X, et al. Sci China Inf Sci September 2019 Vol. 62 192201:2

t ∈ [k∆, (k + 1)∆) to stabilize an unstable deterministic system ẋ(t) = f(x(t)) when ∆ is sufficiently

small, where w(t) is a Wiener process. As the discrete-time stochastic feedback strategy only requires

the measured information at discrete time instants, it can effectively reduce the bandwidth usage and

communication cost. From a practical perspective, a larger upper bound of the sampling period would

be desirable. However, the results of [14] neither provided an estimation of the upper bound of the

sampling period, nor solved the controller synthesis problem. The idea of the approach [14] is based on

the assumption that a continuous-time controller (Kx(t)ẇ(t)) exists such that the resulting continuous-

time system (dx(t) = f(x(t))dt + Kx(t)dw(t)) is stochastically stable, and subsequently analyzing the

relationship between the closed-loop system (dx(t) = f(x(t))dt+Kx(k∆)dw(t)) and the continuous-time

system. Some important results [13, 15–17] are also based on this idea. In many practical systems (such

as second-order systems, see Example 2), the continuous feedback controller cannot stabilize the systems

but the discrete-time feedback controller can. Obviously, these approaches [13–16] are not applicable for

analyzing these systems. Moreover, it is noteworthy that the input-delay approach [18] is an effective

method for analyzing deterministic sampled-data systems. Note that in [19], their proof of almost sure

stability of the scalar delay stochastic system dx(t) = ax(t−δ)dw(t) was already difficult and complicated.

Hence, the input-delay approach cannot be extended to solve the stochastic stabilization problem.

Motivated by the aforementioned observations, this paper focuses on the stochastic stabilization of

sector-bounded nonlinear systems under aperiodically sampled measurements. First, we represent the

considered systems as an impulsive stochastic system. Subsequently, inspired by the studies of [20,21], we

propose two new approaches, namely the quasi-periodic polynomial Lyapunov function method and the

sampling-time-dependent discretized Lyapunov function method, for an almost sure exponential stability

analysis. The stabilization conditions are expressed in terms of sum of squares (SOSs) and linear matrix

inequalities (LMIs), separately, which reveal quantitatively the effect of sampling periods on the stability

performance. Moreover, our results include many existing results on the deterministic sampled-data

control systems.

The paper is organized as follows. In Section 2, we model the discrete-time feedback controlled systems

as an impulsive stochastic system. Two novel Lyapunov-function-based methods are proposed for the

stability analysis and the synthesis of the impulsive system in Section 3. Numerical examples are provided

in Section 4, and the conclusion is drawn in Section 5.

Notation. Let R and R+ denote a set of real numbers and a set of nonnegative real numbers,

respectively. N represents a set of positive integers, and let N0 = N ∪ {0}. R
n×m is the set of all

n × m-dimensional real matrices and the notation A > 0, for A ∈ R
n×n means that the matrix A is

positive definite. The symmetric elements of a symmetric matrix are denoted by ∗. ‖ · ‖ denotes the

Euclidean vector norm. Cs denotes a set of sector-bounded nonlinear functions, i.e., Cs = {φ : R →
R | (φ(ξ) − κ−ξ)(φ(ξ) − κ+ξ) 6 0, φ(0) = 0, ∀ξ ∈ R, κ−, κ+ ∈ R, κ− 6 κ+}. For x ∈ R

n, the ring of

polynomials in x is denoted as R[x], and R
n×m[x] denotes the ring of polynomials matrices of dimensions

n×m.
∑

[x] = {p(x) ∈ R[x] | p(x) = ∑d
i=1 g

2
i (x) ∈ R[x]} denotes the set of SOS polynomials on variable

x. The set of SOS matrices of dimension n is denoted by
∑n×n

[x].

2 Problem formulation

To generalize our results, we consider the following Itô-type stochastic system with control input that is

not only in the drift part but also in the diffusion part:

{

dx(t) = [A0x(t) +A1f(x(t)) +B0u(t)] dt+ [Dx(t) +B1u(t)] dw(t), t > t0,

x(t0) = x0,
(1)

where x(t) ∈ R
n is the state variable, A0, A1, D ∈ R

n×n are constant matrices; B0, B1 ∈ R
n×nb are

control input matrices; w(t) is a one-dimensional Wiener process, which is defined on the filtered complete

probability space: (Ω,F ,Ft,P) [2]. f : Rn → R
n : xi → fi(xi) is nonlinear vector function that satisfies

Assumption 1.
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Assumption 1. The scalar functions fi, i = 1, 2, . . . , n are continuous and belong to the class Cs, i.e.,
κ−i and κ+i exist such that for any xi ∈ R,

(

fi(xi)− κ−i xi
) (

fi(xi)− κ+i xi
)

6 0.

