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Dear editor,
In certain practical systems, quantized con-
trol can effectively solve stabilization problems
in intelligent transportation systems and digital
systems [1]. Constant progress has been made
on linear quantization systems. The problems of
input quantization and output quantization were
studied in [2] for the class of linear systems us-
ing a logarithmic quantizer, and the problem of
quadratic stabilization was addressed by a pro-
posed condition. On the contrary, research on non-
linear quantization systems is very significant and
certain researches for nonlinear quantization sys-
tems are available [3,4]. Combined with the small-
gain theorem and input-to-state stability theory,
the quantized stabilization problem for the class of
nonlinear cascaded systems was investigated in [4].
Feedforward nonlinear systems are a significant
class of nonlinear systems and certain actual phe-
nomena can be converted to feedforward nonlinear
systems by mathematical modeling. The stabiliza-
tion problem for the class of feedforward nonlin-
ear time-delay systems was considered in [5] and
a delay-independent feedback controller was con-
structed using the dynamic gain control approach.
The monotonically increasing gain function was
designed in [5], and this function not only ensures
the reversibility of coordinate transformations but
also eliminates the influence of nonlinear terms in
the studied system.

Coordinate transformation is a method for solv-
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ing control problems and is advantageous when
used for designing controllers [6]. The structure
of the studied system in [6] was complicated; how-
ever, the method of coordinate transformation was
utilized in [6] to solve the stabilization problem
easily. If the controller is designed using itera-
tive design approach, the computational complex-
ity will be very large. When the considered system
has relatively high dimensions, coordinate trans-
formation successfully avoids the iterative design
approach. Furthermore, when coordinate trans-
formation is used, the design steps are very simple
and it also helps in greatly reducing the computa-
tional complexity.

The stability is the essential issue to certain con-
trol systems including quantization systems [5],
golden-section adaptive control systems [7], and
multi-agent systems [8]. In this study, the quan-
tized control problem is investigated for the class
of feedforward nonlinear systems. The uncer-
tain nonlinearities are assumed to be bounded by
known constants multiplied by states or quantized
input. Base on coordinate transformation, a state
feedback controller and an output feedback con-
troller are constructed such that all the states of
the closed-loop system are bounded.

In this study, z;(¢) and &;(¢) are denoted by x;
and &;, respectively. We let || - || denote the Eu-
clidean norm for the vector or the matrix, and I
is utilized to express an identity matrix of suitable
dimension. The functions in the study are briefed
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such that no confusion arises from the context. Let
R™*™ denote the space of real m x n matrices.
For any matrix P € R™*" A\,.x(P) denotes the
largest eigenvalue of P. For any o € R, sgn(o) de-
notes the signum function; thus, sgn(o) = 1 when
o > 0, sgn(o) =0 when o = 0, and sgn(o) = —1
when o < 0.

Preliminaries. A class of nonlinear systems is
considered as

a'ci:xiHeri(t,:E,q(u)), 1=1,2,...,n—1,
Yy =T,

(1)

where = = (z1,72,...,7,)7 € R" is the

1,
state, ¥;(t,z,q(u)) : R""? — R are unknown
functions, and ¢(u) € R is the quantized input
with the control signal v € R to be constructed.
The quantizer ¢(u) is given by

wsgn(u), 1i5 < |lul w1 <0, or

u; < |ul < llf'B,’[L> 0,
wsgn(u), u; < |u| < 745,1 <0, or
q(u) = 2 < Juf < 2 >,
0, 0< |ul < 25,4 <0, or

T+’
) .
m<|u|<5,u>07

q(u(t™)), w=0,

@)
where 4; = u;i(1 + (), u; = o'7'§ with integer
i=1,2,... and § > 0 is the size of the dead-zone
for g(u). The constant « € (0, 1) is the measure of
quantization density and 8 = L‘r—g Following the
study in [9], the quantizer ¢(u) is decomposed into
two parts: linear and nonlinear, that is,

q(u) = u+ . (3)

Lemma 1 ([9]). The nonlinear part ¢ of (3) sat-
isfies the following inequalities

02 < B2, Vu| = 6; 9?2 <62, Vjul <48 (4)

Assumption 1. Fori¢=1,2,...,n — 1, the fol-
lowing inequality holds true:
n+1
it q(w)| <e Y (ol + la()]),  (5)
j=i+2

where z,4+1 = 0 and ¢ > 0 is a known constant.
Lemma 2 ([5]). There exist positive defi-
nite matrices P and @ and vectors H, =
(a1,a2,...,an), Hy = (b1,ba,...,b,)T such that

PA+ATP < —I, QB+ B'Q< -1, (6)
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where A = G — FNH,, B = G — HyF5, F; =
00 -0 F,=(10---00),G=("™").

