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Dear editor,
In certain practical systems, quantized con-
trol can effectively solve stabilization problems
in intelligent transportation systems and digital
systems [1]. Constant progress has been made
on linear quantization systems. The problems of
input quantization and output quantization were
studied in [2] for the class of linear systems us-
ing a logarithmic quantizer, and the problem of
quadratic stabilization was addressed by a pro-
posed condition. On the contrary, research on non-
linear quantization systems is very significant and
certain researches for nonlinear quantization sys-
tems are available [3,4]. Combined with the small-
gain theorem and input-to-state stability theory,
the quantized stabilization problem for the class of
nonlinear cascaded systems was investigated in [4].

Feedforward nonlinear systems are a significant
class of nonlinear systems and certain actual phe-
nomena can be converted to feedforward nonlinear
systems by mathematical modeling. The stabiliza-
tion problem for the class of feedforward nonlin-
ear time-delay systems was considered in [5] and
a delay-independent feedback controller was con-
structed using the dynamic gain control approach.
The monotonically increasing gain function was
designed in [5], and this function not only ensures
the reversibility of coordinate transformations but
also eliminates the influence of nonlinear terms in
the studied system.

Coordinate transformation is a method for solv-

ing control problems and is advantageous when
used for designing controllers [6]. The structure
of the studied system in [6] was complicated; how-
ever, the method of coordinate transformation was
utilized in [6] to solve the stabilization problem
easily. If the controller is designed using itera-
tive design approach, the computational complex-
ity will be very large. When the considered system
has relatively high dimensions, coordinate trans-
formation successfully avoids the iterative design
approach. Furthermore, when coordinate trans-
formation is used, the design steps are very simple
and it also helps in greatly reducing the computa-
tional complexity.

The stability is the essential issue to certain con-
trol systems including quantization systems [5],
golden-section adaptive control systems [7], and
multi-agent systems [8]. In this study, the quan-
tized control problem is investigated for the class
of feedforward nonlinear systems. The uncer-
tain nonlinearities are assumed to be bounded by
known constants multiplied by states or quantized
input. Base on coordinate transformation, a state
feedback controller and an output feedback con-
troller are constructed such that all the states of
the closed-loop system are bounded.

In this study, xi(t) and ξi(t) are denoted by xi
and ξi, respectively. We let ‖ · ‖ denote the Eu-
clidean norm for the vector or the matrix, and I

is utilized to express an identity matrix of suitable
dimension. The functions in the study are briefed
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such that no confusion arises from the context. Let
R
m×n denote the space of real m × n matrices.

For any matrix P ∈ R
n×n, λmax(P ) denotes the

largest eigenvalue of P. For any σ ∈ R, sgn(σ) de-
notes the signum function; thus, sgn(σ) = 1 when
σ > 0, sgn(σ) = 0 when σ = 0, and sgn(σ) = −1
when σ < 0.
Preliminaries. A class of nonlinear systems is

considered as










ẋi = xi+1 + ψi
(

t, x, q(u)
)

, i = 1, 2, . . . , n− 1,

ẋn = q(u),

y = x1,

(1)
where x = (x1, x2, . . . , xn)

T ∈ R
n is the

state, ψi
(

t, x, q(u)
)

: R
n+2 → R are unknown

functions, and q(u) ∈ R is the quantized input
with the control signal u ∈ R to be constructed.
The quantizer q(u) is given by

q(u) =















































uisgn(u),

ūisgn(u),

0,

q(u(t−)),

ui

1+β < |u| 6 ui, u̇ < 0, or

ui < |u| 6 ui

1−β , u̇ > 0,

ui < |u| 6 ui

1−β , u̇ < 0, or
ui

1−β < |u| 6 ui(1+β)
1−β , u̇ > 0,

0 6 |u| < δ
1+β , u̇ < 0, or

δ
1+β 6 |u| < δ, u̇ > 0,

u̇ = 0,

(2)
where ūi = ui(1 + β), ui = α1−iδ with integer
i = 1, 2, . . . and δ > 0 is the size of the dead-zone
for q(u). The constant α ∈ (0, 1) is the measure of
quantization density and β = 1−α

1+α . Following the
study in [9], the quantizer q(u) is decomposed into
two parts: linear and nonlinear, that is,

q(u) = u+ ϕ. (3)

Lemma 1 ([9]). The nonlinear part ϕ of (3) sat-
isfies the following inequalities

ϕ2 6 β2u2, ∀|u| > δ; ϕ2 6 δ2, ∀|u| 6 δ. (4)

Assumption 1. For i = 1, 2, . . . , n − 1, the fol-
lowing inequality holds true:

∣

∣ψi
(

t, x, q(u)
)∣

∣ 6 c

n+1
∑

j=i+2

(|xj |+ |q(u)|), (5)

where xn+1 = 0 and c > 0 is a known constant.

Lemma 2 ([5]). There exist positive defi-
nite matrices P and Q and vectors Ha =
(a1, a2, . . . , an), Hb = (b1, b2, . . . , bn)

T such that

PA+ATP 6 −I, QB + BTQ 6 −I, (6)

where A = G − F1Ha, B = G − HbF2, F1 =
(0 0 · · · 0 1)T, F2 = (1 0 · · · 0 0), G = (0 In−1

0 0
).