We set L1 = diag(κ+1 κ
−
1 , κ

+
2 κ

−
2 , . . . , κ

+
nκ

−
n ) and L2 = − 1

2diag(κ
+
1 + κ−1 , κ

+
2 + κ−2 , . . . , κ

+
n + κ−n ).

Moreover, we assume the measured output of system (1) is given by

yk = Cx(tk), k ∈ N0, (2)

where C ∈ R
nc×n, {tk}k∈N0 is the sampling time sequence belonging to S(σ0, σ1) , {{tk}k∈N0 |σ0 6

tk+1 − tk 6 σ1, t0 = 0, σ0, σ1 ∈ R+, σ0 6 σ1}. Subsequently the control input signal is constructed as

u(t) = Kyk, t ∈ [tk, tk+1), k ∈ N0, (3)

where K ∈ R
nb×nc is control gain matrix to be designed.

Define z(t) = [xT(t) uT(t)]T, I0 = [In×n 0n×nb
], I1 = [0nb×n Inb×nb

], Ā0 =
[

A0 B0

0nb×n 0nb×nb

]

, Ā1 = IT
0 A1,

D̄ =
[

D B1

0nb×n 0nb×nb

]

, and J̄ =
[

In×n 0n×nb

KC 0nb×nb

]

, J0 + IT
1 KCI0 with J0 = [

In×n 0n×nb

0nb×n 0nb×nb

]. Then, system (1)

with measured output (2) and control input (3) can be modeled as the following impulsive stochastic

system:










dz(t) =
[

Ā0z(t) + Ā1f(I0z(t))
]

dt+ D̄z(t)dw(t), t 6= tk,

z(t) = J̄z(t−), t = tk, k ∈ N,

z(t0) = [x0,KCx0]
T , z0,

(4)

where z(tk) , z(t+k ) = lims→0+ z(tk + s), and z(t−k ) = lims→0− z(tk + s). Thus far, the discrete-time

stochastic feedback control problem (1)–(3) is reduced to find a gain matrix K such that the impulsive

stochastic system (4) is almost surely exponentially stable.

Definition 1 ( [2]). The zero solution of the closed-loop system (1)–(3) is uniformly almost surely

exponentially stable over S(σ0, σ1), if a positive scalar γ exists, such that for any sampling time sequence

{tk}k∈N0 ∈ S(σ0, σ1) and any x0 ∈ R
n, it holds that

lim sup
t→+∞

1

t
ln ‖x(t)‖ 6 −γ, a.s..

3 Main results

In this section, we will develop two novel Lyapunov-function-based approaches for discussing the almost

sure stability and stabilization of system (4).

3.1 Stability analysis

3.1.1 Quasi-periodic polynomial Lyapunov function approach

Theorem 1. Given a class S(σ0, σ1) of sampling time sequences and a positive scalar γ, consider system

(4). If there exist a positive definite matrix P (σ) ∈ R
(n+nb)×(n+nb)[σ], a positive definite diagonal matrix

Λ(σ) ∈ R
n×n[σ], and a scalar c such that

Ξ(σ) =

[

Ψ(σ) P (σ)Ā1 + IT
0 Λ(σ)L2

∗ −Λ(σ)

]

6 0 holds for σ ∈ [0, σ1], and (5)

J̄TP (0)J̄ − P (σ) 6 0 holds for σ ∈ [σ0, σ1], (6)

where Ψ(σ) = Ṗ (σ) + P (σ)(Ā0 − cD̄) + (Ā0 − cD̄)TP (σ) + D̄TP (σ)D̄ + (γ + 0.5c2)P (σ) + IT
0 Λ(σ)L1I0,

then, system (4) is uniformly almost surely exponentially stable over S(σ0, σ1).
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Proof. For any x0 ∈ R
n, we define the stopping time τ(ω) = inf{t > t0 | z(t, ω) = 0}, and denote

