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Appendix A Threshold optimization mode

Appendix A.1 Threshold update model based on IER

The model structure is shown in Fig. A1. First, the threshold and data are transformed into a unified interval belief

structure
{(

Hn,
[
β−
n,i

, β+
n,i

])
;
(
Hn+1,

[
β−
n+1,i

, β+
n+1,i

])}
. Then based on the IER algorithm, the overall interval belief

degrees are obtained by aggregating β and ω . Note that the IER algorithm is essentially an optimization model, the

maximum and minimum values of the combination result are the upper and lower boundaries of the overall interval belief

degrees, and a new threshold interval will be obtained by equivalent conversion.

Figure A1 Structure of threshold updating model based on IER

Appendix A.1.1 Interval belief structures conversion method

In order to use IER method to update interval threshold, it is necessary to define a set of evaluation grades for interval

threshold and observation data. There is a group of evaluation grades defined by experts H = (H1, H2, H3),where H1,H2

and H3 denote normal, fault, severe fault respectively. It is noted that the reference value setting for evaluation grades

H1, H2, H3 are based on the technical description and expert knowledge of the equipment or system.

Suppose that
[
β−
n,1, β

+
n,1

]
and

[
β−
n,2, β

+
n,2

]
stands for interval belief degrees of the interval threshold a1 and observation

data a2 relative to the evaluation grades Hn , then the interval belief structures can be expressed as:

S(vi) =
{
Hn,

[
β−
n,i, β

+
n,i

]
, n = 1, 2, 3

}
(1)

Since the interval threshold may span several assessment grades, of which the modeling is more difficult than precise

data. The relationship between interval threshold [y1, y2] and evaluation grades H1, H2, H3 is shown in Fig. A2.
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Figure A2 Relationship between interval threshold and evaluation grades

According to the transformation techniques (Yang, 2001 and Wang, 2006) [1][2], when the interval value [y1, y2] is totally

included by two adjacent evaluation grades (see Fig. A2(a)), the belief degrees of yi ∈ [y1, y2] distributed to H2 and H3

are respectively supposed as β1,1 ∈
[
β−
1,1

, β+
1,1

]
,β2,1 ∈

[
β−
2,1

, β+
2,1

]
,β3,1 ∈

[
β−
3,1

, β+
3,1

]
, and can be calculated by following

equations:

β−
1,1

= β+
1,1

= 0 (2)

β−
2,1

=
H3 − y2

H3 −H2
, β+

2,1
=

H3 − y1

H3 −H2
(3)

β−
3,1

=
y1 −H2

H3 −H2
, β+

3,1
=

y2 −H2

H3 −H2
(4)

Note that the above interval belief degrees β1,1 ∈
[
β−
1,1

, β+
1,1

]
,β2,1 ∈

[
β−
2,1

, β+
2,1

]
,β3,1 ∈

[
β−
3,1

, β+
3,1

]
, are not indepen-

dent. They have to satisfy β1,1 + β2,1 + β3,1 = 1.

Secondly, when the interval value yi ∈ [y1, y2] contains the evaluation grades H2 (see Fig. A2(b)), it is evident that if

yi lies within [y1, H2) , it will be assessed to H1 and H2 with different interval belief degrees, respectively; if yi = H2 , it

will be assessed to H2 for sure; if yi lies within (H2, H3), it should be assessed to H2 and H3 with different interval belief

degrees. From the above analyses, yi should be assessed to either H1 and H2 or H2 and H3 , it should not be assessed to

three evaluation grades simultaneously.

Let β1,1 ∈
[
β−
1,1

, β+
1,1

]
,β2,1 ∈

[
β−
2,1

, β+
2,1

]
,β3,1 ∈

[
β−
3,1

, β+
3,1

]
be the interval belief degrees to which yi ∈ [y1, y2] may

possibly be assessed to H1, H2, H3 . These interval belief degrees may be determined by the following formulas:

β−
1,1

= 0, β+
1,1

=
H2 − y1

H2 −H1
(5)

β−
2,1

= min(
H2 − y1

H2 −H1
,
y2 −H2

H3 −H2
) , β+

n,i
= 1 (6)

β−
3,1

= 0, β+
3,1

=
y2 −H2

H3 −H2
(7)

Similarly, β1,1, β2,1, β3,1 are not independent interval belief structures, they have to meet the requirement of normaliza-

tion, namely β1,1 + β2,1 + β3,1 = 1 . Using interval belief structures, yi can be equivalently expressed as follows: yi ∈ [y1, y2] ⇔
{(

H1,
[
β−
1,1, β

+
1,1

])
;
(
H2,

[
β−
2,1, β

+
2,1

])
;
(
H3,

[
β−
3,1, β

+
3,2

])}
β1,1 + β2,1 + β3,1 = 1

(8)

According to Eqs. (2) - (7), all interval data can be modeled using interval belief structures as shown in Eq. (8).

