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Dear editor,
The output regulation problem for nonlinear sys-
tems with unknown exosystems has been an im-
portant research topic over the last few decades [1].
The early results commonly assume that the sign
of the high-frequency gain is known. It is shown [2]
that a nonlinear system can be transformed into a
special observer form under geometric coordinate-
free conditions. In this case, with a known con-
trol direction, the problem can be solved by a ro-
bust control method such as high-gain feedback.
However, this method is not applicable when the
high-frequency gain sign is unknown. It has been
proved that the standard way to deal with the un-
known sign of the high-frequency gain is the Nuss-
baum gain technique [3]. The Nussbaum gain is a
kind of oscillating function which allows the con-
troller to try both positive and negative directions.
It is still a challenge to solve the nonlinear out-
put regulation problem with both unknown nonlin-
ear exosystems and unknown high-frequency gain
sign. This motivates us to develop a new approach,
which combines the circle criterion with Nussbaum
gain. Recently, this problem has attracted exten-
sive attention. In [4], the Nussbaum gain tech-
nique is integrated with the backstepping method
for solving adaptive consensus output regulation
of a class of network-connected nonlinear systems,
and some progresses are reported on cooperative
output regulation of a class of nonlinear multi-
agent systems [5] without any knowledge of the
high frequency gain [6].

We consider adaptive output regulation of out-
put feedback systems with both unknown nonlin-
ear exosystems and unknown high-frequency gain
sign. A nonlinear adaptive internal model is pro-
posed on a basis of circle criterion to reproduce
the feedforward input term. As for the nonlinear
exosystems, some specific assumptions are deter-
mined such that the circle criterion can be used
in the stability analysis for the proposed internal
model. Because of the lack knowledge of parame-
ters in the system and the exosystem, a Nussbaum
gain is then used to tackle the unknown sign of
high-frequency gain. The proposed internal model,
Nussbaum gain and nonlinear adaptive backstep-
ping technique together provide a solution to the
output regulation with nonlinear exosystems. The
control input is finally obtained by a recursive pro-
cedure. The proposed control scheme guarantees
the global asymptotic convergence of the tracking
error.

Problem statement. We consider a single-input-
single-output nonlinear system which can be trans-
formed into the output feedback form

ζ̇ = Acζ + φ(y)a+ E(ω) + bu,

y = Cζ,

e = y − q(ω) (1)
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where ζ ∈ R
n is the state vector; u ∈ R is the

control input; y ∈ R is the output; e ∈ R is
the measurement output; a ∈ R

m and b ∈ R
n

are vectors of unknown parameters; bρ 6= 0 in-
dicates that the nonlinear system has a constant
relative degree of ρ; E(ω) : R

l → R
n is an un-

known nonlinear function of ω; φ : R → R
n×m is

a smooth nonlinear vector field with φ(0) = 0 and
‖φ(y) − φ(ŷ)‖ 6 Mσ(|y − ŷ|)|y| and M is an un-
known positive constant, and σ(·) ∈ K is a known
smooth function; q is an unknown polynomial of
ω; and ω ∈ R

l are disturbances, and they are gen-
erated from an unknown nonlinear exosystem

ω̇ = s(ω). (2)

Assumption 1. The system is minimum phase,
i.e., the polynomial B(s) =

∑n

i=ρ bis
n−i is Hur-

witz, and the sign of the high-frequency gain bρ is
unknown.

Assumption 2. The flows of vector field s(ω)
are bounded and converge to periodic solutions.

State transformation. Define an input filer

ξ̇i = −λiξi + ξi+1, for i = 1, . . . , ρ− 2,

ξ̇ρ−1 = −λρ−1ξρ−1 + u, (3)

where λi > 0 for i = 1, . . . , ρ − 1 are the de-
sign parameters, and define the filtered transfor-
mation x̄ = ζ −

∑ρ−1
i=1 d̄iξi, where d̄i ∈ R

n for i =
1, . . . , ρ− 1 and they are generated recursively by

d̄ρ−1 = b,

d̄i = (Ac + λi+1I)d̄i+1, for i = 1, . . . , ρ− 2.

The system (1) is then transformed to

˙̄x = Acx̄+ φ(y)a+ E(ω) + dξ1,

y = Cx̄, (4)

where d = (Ac + λ1I)d̄1. We then introduce an-
other state transformation to extract the inter-
nal dynamics of (4) with x ∈ R

n−1 given by
x = x̄2:n−

d2:n

d1

y, where the notation (·)2:n refers to
the 2nd row to the n-th row of the corresponding
vector. With the coordinates (x, y), (4) is rewrit-
ten as

ẋ = Dx+ Ξy +Ω1(y, d)a+ Ẽ(ω, d),

ẏ = x1 +
d2
d1
y + φ1(y)a+ E1(ω) + bρξ1, (5)

where D is the companion matrix of d given by
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and Ξ, Ω1(y, d), Ẽ(ω, d) consist of system param-
eters. Notice that Ω1(y, d) is dependent on φ(y),
thus it is easy to check that Ω1(0, d) = 0.

Internal model. The invariant manifold theory
and internal model principle play a crucial role in
establishing the solvability of the nonlinear output
regulation problem.