Ω1 = {ω ∈ Ω : τ(ω) < +∞}, Ω2 = Ω \ Ω1. Obviously, for any ω ∈ Ω1, z(t, ω) ≡ 0 as t > τ(ω),

whence z(t, ω) is almost surely exponentially stable on Ω1. Therefore, we only need to show that for all

ω ∈ Ω2, z(t, ω) is almost surely exponentially stable. Hence, we introduce a quasi-periodic polynomial

Lyapunov function candidate for system (4): V1(t) , V1(t, z(t)) = zT(t)P̃ (t)z(t) with P̃ (t) = P (t − tk)

for t ∈ [tk, tk+1), k ∈ N0. Applying Itô’s formula to V1(t), we obtain

dV1(t) = LV1(t, z(t))dt+HV1(t, z(t))dw(t), (7)

where LV1(t, z) = zT[ ˙̃P (t)+P̃ (t)Ā0+Ā
T
0 P̃ (t)+D̄

TP̃ (t)D̄]z+2zTP̃ (t)Ā1f(I0z) andHV1(t, z) = zT[P̃ (t)D̄+

D̄TP̃ (t)]z. It is noteworthy that for ω ∈ Ω2, z(t, ω) 6= 0 for any t ∈ [tk, tk+1), k ∈ N0. Therefore, applying

Itô’s formula again with (7), we obtain

d lnV1(t) = V −1
1 (t)

[

LV1(t, z(t))−
1

2
V −1
1 (t) (HV1(t, z(t)))2

]

dt+ V −1
1 (t)HV1(t, z(t))dw(t)

= V −1
1 (t)

{

LV1(t, z(t)) + 0.5c2V1(t)− cHV1(t, z(t))
− 0.5V −1

1 (t)[HV1(t, z(t))− cV1(t)]
2
}

dt+ V −1
1 (t)HV1(t, z(t))dw(t). (8)

We set Λ(t− tk) = diag(α1(t− tk), . . . , αn(t− tk)). Recalling Assumption 1, we obtain ∀t ∈ [tk, tk+1),

k ∈ N0,

0 6
n
∑

i=1

αi(t− tk)
(

fi(xi(t))− κ−i xi(t)
) (

κ+i xi(t)− fi(xi(t))
)

= xT(t)Λ(t− tk)L1x(t)− fT(x(t))Λ(t − tk)f(x(t)) + 2xT(t)Λ(t− tk)L2f(x(t))

= zT(t)IT
0 Λ(t− tk)L1I0z(t)− fT(I0z(t))Λ(t− tk)f(I0z(t)) + 2zT(t)IT

0 Λ(t− tk)L2f(I0z(t)). (9)

Applying (9) to (8) and using condition (5), we obtain

d lnV1(t) 6
[

V −1
1 (t)ηT(t)Ξ(t − tk)η(t) − γ

]

dt+ V −1
1 (t)HV1(t, z(t))dw(t)

6 − γdt+ V −1
1 (t)HV1(t, z(t))dw(t),

where η(t) = col(z(t), f(I0z(t))). Integrating both sides of the inequality above from tk to t, we obtain

lnV1(t) 6 −γ(t− tk) + lnV1(tk) +

∫ t

tk

V −1
1 (s)HV1(s, z(s))dw(s). (10)

Now, let us prove that V1(t) is not increasing at the sampling instant tk, k ∈ N0. By inequality (6),

we have

V1(tk) = zT(tk)P̃ (tk)z(tk) = zT(t−k )J̄
TP (0)J̄z(t−k )

6 zT(t−k )P (t
−
k − tk−1)z(t

−
k ) = V1(t

−
k ),

where lnV1(tk) 6 lnV1(t
−
k ). Combining this with (10), we obtain lnV1(t) 6 −γ(t− t0)+ lnV1(t0)+M(t),

whereM(t) =
∫ t

t0
V −1
1 (s)HV1(s, z(s))dw(s). As shown,M(t) is a continuous local martingale with respect

to {Ft}t>t0 and vanishes at t0. Moreover, its quadratic variation is given by

〈M(t),M(t)〉 =
∫ t

t0

∣

∣

∣

∣

∣

zT(s)[P̃ (s)D̄ + D̄TP̃ (s)]z(s)

zT(s)P̃ (s)z(s)