State feedback controller. Considering the trans-
formation of coordinates

1

gizm$i7 i:1,2,...,n, (7)

where L is a design parameter and satisfies 1 <
L < %, where k. > 1 is a known constant and
B is given in (2), and combining (1) with (7), one
obtains

éi = %fﬂrl‘i’ﬁw’w 1= 172a"'an717

Let

(8)

u = —(a1§1 +azy + -+ anén) (9)

with a; given in Lemma 2, Eq. (8) is rewritten as

=LA+ T, (10)
where ¢ = (&,&,...,6)T and ¥ =
(zp_17 Lw2*177w251’%)T
Theorem 1. Under Assumption 1, constants a;,
i = 1,2,...,n, are chosen. If the quantized pa-

rameter [ of (2) satisfies SL — k. < 0, there exists
a state feedback controller
u:f(%z1+%xg+~u+%xn), (11)
such that all the states of the closed-loop system
formed by (1), (2), and (11) are bounded, where
ke > 1 is a known constant and L > 1 is a design
parameter.
Proof. Choosing the Lyapunov candidate func-
tion V = ¢TPE, where P is given by Lemma 2,
one obtains

o1
V< —Z Il + 20T Pe. (12)

Combining (1) with (5), we obtain

s ¢ n+1
et < o | 2o (el la@)D)
j=i+2
¢ n+1
< | X gl +o)), (3)
Jj=it+2

where £,41 = 0.
Using Young’s inequality, one obtains

(en+2en(n — Da+ kcan + D||P||,, 1o
5 €11

L
c(n — 1)62|| P||
L PR

where a = max{|a1|, |az], . .

20T pe <
+6%||P], (14)

- lan[}-
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Substituting (14) into (12), it follows that

s Lpga, = DRIP
< = B St/ bt 1
V<l + S 6

en+2en(n — 1)a + kean + 1)||P
sl 2onln =D Pl g 15)

Choosing a positive constant k and a parameter

L = max{1, (cn + 2cn(n — 1)a + kean + 1)|| P|
+k)\max(P)}7 (16)

one has

kAmax(P)

V< -

€M1+, (17)
where v = 76("71222”13” + 62| P|].
Then, it follows that

: k k
Vg—ﬁfTPg—i—v:—ﬁV—i—fy. (18)

By solving (18), one arrives at

2 2
0<V(t) < % + <V(0) - %) e"z2'. (19)
From (18) and (19), the constants k, L, and ~

are determined. Therefore, the solution of the dif-

ferential equation (18) can be accurately obtained.

By observing the form of the solution, we under-

stand that &1,&s,...,&, are bounded. From the

constant L > 1, the transformation of (7) is re-
versible. The boundedness of &1,&s,...,&, rep-
resents boundedness of x1,xs,...,x,. Thus, the
boundedness of all the states of the closed-loop
system formed by (1), (2), and (11) is obtained.

Output feedback controller. The observer for the
system (1) is designed as

G=Cr+b L7y —G), i=123,...,n—1,
Cn :u+an7n(y7<1).

(20)
Let
ay as G
U:*(EQJFF@JF'“JFTQL)’ (21)
where a;, i = 1,2,...,n, are constants given by

Lemma 2, and L is a design parameter satisfying
1<L< %, where k. > 1 is a known constant and
B is given in (2).

Fori=1,...,n, defining

T — G
€; = m, (22)
it follows from (1) and (22) that
. 1
é=—Be+ O, (23)

L
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where € = (e1,€2,...,6,)T and ® = (}f,ﬁ,%,
Yn—1 _,@)T
e T2 5 .
Let
N T 1,2 (24)
nziLn_l_j’_l’ 1= k) ""7n’
and then we obtain
o1
n=—An+V, (25)
L
where 7 = (n1,m2,...,7,)F and ¥ = 61(%,%,
h)T
)
Theorem 2. Under Assumption 1, constants a;,
i =1,...,n, are chosen. If the quantized parame-

ter 8 of (2) satisfies 5L — k. < 0, there exists an
output feedback controller

ag

FCQ“F--."‘%CTL) ,  (26)

such that all the states of the closed-loop system
formed by (1), (2), (20), and (26) are bounded,
where (;, i =1,2,...,n, are the states of observer
(20), k. > 1 is a known constant, and L > 1 is a
design parameter.

Proof. The construction procedure and stability
analysis are quite similar to those of Theorem 1.
Thus, the detailed proof is omitted to avoid repe-
tition.
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