Since the belief degrees of the observation data x relative to the evaluation grades Hn, n = 1, 2, 3 is an accurate value,

its belief structures conversion is simple and can be expressed as β1,2 , β2,2 , β3,2 , which can be calculated by [3]:

βj,2 =
Hj+1 − x

Hj+1 −Hj
, j = 1, 2 (9)

βj+1,2 = 1− βj,2 (10)

βs,i = 0, s = 1, 2, 3, s ̸= j, j + 1 (11)

In order to use the IER algorithm to combine the interval thresholds and observation data, the data x is also converted

into an interval form: {
[x, x] ⇔ {(H1, [β1,2, β1,2]) ; (H2, [β2,2, β2,2]) ; (H3, [β3,2, β3,2])}
β1,2 + β2,2 + β3,2 = 1

(12)

Appendix A.1.2 IER analytical algorithm

In section A.1.1, a method for converting different data into a uniform interval belief structures is introduced. Then the

interval belief degrees need to be converted into interval probability masses by combining the weights and the interval belief

degrees using the following equations:

mn,i = mi (Hn) ∈
[
m−

n,i,m
+
n,i

]
=

[
ωiβ

−
n,i, ωiβ

+
n,i

]
(13)
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m̄H,i = m̄i (H) = 1− ωi (14)

m̃H,i = m̃i (H) ∈
[
m̃−

H,i, m̃
+
H,i

]
=

[
ωiβ

−
H,i, ωiβ

+
H,i

]
(15)

where n = 1, 2, 3 , i = 1, 2 , satisfy
2∑

n=1
mn,i + m̄H,i + m̃H,i = 1 and

2∑
i=1

ωi = 1. The probability mass mH,i, which is

distributed to the whole set H, and currently not assigned to any assessment grade, can be split into m̄H,i and m̃H,i, where

m̄H,i is caused by the relative importance of indicator ai and m̃H,i by the incompleteness of the assessment on indicator

ai.Since the interval belief structures is complete, then β−
H,i = β+

H,i ≡ 0. Note that the weights ω1, ω2, which are the relative

importance of the indicators, since the interval threshold is the same as the observation data, satisfy ω1 = ω2 .

Then, the interval probability mass of indicator ai are combined into the aggregated interval probability assignment by

the Eqs. (16)-(20):

mn = k

[
L∏

i=1

(
mn,i + m̄H,i + m̃H,i

)
−

L∏
i=1

(
m̄H,i + m̃H,i

)]
(16)

m̃H = k

[
L∏

i=1

(
m̄H,i + m̃H,i

)
−

L∏
i=1

m̄H,i

]
(17)

m̄H = k

[
L∏

i=1

m̄H,i

]
(18)

k =

[
K∑

n=1

L∏
i=1

(
mn,i + m̄H,i + m̃H,i

)
− (K − 1)

L∏
i=1

(
m̄H,i + m̃H,i

)]−1

(19)

Where L stands for the number of indicators, and K stands for the number of evaluation grades.

The basic probability masses on two indicators are combined and transformed into an overall interval belief degree by

solving the following pair of nonlinear optimization models where n = 1, 2, 3 :

Max/Min βn =
mn

1− m̄H
(20)

s.t. m−
n,i 6 mn,i 6 m+

n,i , n = 1, 2, 3; i = 1, 2 (21)

m̄H,i = 1− ωi , m̃−
H,i 6 m̃H,i 6 m̃+

H,i i = 1, 2 (22)

N∑
n=1

mn,i + m̄H,i + m̃H,i = 1 (23)

Let β+
n (vi) and β−

n (vi) denote the optimal objective function values of the above model, and obtain the overall interval

degrees
[
β−
n (vi) , β

+
n (vi)

]
by solving the IER model based on the Projection Covariance Matrix Adaptation Evolutionary

Strategy (P-CMA-ES) [4]. Finally, using Eqs. (2) - (7) for equivalent conversion, a new threshold interval [y1, y2]L is

obtained [5].