State feedback controller. Considering the trans-
formation of coordinates

ξi =
1

Ln−i+1
xi, i = 1, 2, . . . , n, (7)

where L is a design parameter and satisfies 1 6

L < kc
β
, where kc > 1 is a known constant and

β is given in (2), and combining (1) with (7), one
obtains
{

ξ̇i =
1
L
ξi+1 +

1
Ln−i+1ψi, i = 1, 2, . . . , n− 1,

ξ̇n = 1
L
u(t) + 1

L
ϕ.

(8)

Let

u = −(a1ξ1 + a2ξ2 + · · ·+ anξn) (9)

with ai given in Lemma 2, Eq. (8) is rewritten as

ξ̇ = L−1Aξ +Ψ, (10)

where ξ = (ξ1, ξ2, . . . , ξn)
T and Ψ =

( ψ1

Ln ,
ψ2

Ln−1 , . . . ,
ψn−1

L2 , ϕ
L
)T.

Theorem 1. Under Assumption 1, constants ai,
i = 1, 2, . . . , n, are chosen. If the quantized pa-
rameter β of (2) satisfies βL− kc < 0, there exists
a state feedback controller

u = −
( a1

Ln
x1 +

a2

Ln−1
x2 + · · ·+

an

L
xn

)

, (11)

such that all the states of the closed-loop system
formed by (1), (2), and (11) are bounded, where
kc > 1 is a known constant and L > 1 is a design
parameter.
Proof. Choosing the Lyapunov candidate func-
tion V = ξTPξ, where P is given by Lemma 2,
one obtains

V̇ 6 −
1

L
||ξ||2 + 2ΨTPξ. (12)

Combining (1) with (5), we obtain

ψi

Ln−i+1
6

c

Ln−i+1





n+1
∑

j=i+2

(|xj |+ |q(u)|)





6
c

L2





n+1
∑

j=i+2

(|ξj |+ 2|u|+ δ)



 , (13)

where ξn+1 = 0.
Using Young’s inequality, one obtains

2ΨTPξ 6
(cn+ 2cn(n− 1)a+ kcan+ 1)||P ||

L2
||ξ||2

+
c(n− 1)δ2||P ||

L2
+ δ2||P ||, (14)

where a = max{|a1|, |a2|, . . . , |an|}.
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Substituting (14) into (12), it follows that

V̇ 6 −
1

L
||ξ||2 +

c(n− 1)δ2||P ||

L2
+ δ2||P ||

+
(cn+ 2cn(n− 1)a+ kcan+ 1)||P ||

L2
||ξ||2. (15)

Choosing a positive constant k and a parameter

L = max{1, (cn+ 2cn(n− 1)a+ kcan+ 1)||P ||

+ kλmax(P )}, (16)

one has

V̇ 6 −
kλmax(P )

L2
||ξ||2 + γ, (17)

where γ = c(n−1)δ2||P ||
L2 + δ2||P ||.

Then, it follows that

V̇ 6 −
k

L2
ξTPξ + γ = −

k

L2
V + γ. (18)

By solving (18), one arrives at

0 6 V (t) <
L2γ

k
+

(

V (0)−
L2γ

k

)

e−
k

L2 t. (19)

From (18) and (19), the constants k, L, and γ

are determined. Therefore, the solution of the dif-
ferential equation (18) can be accurately obtained.
By observing the form of the solution, we under-
stand that ξ1, ξ2, . . . , ξn are bounded. From the
constant L > 1, the transformation of (7) is re-
versible. The boundedness of ξ1, ξ2, . . . , ξn rep-
resents boundedness of x1, x2, . . . , xn. Thus, the
boundedness of all the states of the closed-loop
system formed by (1), (2), and (11) is obtained.
Output feedback controller. The observer for the

system (1) is designed as
{

ζ̇i = ζi+1 + biL
−i(y − ζ1), i = 1, 2, 3, . . . , n− 1,

ζ̇n = u+ bnL
−n(y − ζ1).

(20)
Let

u = −
( a1

Ln
ζ1 +

a2

Ln−1
ζ2 + · · ·+

an

L
ζn

)

, (21)

where ai, i = 1, 2, . . . , n, are constants given by
Lemma 2, and L is a design parameter satisfying
1 6 L < kc

β
, where kc > 1 is a known constant and

β is given in (2).
For i = 1, . . . , n, defining

ǫi =
xi − ζi

Ln−i+1
, (22)

it follows from (1) and (22) that

ǫ̇ =
1

L
Bǫ +Φ, (23)

where ǫ = (ǫ1, ǫ2, . . . , ǫn)
T and Φ = ( ψ1

Ln ,
ψ2

Ln−1 ,

. . . ,
ψn−1

L2 , ϕ
L
)T.

Let

ηi =
ζi

Ln−i+1
, i = 1, 2, . . . , n, (24)

and then we obtain

η̇ =
1

L
Aη +Ψ, (25)

where η = (η1, η2, . . . , ηn)
T and Ψ = ǫ1(

b1
L
, b2
L
,

. . . , bn
L
)T.

Theorem 2. Under Assumption 1, constants ai,
i = 1, . . . , n, are chosen. If the quantized parame-
ter β of (2) satisfies βL − kc < 0, there exists an
output feedback controller

u = −
( a1

Ln
ζ1 +

a2

Ln−1
ζ2 + . . .+

an

L
ζn

)

, (26)

such that all the states of the closed-loop system
formed by (1), (2), (20), and (26) are bounded,
where ζi, i = 1, 2, . . . , n, are the states of observer
(20), kc > 1 is a known constant, and L > 1 is a
design parameter.
Proof. The construction procedure and stability
analysis are quite similar to those of Theorem 1.
Thus, the detailed proof is omitted to avoid repe-
tition.
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