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Dear editor,
Ecological awareness and economical reasons call
for a substantial reduction of the fuel consumption
of all future automobiles. One of the most realis-
tic short-term solutions to energy saving is repre-
sented by hybrid electric vehicles (HEVs). Those
strategies that determine power distribution with-
in the hybrid powertrain, as well as the gearshift
schedule to enhance fuel economy are often re-
ferred as energy management systems (EMSs),
such as rule-based methods [1,2] and optimization-
based methods [3–5]. In optimization-based meth-
ods, although numerous constraints exist, a truly
optimal fuel consumption can be achieved when
the entire driving cycle is known a priori.

Another feasible approach to reduce energy con-
sumption is “eco-driving”, which has gained wide
attention from researchers because of its potential
for using external information, such as those de-
rived from navigation and intelligent transporta-
tion systems [4,6,7]. With the popularity of cruis-
ing system, the issue is to optimize vehicle speed
and realize economic cruise, which plays a signif-
icant role in fuel economy. Therefore, for HEVs,
the key of energy optimization is concentrated in
cruise speed optimization and EMS [8]. In this
study, we present a decomposition of the overall
problem into two layers. The higher controller fo-
cuses on optimizing the velocity profile under the
constraint of the preceding vehicle to minimize the
overconsumption of energy with regard to the over-

all power output. The lower controller handles
the optimization of torque split ratio and gearshift
schedule, as shown in Figure 1(a). Different from
other traditional EMS, the proposed method con-
siders the influence of gearshift control and com-
bines the velocity optimization and the powertrain
control to improve fuel economy.

System modeling and methodology. The dynam-
ics of the vehicle longitudinal motion is

mvv̇(t) = [Ft(t)− Fb(t)− Fa(t)− Fα], (1)

as well as ṡ(t) = v(t), wheremv is the vehicle mass,
v is the vehicle speed, s(t) is the traveling distance,
the differential of s(t) represents the longitudinal
speed v, Fa is the aerodynamic friction, Fα is the
force caused by gravity and rolling friction, Ft and
Fb are the traction and brake forces, respectively.
The force Ft(t) − Fb(t) in (1) is provided by the
total torque Td obtained from the power sources
(i.e., engine and motor), formulated as

Ft(t)− Fb(t) = Td(t)ig(t)i0ηt/rw, (2)

where ig, i0, ηt, rw are the transmission ratio, final
drive ratio, total efficiency of the drive train and
tire radius, respectively.

Different from a traditional vehicle, the total
torque is provided by both the engine and the
motor, that is, Td(t) = Tf(t) + Tm(t), where Tf ,
Tm are torques from the engine and motor. It
is worth noting that if a negative value of the
traction force required, it can be provided by the
motor, which would work as a generator. Other
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Figure 1 (Color online) (a) Diagram of the hierarchical control strategy; (b) motor operation points; (c) engine operation
points.

forces are given by Fa(t) = ACdρv
2(t)/2 and

Fα = mvgf cos(θ) + mvg sin(θ). Here, A is the
frontal area of the vehicle, Cd is the coefficient
of air resistance, ρ is the air density, g is the ac-
celeration of gravity, f is the coefficient of rolling
resistance, θ is the road grade.

The fuel rate of the engine is given by a steady-
state map, which is a function of engine torque
and speed. For simplification, a parameter-varying
formulation is used in this study to express the
fuel cost, formulated as ζ ≈ α1Tf + α2, where ζ
is the fuel rate (g/s), and α1, α2 are the coef-
ficients determined by the engine speed ωf with
α1 = p1ω

2
f + p2ωf + p3 and α2 = p4ωf + p5. As

for the electric machine model, the electric motor
can work either as a motor or a generator, and the
power can be expressed as

Pm(t) = Tm(t)ωm(t)η
κ
m(Tm(t), ωm(t)), (3)

where ηm is the motor efficiency, which varies with
different operation points. When the torque is pos-
itive, the electric machine works as a motor to
drive the vehicle, and then κ = −1. When the
electric machine works as a generator and the cor-
responding efficiency is κ = 1. To simplify the
calculation model in (3), the motor power can be
also fitted by an approximate expression, formu-
lated as

Pm(t) ≈ β1T
2
m(t) + β2ω

2
m(t) + β3Tm(t)ωm(t), (4)

where β1,2,3 are the coefficients.
The battery performance (e.g., voltage Voc, in-

ternal resistance Rint, current I, and efficiency) is

the outcome of thermally dependent electrochem-
ical processes that are relatively complicated. Un-
der the assumption that battery states are temper-
ature independent, the current can be expressed as