∣

∣

∣

∣

∣

2

ds 6 β2(t− t0),

where β = λP̃ D̄/λP̃ , λP̃ D̄ = supσ∈[0,σ1]{|λmax(P (σ)D̄+ D̄TP (σ))|, |λmin(P (σ)D̄+ D̄TP (σ))|}, and λP̃ =

infσ∈[0,σ1]{λmin(P (σ))}. Therefore, lim supt→∞
〈M(t),M(t)〉

t
= β2 < ∞. According to the strong law of

large numbers, we can obtain

lim sup
t→∞

M(t)

t
= 0, a.s..
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Thus, we obtain an estimate

lim sup
t→+∞

‖z(t)‖
t

6 −γ
2
, a.s..

Therefore, system (4) is uniformly almost surely exponentially stable over S(σ0, σ1).
It is noteworthy that the sufficient conditions presented in Theorem 1 are infinite-dimensional feasibility

problems that may be difficult to solve. Fortunately, the SOS approach provides an effective method for

solving such problems. Therefore, those infinite-dimensional matrix inequalities of Theorem 1 must be

converted to the form of SOS-based conditions. Hence, we utilize the positivstellensatz to formulate

Theorem 1 into SOS programming.

Proposition 1. Theorem 1 can be verified by solving the SOS programming: for given ε > 0 and c ∈ R,

find polynomial matrices P (σ) ∈ R
(n+nb)×(n+nb)[σ], Λ(σ) ∈ R

n×n[σ], Q1(σ) ∈
∑(2n+nb)×(2n+nb)[σ], and

Q2(σ) ∈
∑(n+nb)×(n+nb)[σ] such that

P (σ)− εI ∈ ∑(n+nb)×(n+nb)[σ],

Λ(σ)− εI ∈ ∑n×n
[σ],

− Ξ(σ) − g0(σ)Q1(σ) ∈
∑(2n+nb)×(2n+nb)[σ],

− J̄ TP (0)J̄ + P (σ)− g1(σ)Q2(σ) ∈
∑(n+nb)×(n+nb)[σ],

where g0(σ) = σ(σ1 − σ) and g1(σ) = (σ − σ0)(σ1 − σ).

Remark 1. The SOS programs can be solved by using the package SOSTOOLS [22] or YALMIP [23]

together with a semidefinite programming solver, such as SeDuMi [24]. Moreover, it is well known

that LMI-based conditions are not only easy to be solved but also provide a simple method to solve the

controller synthesis problem. In the following, we will develop a constructive analysis method to establish

an LMI-based stability criterion for the system (4).

3.1.2 Sampling-time-dependent discretized Lyapunov function approach

Before introducing the new Lyapunov function, we first introduce some auxiliary functions. We divide the

interval [tk, tk+1), k ∈ N0 into N subintervals ∆ki , [tk + ihk, tk + (i+ 1)hk), i ∈ SN , {0, 1, . . . , N − 1}
in which hk = tk+1−tk

N
. Subsequently, we define some piecewise linear functions as follows:

ρ0i(t) =
tk + (i+ 1)hk − t

hk
, t ∈ ∆ki, i ∈ SN , k ∈ N0,

˜̺(t) =
1

tk+1 − tk
, ̺(t) = (t− tk)ρ̃(t), t ∈ [tk, tk+1).

We set ρ1i(t) = 1 − ρ0i(t). It is easily shown that for any t ∈ R+, 1/hk = N ˜̺(t), ρ0i(t) ∈ [0, 1],

ρ1i(t) ∈ [0, 1], and

ρ0i(tk + ihk) = ρ1i((tk + (i+ 1)hk)
−) = ̺(t−k ) = 1,

ρ0i((tk + (i + 1)hk)
−) = ρ1i(tk + ihk) = ̺(tk) = 0.