Assumption 3. There exists an invariant man-
ifold π(ω) ∈ R

n−1 satisfying

∂π(ω)

∂ω
s(ω) = Dπ(ω) + ψ(q(ω), ω, µ), (7)

where ψ(q(ω), ω, µ) = Ξq(ω) + Ω1(q(ω), d)a +
Ẽ(ω, d), µ = [aT, bT]T. Based on (7) and the sec-
ond equation of (5), we have

∂q(ω)

∂ω
s(ω) = π1 + ψy(q(ω), ω, µ) + bρα(ω), (8)

where π1 is the first state of the invariant manifold
π, ψy(q(ω), ω, µ) = d2

d1

q(ω) + φ1(q(ω))a + E1(ω),
α is the feedforward control input for disturbance
suppression, and it refers to

α(ω)=b−1
ρ

(

∂q(ω)

∂ω
s(ω)−π1−ψy(q(ω), ω, µ)

)

. (9)

Let z̃ = x − π(ω); then from (5), (7) and (8),
the system can be represented as

˙̃z = Dz̃ + Ξe +Ω(y, ω, d)a,

ė = z̃1 +
d2
d1
e+ (φ1(y)− φ1(q(ω)))a,

+ bρ(ξ1 − α(ω)), (10)

where

Ω(y, ω, d)

=φ2:n(y)− φ2:n(q(ω))−
d2:n
d1

(φ1(y)− φ1(q(ω))).

The output regulation problem of system (1)
degenerates to the stabilization problem of
system (10).
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Assumption 4. There exists an immersion of
the exosystem

η̇ = Fη +Gγ(Hη),

α(ω) = Jη, (11)

where η ∈ R
nr , J = [1, 0, . . . , 0], the pair (F, J) is

detectable, and γ(·) is locally Lipschitz and is non-
decreasing, that is, for all ̺1, ̺2 ∈ R

nr , it satisfies
(̺1 − ̺2)

T[γ(̺1)− γ(̺2)] > 0.

Remark 1. Assumption 4 is inspired by [6]. This
immersion system and the circle criterion are ex-
ploited for the design of internal model and es-
timated feedforward term α. Besides, the sys-
tem (11) is a virtual internal model, which is not
related to the original system. Hence, the dimen-
sion of the internal model can be different from
that of the original system. In this study, we as-
sume η ∈ R

nr .

Remark 2. In terms of Assumption 4, the inter-
nal model is a dynamic compensator independent
of the uncertain parameters ω and can asymptot-
ically reproduce the feedforward term α. If the
exosystem is linear, there always exists an immer-
sion, and therefore the ideal feedforward control α
can be reproduced under certain conditions. How-
ever, when the exosystem is nonlinear, there is no
guarantee that there is an immersion in general,
and further research on this topic is challenging.
This is the reason why Assumption 4 is needed for
the proposed algorithm. Furthermore, the condi-
tions can be directly checked for the existence of
the internal model with nonlinear exosystems.

Based on the parameterization (11), we design
an internal model as ˙̂η = (F −KJ)(η̂ − b−1

ρ Ke) +
Gγ(H(η̂ − b−1

ρ Ke)) + Kξ1, where K ∈ R
nr is

chosen such that F − KJ is Hurwitz. If we de-
fine the auxiliary error η̃ = η − η̂ + b−1

ρ Ke, then
˙̃η = (F−KJ)η̃+Gϕ(t, ψ)+Υ , Ψ = Hη̃. According
to the circle criterion, there exist a positive defi-
nite matrix Pη and a semi-positive definite matrix
Q satisfying (F −KJ)TPη + Pη(F −KJ) = −Q,
PηG + HT = 0 and ηTQη > γ0|η1|

2, γ0 > 0,
span(PηK) ⊆ span(Q).

Control design. Define z1 = e, zi = ξi−1 − βi−1,
for i = 2, . . . , ρ and zρ+1 = u−βρ, where βi for i =
1, . . . , ρ are stabilizing functions to be designed.
The sign of the high-frequency gain bρ is unknown,
which is different from [7]. A Nussbaum gainN(κ)
should be employed in the stabilizing function β1.
Let β1 = N(κ)β̄1 and κ̇ = eβ̄1, κ(0) = 0, where
the Nussbaum gain N is a function (e.g., N(κ) =
κ2 cosκ) that satisfies the two-sided Nussbaum
properties: limκ→±∞ sup 1

κ

∫ κ

0 N(s)ds = +∞ and

limκ→±∞ inf 1
κ

∫ κ

0
N(s)ds = −∞, where κ→ ±∞

denotes κ → +∞ and κ → −∞, respectively.
Based on the adaptive backstepping, the design
of βi, 2 6 i 6 ρ is given by

βi = λi−1ξi−1 − zi−1 − cizi − ki

(

∂βi−1

∂e

)2

zi

+
∂βi−1

∂b̂ρ
τi + χi +

∂βi−1

∂η̂
˙̂η +

∂βi−1

∂κ
κ̇

+

i−2
∑

j=1

∂βi−1

∂ξj
(−λjξj + ξj+1)

+
∂βi−1

∂e
(b̂ρ(ξ1 − η̂1) +K1e). (12)

The detailed proof of this result is provided in
Appendixes A–D. We then design the control in-
put by setting zρ+1 = 0, u = βρ.

Conclusion. The adaptive output regulation
problem for nonlinear systems in output feedback
form proposed in [7] has been considered without
the knowledge of the high-frequency gain. Filtered
transformation has been used to deal with high rel-
ative degrees. The proposed internal model, which
is under some conditions, is designed by the circle
criterion. The success of the introduction of the
Nussbaum gain together with the internal model
makes it possible to deduce the adaptive laws, and
by using adaptive backstepping, the control input
has been obtained.

Supporting information Appendixes A–D. The sup-

porting information is available online at info.scichina.com

and link.springer.com. The supporting materials are pub-

lished as submitted, without typesetting or editing. The

responsibility for scientific accuracy and content remains

entirely with the authors.
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