I(t) =
(

Voc −

√

V 2
oc − 4RintPm(t)

)

/(2Rint). (5)

Then, the battery state of charge (SOC), which
reflects the energy status, can be expressed as

˙SOC = −I(t)/Cbatt, (6)

where Cbatt is the nominal battery capacity.
Recently, significant advances in vehicle’s on-

board navigation system have been developed, and
these technologies can provide a variety of useful
exogenous information in a trip. In real-life traf-
fics, because future velocity is exclusively deter-
mined by the driver, predicting a definite velocity
profile (“velocity profile” means vehicle speed pro-
file) is rather difficult. However, we can obtain
the average upper and lower bounds in a given
road segment using monitoring systems. For ex-
ample, one can use the known speed trajectories of
the preceding vehicle to predict the speed bound-
aries. Under this assumption, a hierarchical con-
trol strategy can be used to optimize the energy
efficiency.

Firstly, we consider the velocity profile opti-
mization of the higher controller. The main objec-
tive is to reduce the fuel consumption of the vehi-
cle. Therefore, the discrete-time optimal problem
is formulated as
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min J =

Np
∑

k=1

[

ε1(Ft(k)v(k))
2 + ε2(Fb(k))

2,

+ ε3(Ft(k)− Ft(k − 1))2
]

∆T (7)

subject to the system dynamic equation (1).
The physical constraints are given as Ft ∈

[Ft,min, Ft,max], Fb ∈ [Fb,min, Fb,max]. The speed
and traveling distance limits are set as vlow 6

v(k) 6 vup, slow 6 s(k) 6 sup (k = 1, 2, . . . , Np) to
ensure dynamic performance, where (·){low,up} and
(·){min,max} represent the lower and upper bound-
aries, respectively. In the above equation, ∆T is
the time interval for discretization, andNp denotes
the prediction time horizon. The overall fuel con-
sumption in the cost function is mainly reflected
by the total output power, that is Ftv; the second
term is added to reduce unnecessary braking, and
the third one is used to avoid frequent acceleration
changing. Here, ε1,2,3 are the weighting factors.

Then, in the lower controller, the EMS is used
to optimize the torque split ratio and the gearshift
timing, which can be viewed as a constrained non-
linear optimal problem. In this study, we define
the torque split ratio ν as the ratio of the torque
contribution of the electric system to the total
torque demand. The total torque Td and gear ratio
ig provided by the engine and motor should satisfy
the force demand (F ∗

t −F ∗
b ) obtained in the higher

controller, formulated as

Td(k)ig(k) = [F ∗
t (k)− F ∗

b (k)]rw/(i0ηt) (8)

derived by (2). Then, we select the SoC of the
battery as the state variable. In the driving pro-
cess, the gear ratio ig, which reflects the gear po-
sition and gearshift timing, affects the operation
speed and thus has a great influence on the energy
efficiency; thus, it is also selected as the control
input. Therefore, the control variables are defined
as u = [ν, ig]

T. Then, the optimal control problem
can be formulated as

min J =

Nc
∑

k=1

[τ1ζ(k) + τ2I(k)]∆T (9)

subject to the system dynamics and constraints
Tf(k)+Tm(k) = Td(k), ν(k) = Tf(k)/Td(k), where
ζ is the fuel rate of the engine, and τ1 and τ2
are weighting coefficients. The formulated optimal
subproblems can be solved with many algorithms
such as widely used direct or indirect methods.
Because this article mainly focuses on the hier-
archical control architecture of the management
system, dynamic programming (DP) is used here.
When real-time control is required, some compu-
tationally efficient methods can be used, such as
algorithms in [9].

To evaluate the proposed EMS, a velocity pro-
file from a human driver in the urban expressway is
selected, and we add the upper and lower bounds
during vehicle speed optimization based on the se-
lected velocity trajectory. The results of the op-
eration points of power sources are shown in Fig-
ure 1(b) and (c), from which we can see that the
proposed EMS can make the operation points in
high efficient areas and thus improve fuel economy.

Conclusion. We propose an EMS based on ve-
locity profile optimization. Different from a tra-
ditional EMS, the total power/torque demand is
optimized by the higher controller rather than de-
rived from the human driver. To fully exploit the
potential of the fuel-optimal powertrain control,
gear position (or gearshift timing) is also consid-
ered in finding the optimal torque split ratio. The
simulation results show that the optimized power
demand can obtain better performance of comfort-
ability and high efficient.
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