For any impulse sequence {tk}k∈N0 ∈ S(σ0, σ1), there exists θ0(t) : R+ → [0, 1] such that

˜̺(t) =
θ0(t)

σ0
+
θ1(t)

σ1
,

where θ1(t) = 1− θ0(t) and

θ0(t) =











˜̺(t)− 1/σ1
1/σ0 − 1/σ1

, if σ0 6= σ1,

1, if σ0 = σ1.
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Now, we introduce the piecewise Lyapunov function candidate for system (4) described by

V2(t) , V2(t, z(t)) = ψ(t)zT(t)P (t)z(t), (11)

where ψ(t) = µ̺(t) with µ > 0, P (t) =
∑N−1

i=0 Pi(t)χi(t), Pi(t) =
∑1

j=0 ρji(t)Pi+j , t ∈ ∆ki, i ∈ SN with

P ī > 0, ī = 0, 1, 2, . . . , N , and χi(t) is the indicator function of the interval ∆ki, for i ∈ SN . It can be

easily verified that V2(t) is continuous in every sampling time interval (tk, tk+1), k ∈ N0.

Theorem 2. Given a class S(σ0, σ1) of sampling time sequences and the number of discretized subin-

tervals N , consider system (4). If for a prescribed positive scalar µ, there exist positive definite matrices

P ī ∈ R
(n+nb)×(n+nb), positive definite diagonal matrices Λℓ,̄i ∈ R

n×n, ī = 0, 1, . . . , N , ℓ = 0, 1, and a

scalar c such that the following LMIs hold for any i ∈ SN and j, ℓ = 0, 1,

Ξ̃ijℓ =

[

Ψ̃ijℓ Pi+jĀ1 + I T
0 Λℓ,i+jL2

∗ −Λℓ,i+j

]

< 0, (12)

[

−µPN J̄ TP0

∗ −P0

]

6 0, (13)

where Ψ̃ijℓ = (0.5c2 + ln(µ)
σℓ

)Pi+j +
N
σℓ
(Pi+1 − Pi) + Pi+j(Ā0 − cD̄) + (Ā0 − cD̄)TPi+j + D̄TPi+jD̄ +

IT
0 Λℓ,i+jL1I0, then system (4) is uniformly almost surely exponentially stable over S(σ0, σ1).

Proof. Condition (12) implies that there exists a sufficiently small positive scalar γ such that Ξ̃ijℓ(γ) <

0, where Ξ̃ijℓ(γ) is derived from Ξ̃ijℓ, in which 0.5c2 + ln(µ)
σℓ

is replaced by γ + 0.5c2 + ln(µ)
σℓ

. It follows

that

Ξ̃i(t) ,

1
∑

j,ℓ=0

ρji(t)θℓ(t)Ξ̃ijℓ(γ) < 0, i ∈ SN . (14)

For notational brevity, we define Λi(t) , diag(αi1(t), αi2(t), . . . , αin(t)) =
∑1

j,ℓ=0 ρji(t)θℓ(t)Λℓ,i+j .

For t ∈ [tk + ihk, tk + (i + 1)hk) with any given k ∈ N0, and i ∈ SN , by applying the Itô’s formula to

V2(t), we obtain

dV2(t) = LV2(t, z(t))dt+HV2(t, z(t))dw(t), (15)

where LV2(t, z) = ψ(t)zT[ln(µ)˜̺(t)Pi(t)+N ˜̺(t)(Pi+1−Pi)+Pi(t)Ā0+Ā
T
0 Pi(t)+D̄

TPi(t)D̄]z+2ψ(t)zTPi(t)

Ā1f(I0z) and HV2(t, z) = ψ(t)zT[Pi(t)D̄ + D̄TPi(t)]z.

Recalling Assumption 1, we obtain ∀t > t0,

0 6

n
∑

q=1

αiq(t)
(

fq(xq(t))− κ−q xq(t)
) (

κ+q xq(t)− fq(xq(t))
)

= zT(t)IT
0 Λi(t)L1I0z(t)− fT(I0z(t))Λi(t)f(I0z(t)) + 2zT(t)IT

0 Λi(t)L2f(I0z(t)). (16)

For any ω ∈ Ω2, and any t ∈ [tk + ihk, tk + (i + 1)hk), applying Itô’s formula to lnV2(t) along with

(15) and using (16), we obtain

lnV2(t) 6 lnV2(tk + ihk)− γ(t− tk − ihk) +

∫ t

tk+ihk

ψ(s)

V2(s)
zT(s)Ξ̃i(s)z(s)ds+M2(t, tk + ihk)

6 lnV2(tk + ihk)− γ(t− tk − ihk) +M2(t, tk + ihk), (17)

where M2(t, v) =
∫ t

v

2ψ(s)
V2(s)

zT(s)P (s)D̄z(s)dw(s).