Appendix A.2 Threshold optimization model based on minimum FNPR

In the condition monitoring of industrial equipment and structures, the FNPR is an important indicator for evaluating the

performance of the monitoring system. Misreporting faults will distract staff energy and cause waste of resources. Failure

to report faults may result in more serious safety incidents and endanger the safety of personnel and system equipment.

Therefore, minimizing FNPR is the fundamental reason for threshold optimization.

Figure A3 Structure of threshold optimization model

According to threshold optimization model as shown in Fig. A3, the objective function of the model is minimum FNPR

s = (w + Nl) . The constraints of the model are y1 ∈ [a1, b1] and y2 ∈ [a2, b2] . In the test of the threshold, if the fault
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data value is lower than the lower bound of the threshold interval, the system status will be judged normally, which should

be counted as a false negative. If the normal data value is higher than the upper bound of the threshold interval, the system

status will be judged faulty, which should be counted as a false positive. When the testing data is within the threshold

interval, the status of the system is determined by combining expert knowledge and the environment of the system at that

time. Finally, the FNPR s can be obtained statistically. Based on the threshold optimization model, the threshold [y1, y2]
*
L

that satisfies mins is obtained based on the P-CMA-ES algorithm. The optimization model can be profiled as:

min s = (w +Nl)× 100%

s.t y1 ∈ [a1, b1]

y2 ∈ [a2, b2]

(24)

Appendix B Case studies

In order to verify the effectiveness of the IER-based threshold optimization method proposed in this paper, two examples

are introduced in this section: aerospace relay accelerated life testing and oil pipeline leak detection. Aerospace relays

are widely used in space rockets, satellites, missiles, and other aerospace and defense weapon systems. Their reliability

directly affects the reliability and safety of the entire system. Among them, whether the indicator pull-in time is normal

or not determines the accurate and reliable operation of the aerospace equipment timing system. As a non-renewable

resource, petroleum plays an extremely important role in the development of the national economy. As the main form of oil

transportation, oil pipelines will have extremely adverse effects on economic development in the event of a leak. Therefore,

it is of great significance to optimize the alarm threshold of the aerospace relay pick-up time and the oil pipeline leakage.

Appendix B.1 Case of aerospace relay accelerated life test

Appendix B.1.1 Interval belief structure conversion

Take JRC-7M Aerospace relay as an example. In the accelerated life test of the JRC-7M relay, 5800 sets of pull-in time

data are selected as shown in Fig. B1, it is known that the pull-in time of the relay appear a fault state after about 3,500

operations. Therefore, 300 sets of data are randomly selected as training data x1, x2, ..., x300 in the vicinity of the fault,

and 200 sets of data are selected as testing data c1, c2, ..., c200 and c*1, c
*
2, ..., c

*
200 in the fault state and the normal state,

respectively.

Figure B1 Pull-in time data of JRC-7M relay

According to the JRC-7M aerospace relay technical specification, the initial threshold is set to [7.6000, 7.7000]. A set of

evaluation levels: H1 (normal), H2 (fault), H3 (severe fault) is defined, and the reference value for the evaluation grades

”normal” is H1 = 6.5 , and the reference value for the evaluation grades ”fault” is H2 = 7.52 . The reference value H3

of the evaluation grade ”severe fault” is given by the expert in conjunction with historical fault data of the series of relay

pull-in times, and H3 = 7.96 . The initial threshold can be converted into the interval belief structure by Eqs. (2)-(7), as

shown in Table B1:

To facilitate the application of IER aggregation, Eq. (9-(11) are used to convert the pull-in time data to interval belief

structures, as shown in Table B2.
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Table B1 Interval belief degrees of interval threshold

Evaluation grades Interval belief degrees

H1 [0, 0]

H2 [0.5909, 0.8182]

H3 [0.1818, 0.4091]

Table B2 Interval belief degrees of training data

Training data H1 H2 H3

x1 [0.0256, 0.0256] [0.9744, 0.9744] [0, 0]

x2 [0.0192, 0.0192] [0.9808, 0.9808] [0, 0]

... ... ... ...

x300 [0, 0] [0.6579, 0.6579] [0.3421, 0.3421]

Appendix B.1.2 Update and optimization of threshold based on IER

It can be seen that from section A.1.2, ω1 = ω2 = 0.5 . Firstly, substituting the interval belief degrees of ω1, ω2 and x1 into

the nonlinear optimization model, the maximum and minimum values of the solutions are the upper and lower bounds of the

overall interval belief degrees [minβn,maxβn]1 respectively. Similarly, the interval belief degrees are updated by x2, ..., x300

in order to obtain the overall interval belief degrees [minβn,maxβn]300. According to the rule-based transformation

techniques, the interval belief degrees are equivalent to the threshold interval [y1, y2]300.