Because V2(t) is continuous on the impulse time interval [tk, tk+1), for any t ∈ [tk, tk+1), inequality

(17) can be deduced into

lnV2(t) 6 lnV2(tk)− γ(t− tk) +M2(t, tk). (18)

Next, we will estimate lnV2(t) at the impulsive instant tk, k ∈ N0. From the definition of Pi(t) and

ψ(t), we obtain

P0(tk) = P0, PN−1(t
−
k ) = PN , ψ(tk) = 1, ψ(t−k ) = µ.
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Subsequently, using (13), for any k ∈ N0, we obtain

V2(tk) = zT(tk)P0z(tk) = zT(t−k )J̄
TP0J̄z(t

−
k )

6 µzT(t−k )PNz(t
−
k ) = V2(t

−
k ),

whence lnV2(tk) 6 lnV2(t
−
k ). By jointly applying this inequality and (18), we obtain lnV2(t) 6 lnV2(t0)−

γ(t− t0) +M2(t, t0). Subsequently, using the same technique used in the proof of Theorem 1, we obtain

lim sup
t→∞

ln ‖z(t)‖
t

6 −γ
2
, a.s..

Therefore, by Definition 1, we conclude that the zero solution of system (1) is uniformly almost surely

exponentially stable over S(σ0, σ1).
Remark 2. In [25], Hu and Mao showed that a linear stochastic system can be almost surely stabilized

by a continuous state-feedback controller (u(t) = Kx(t)), if there exist a matrix P > 0 and a scalar c̃ > 0

such that

− c̃P + PÃ0 + ÃT
0 P + D̃TPD̃ < 0, (19)

and either

D̃TP + PD̃ −
√
2c̃P > 0, (20)

or

D̃TP + PD̃ +
√
2c̃P < 0, (21)

where Ã0 = A0 + B0K and D̃ = D + B1K. However, based on Theorem 2, we have a novel almost sure

stabilization criterion

0.5c2P + P (Ã0 − cD̃) + (Ã0 − cD̃)TP + D̃TPD̃ < 0. (22)

In fact, inequalities (19)–(21) imply (22). By setting c2 = 2c̃, and using (20) and (21), we obtain

−c(D̃TP + PD̃) + c2P < 0.

Applying the inequality above to (19), we obtain (22). It is noteworthy that the stability conditions

(19)–(21) are conservative and difficult to be used in designing stabilizing controllers by stochastic noise.

This is because condition (20) or (21) requires that D̃ or −D̃ should be a Hurwitz matrix. This also

indicates that the diffusion term of the considered system is controllable. However, our result does not

imposing this restriction.

Remark 3. It is noteworthy that both the continuous- and discrete-time dynamics of the impulsive

system (4) are unstable. The results achieved by the time-invariant quadratic Lyapunov function approach

cannot be applied to this class of systems. Therefore, the time-dependent Lyapunov functions used

herein are critical in deriving Theorems 1 and 2. It is noteworthy that the Lyapunov function has

two important features. First, the infinitesimal generator LV1(t, z) (LV2(t, z)) of the time-dependent

Lyapunov functions along the trajectories of the unstable continuous-time dynamic of system (4) leads to

the term ˙̃P (t) (Nρ̃(t)(Pi+1−Pi)), which compensates the infinitesimal generator of the Lyapunov function

to be negative. Next, because the time-varying matrix P̃ (t) (P (t) in (11)) can select different values at the

left and right limits of tk, i.e., P (0) 6= P (t−k − tk−1) (P0 6= PN ), the time-dependent Lyapunov functions

are discontinuous at the sampling times tk, k ∈ N0, which are consistent with the dynamic behaviors

exhibited by the impulsive system (4). Furthermore, because impulsive systems involve impulses at

variable times, they are a class of quasi-periodic systems. Thus, the time-dependent Lyapunov functions

are suitable to characterize the dynamic behavior of the impulsive systems. It should be emphasized

that the time-dependent Lyapunov function proposed in [21, 26] is a special case of (11) and the looped

Lyapunov functional introduced in [27] cannot be extended to study the almost sure stability of system

(4) because this Lyapunov functional cannot guarantee the positive definiteness in the impulse interval.
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Remark 4. It is known from Lemma 1 of [28] that a 2d-degree SOS polynomial Q(σ) ∈ ∑n×n[σ] has

N (n, d) , 0.5n2(1 + d)2 + 0.5n(1 + d) − 0.5n(n + 1)(1 + 2d) scalar variables. Let P (σ) =
∑2d

i=0 Piσ
i

with symmetrical matrix Pi ∈ R
(n+nb)×(n+nb), and Λ(σ) =

∑2d
i=0 Λiσ

i with diagonal matrix Λi ∈ R
n×n.

Accordingly, the number of decision variables used to test the stability of Theorem 1 is (0.5(n+ nb)(n+

nb+1)+ 2n)(2d+1)+N (n+nb, d) +N (2n+nb, d) + 1. In addition, the number of decision variables of

Theorem 2 is (0.5(n+ nb)(n+ nb + 1) + 2n)(N + 1) + 2. Therefore, a higher degree polynomial of P (σ)

or a larger partition number N would increase the computation cost.

Remark 5. The free weight parameter µ introduced in Theorem 2 may reduce the number of interpo-

lated nodes. For the periodic sampling case, i.e., σ0 = σ1, Theorem 2 with µ = 1 can be regarded as a

linear approximation of Theorem 1. Moreover, mean-square exponential stability of system (1) can be

calculated by selecting c = 0 in Theorem 1 or 2.

3.2 Controller design

Based on the previous stability results, we can now solve the problem of the sampled-data controller

synthesis.

Theorem 3. Given a class S(σ0, σ1) of sampling time sequences and scalars γ > 0, α ∈ R, d ∈ N. If

there exist matrices Pi ∈ R
(n+nb)×(n+nb), i = 1, . . . , 2d, 0 < Y1 ∈ R

n×n, 0 < Y2 ∈ R
nb×nb , K̄ ∈ R

nb×nc , a

diagonal matrix 0 < Λ(σ) ∈ R
n×n[σ], and a scalar c such that (5) and the following inequality

[

−P (σ) JT
0 P0 + IT

0 C
T[αK̄T 0nc×(n−nb) K̄

T]

∗ −P0

]

6 0 holds for σ ∈ [σ0, σ1], (23)

where P (σ) =
∑2d
i=0 Piσ

i, P0 =
[

Y1 αȲ2
∗ Y2

]

, and Ȳ2 =
[

Y2
0(n−nb)×nb

]

, then the sampled-data controller (3) with

K = Y −1
2 K̄ almost surely exponentially stabilizes system (1).

Proof. The proof is straightforward by that the matrix inequality (23) implies (6).

Theorem 4. Given a class S(σ0, σ1) of sampling time sequences and the number of discretized subin-

tervals N , if for the prescribed scalars µ > 0, α ∈ R, there exist positive definite matrices P ī ∈
R

(n+nb)×(n+nb), ī = 1, . . . , N , Y1 ∈ R
n×n, Y2 ∈ R

nb×nb , positive definite diagonal matrices Λℓ,̃i ∈ R
n×n,

ĩ = 0, 1, . . . , N , ℓ = 0, 1, a matrix K̄ ∈ R
nb×nc , and a scalar c such that (12) and the following LMI holds:

[

−µPN JT
0 P0 + IT

0 C
T[αK̄T 0nc×(n−nb) K̄

T]

∗ −P0

]

6 0,

where P0 =
[

Y1 αȲ2
∗ Y2

]

, and Ȳ2 =
[

Y2
0(n−nb)×nb

]

, then the sampled-data controller (3) with K = Y −1
2 K̄ almost

surely exponentially stabilizes system (1).

4 Illustrative examples

Example 1. Consider the unstable scalar system: ẋ(t) = x(t). It has been shown that this system can be

stabilized viaKx(t)ẇ(t) ifK >
√
2 orK < −

√
2. Now, our purpose is to design a sampled-data stochastic

controller Kx(tk)ẇ(t), t ∈ [tk, tk+1) such that the closed-loop system dx(t) = x(t)dt + Kx(tk)dw(t) is

almost surely exponentially stable. We set K = 2 and c = 3.5. First, by applying a two-dimensional

search approach to Theorem 2.1 of [14], we obtain the maximum values of the sampling period as 0.0106.