Secondly, 200 sets of normal state data are used to count the false positives rate w of the threshold interval [y1, y2]300 ;

and another 200 sets of fault data are used to count false negatives l . According to expert experience, let N = 2 , and the

constraints assigned to the initial threshold are y1 ∈ [7.57, 7.64] and y2 ∈ [7.65, 7.73].

Through optimization, when the initial threshold is [7.6207, 7.6824] , the min s = 10% is obtained, where w = 9% and

l = 0.5% . The update process of the overall interval belief degrees is shown in Table B3.

Table B3 Update process of the overall interval belief degrees

overall interval belief degrees H1 H2 H3

[minβn,maxβn]1 [0, 0] [0.7093, 0.7619] [0.2381, 0.2907]

[minβn,maxβn]2 [0, 0] [0.7078, 0.7710] [0.2290, 0.2922]

... ... ... ...

[minβn,maxβn]100 [0, 0] [0.6842, 0.7135] [0.2865, 0.3158]

... ... ... ...

[minβn,maxβn]300 [0, 0] [0.6547, 0.7488] [0.2512, 0.3453]

Finally, the overall interval belief degrees [minβn,maxβn]
*
300 of the optimal solution are equivalently converted to a new

threshold interval [7.6305, 7.6719] , and the optimization of threshold interval is completed.

In addition,the 3σ method the neural network method and the IER method are compared, and their FNPR is shown in

Table B4.

From Table B4, it can be seen that the threshold interval with no optimization has the largest s, and the IER method

has the smallest s , and is obviously superior to other methods.

Appendix B.2 Case of oil pipeline leak detection

The leakage of the oil pipeline can be determined according to the flowdiff between the two monitoring points, and this

example investigates the alarm threshold optimization of the flowdiff. In the 2000 oil pipeline monitoring data shown in Fig.

B2, the flowdiff and leaksize are at a relatively high level at the beginning, and then gradually decreased. After the 870th

set of data, there is no leakage in the oil pipeline [6]. In the critical state of leak and normal, 300 sets of data are selected as

threshold training data. 200 sets of leak data are selected as false negative test data, and 200 sets of normal state data are

selected as false positive test data. the initial threshold is set to [0.8000, 0.9500] with the constraint y1 ∈ [0.7300, 0.8300]

,y2 ∈ [0.8800, 0.9800]. According to expert knowledge, a set of evaluation levels: H1 (normal), H2 (leak), H3 (severe

leak) is defined, and its reference value are H1 = 0.5000, H2 = 0.6500, H3 = 1.4400 respectively.In actual monitoring,

the distribution of oil pipelines is wide, and the energy of personnel will be seriously consumed by excessive false positive.

Therefore, it can be considered that the false negative has the same negative effect as the false positive. When calculating

the FNPR s,the coefficient N is set to 1. By performing the threshold optimization steps, the optimized alarm threshold
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Table B4 Interval belief degrees of training data

Training data H1 H2 H3

x1 [0.0256, 0.0256] [0.9744, 0.9744] [0, 0]

x2 [0.0192, 0.0192] [0.9808, 0.9808] [0, 0]

... ... ... ...

x300 [0, 0] [0.6579, 0.6579] [0.3421, 0.3421]

interval [0.7734, 0.8067] is obtained. and the FNPR obtained according to the test data statistics s = 10% , where w = 6%

and l = 3% .

Figure B2 Oil pipeline leak data

The comparison of FNPR obtained by this method with other methods is shown in the following table:

Table B5 Comparison of other optimization methods

Methods Threshold w l s

No optimization [0.8500, 0.9500] 1.5% 10.5% 12%

3σ method [0.4367, 0.8433] 38% 0% 38%

Neural network method [0.8042, 0.8465] 5% 5.5% 10.5%

IER method [0.7734, 0.8067] 6% 3% 9%

From table B5, it can be seen that the threshold interval optimized by 3σ method has the largest s, and the IER method

has the smallest s. Therefore, through the comparison of threshold optimization methods, the effectiveness of the proposed

method in solving threshold optimization problems is verified.
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