Subsequently, for different degrees of P (σ) and N given in Table 1, by applying Theorems 1 and 2,

we obtain the maximum values of single sampling period σ0 that preserve the stability. As shown, our

results can significantly improve the result of [14], and the SOS approach can yield better results than

the LMI-based method.

Next, we consider the aperiodic sampling problem. Choosing deg(P (σ)) = 8 and c = 3.5, by applying

Theorem 1, the stability region of the aperiodic sampling time sequence can be calculated, which is shown
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Table 1 The maximum values of sampling period σ0 for different N

Theorem
N or deg(P (σ))

2 4 6 10 100

Theorem 1 0.061 0.086 0.086 0.086 0.086

Theorem 2 0.048 0.062 0.068 0.075 0.085

0.08

0.080.04

0.10
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0.02

0.02

0.06

0.06

0
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1
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0 1                   2                   3                  4

Time (s)
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1

2

3

4

5

0           1           2           3          4
0

0.05

0.10

Figure 1 (Color online) Stability region for admissible

sampling time sequences.

Figure 2 (Color online) Sample-path trajectory of the

stochastic system described in Example 1.

Table 2 The maximum values of σ1 for different approaches

σ0

Result

Theorem 2 of [29] Theorem 2 Theorem 1

σ0 = 0.21 0.43 0.60 0.72

σ0 = 0.40 1.25 1.64 1.82

σ0 = 1.25 1.57 1.96 2.02

in Figure 1. Let the sampling period be randomly selected from [0.04, 0.067] and x0 = 2. The sample-

path state response is depicted in Figure 2, which shows that the trajectory converges to zero under the

designed sampled-data stochastic controller.

Example 2. Consider the following system [29]:















ẋ(t) =

[

0 1

−2 0.1

]

x(t) +

[

0

1

]

u(t),

yk = [1 0]x(tk).

(24)

This system with continuous-time static output-feedback u(t) = Ky(t) (y(t) = x1(t), K = 1) is

unstable. Thus, the results of [13, 15, 16] are not applicable. In fact, Seuret [29] had proven that this

system can be stabilized under discrete-time output feedback u(t) = Kyk, t ∈ [tk, tk+1) when the constant

sampling period in [0.21, 1.62]. For given deg(P (σ)) = 8 and N = 30, by applying Theorems 1 and 2,

we obtain the value of the constant sampling period that can preserve the stability as σ0 ∈ [0.21, 2.02].

Meanwhile, the aperiodic sampling periods are listed in Table 2. The table indicates that our results are

less conservative than the result of [29].

Next, we assume that the control input is interfered by white noise in the implementation of the

controller, i.e., the control input has changed as

u(t) = Kyk + δykξ(t), t ∈ [tk, tk+1), (25)

where δ = 0.2 is the noise intensity and ξ(t) is Gaussian while noise, that satisfies
∫ t

t0
ξ(s)ds = w(t),

t > t0. Subsequently, the closed-loop system (24) and (25) can be rewritten as a closed-loop system
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Figure 3 (Color online) Sample-path trajectories of stochastic system described in Example 2 under sampled-data control

law with K = 1 and {tk}k∈N0
∈ S(0.3, 1.48).

(1)–(3) with parameters

A0 =

[

0 1

−2 0.1

]

, B0 =

[

0

1

]

, B1 =

[

0

0.2

]

,

A1 = D = 0, C = [1 0], and K = 1. Applying Theorem 2 with the choices of (σ0, c, µ,N) = (0.3, 0, 0.91,

30), we found that the maximum values of σ1 as 1.34. While applying Theorem 1 with the choices of

(c, deg(P (σ))) = (0, 8), we obtain the maximum values of σ1 is 1.48. For the simulation studies, we let the

sampling period to be randomly selected from [0.3, 1.48], and the initial value chosen as x(0) = [−2 1]T.

The sample-path trajectories of the sampled-data control system are shown in Figure 3.

5 Conclusion

By employing the impulsive system modeling together with time-dependent Lyapunov function methods,

we addressed the almost sure exponential stabilization problem of continuous-time differential equations

by artificial multiplicative noise based on variable sampled measurements. The obtained results are

formulated as SOS-based conditions and LMI-based conditions, thus providing a solution for designing

the controller gain matrix. Compared with the existing results [14–16], our results not only significantly

enlarged the upper bound of the sampling period but could also be applied to aperiodic sampled-data

stochastic/deterministic systems.
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