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Abstract In this paper, the variation of a signal in Schwarzschild spacetime is studied and a general

equation for frequency shift parameter (FSP) is presented. The FSP is found to depend on the gravitationally

modified Doppler effects and the gravitational effects of observers. In addition, the time rates of a transmitter

and receiver may differ. When the FSP is a function of the receiver time, the FSP contributed through

the gravitational effect (GFSP) or the gravitationally modified Doppler effect (GMDFSP) may convert a

bandlimited signal into a non-bandlimited signal. Using the general equation, the FSP as a function of

receiver time is calculated in three scenarios: (a) a spaceship leaving a star at constant velocity communicating

with a transmitter at a fixed position; (b) a spaceship moving around a star with different conic trajectories

communicating with a transmitter at a fixed position; and (c) a signal transmitted from a fixed position in

a star system to a receiver following an elliptic trajectory in another star system. The studied stars are a

Sun-like star, a white dwarf, and a neutron star. The theory is illustrated with numerical examples.
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1 Introduction

With the development of space technologies, humans have sent exploration spacecraft into the far reaches

of space. After exploring the planets in the solar system, Voyager 1 of NASA’s Voyager interstellar

mission escaped the solar system and entered the interstellar medium on August 25 of 2012. Voyager 1

is currently journeying into outer space [1]. Voyager 2 was at a distance of 119 AU from the Sun on

November 2 of 2018. Once it reaches the escape velocity, Voyager 2 will also leave the solar system and

explore interstellar space [2]. Inspired by the success of its Chang’E missions, China launched its first

Mars program on January 11 of 2016 [3]. Many aspects of deep space communication (but ignoring the

gravitational effect) have been discussed recently, including communication network design [3–5], channel

models [6], channel coding [7], and laser communications [8]. One can easily imagine the exploration

of much deeper space by high-speed spaceships in the near future. Therefore, the study of deep space

communications has gained importance.

After Einstein proposed his field equations of general relativity [9], Schwarzschild developed the first

solution, called the Schwarzschild metric [10, 11], which describes the curved spacetime around a static

space object with spherical symmetry. The Schwarzschild metric predicts that when an electromagnetic

wave with a certain frequency at a fixed position propagates to another position with a different gravity,

the frequency of the wave changes. If the gravity is larger (smaller) at the latter position than at the
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former position, the rate of time is smaller (larger) at the latter position and the frequency is blue (red)-

shifted. These phenomena have already been proven in a series of experiments [12–15], and accounted for

in satellite tracking [16], global positioning systems [17] and X-ray pulsar-based navigation by weak-field

approximation [18–20].

The Doppler effect plays an important role in near-Earth wireless communications and the frequency of

the communication signal depends on the relative velocity of the receiver. However, the gravitational effect

has been rarely considered, as the Earth’s gravitation is too weak to noticeably affect a signal’s spectrum.

As we shall demonstrate, the Doppler effect is also important in deep-space wireless communications (see

also [21]). However, the Doppler formula should be modified and the gravitational effect becomes much

more important as it is contributed by masses much greater than the Earth: the Sun, white dwarfs,

neutron stars, and other massive space objects. The frequency variation by the gravitational effect

depends not on the relative velocity but on the positions of the transmitter and receiver.

This paper studies the gravitational effect on communication signals. The analysis is based on the

Schwarzschild metric of general relativity. The studied stars are a Sun-like star, a white dwarf, and a

neutron star. Three communication scenarios are considered: (a) a spaceship leaving a star at constant

velocity communicating with a transmitter at a fixed position; (b) a spaceship moving around a star

with different conic trajectories communicating with a transmitter at a fixed position; and (c) a signal

transmitted from a star system to another star system where the receiver follows an elliptic trajectory.

This study may improve our understanding of signal models for deep space communications.

The remainder of this paper is organized as follows. Section 2 formulates a general equation of the

frequency shift parameter (FSP) in Schwarzschild spacetime. Based on the general FSP equation devel-

oped in Section 2, Section 3 investigates the behaviors of a signal traveling in Schwarzschild spacetime in

scenarios (a)–(c). Section 4 presents numerical examples of the three scenarios. Section 5 concludes the

paper.

Some notations used in this paper are listed below [22, 23]:

T : time coordinate, Newtonian time, time of a static observer at infinity in Schwarzschild spacetime,

or time of a static observer in Minkowski spacetime.

t: time of a static observer at distance r in Schwarzschild spacetime.

τ : time of a moving observer at distance r in Schwarzschild spacetime.
∂
∂T : a coordinate basis vector of the partial derivative operator along direction T .

A boldface English letter is a vector, which can be represented by four coordinate basis vectors. For

example, V = V0
∂
∂T +V1

∂
∂r +V2

∂
∂θ +V3

∂
∂ϕ , where Vm is real-valued and the mth component of the vector

V (m = 0, time-coordinate component; m = 1, 2, 3, space-coordinate components).

dT : the dual vector of ∂
∂T along direction T , which is a linear operator on a vector space, i.e., dT ( ∂

∂T ) =
∂T
∂T = 1, and dT (V ) = V0

∂T
∂T + V1

∂T
∂r + V2

∂T
∂θ + V3

∂T
∂ϕ = V0 + V1 · 0 + V2 · 0 + V3 · 0 = V0.

dT ⊗ dT : a coordinate basis tensor defining the tensor product of dT and dT and a bilinear operator

on a vector space, i.e., dT ⊗ dT
(

∂
∂T ,

∂
∂T

)

= dT ( ∂
∂T ) · dT (

∂
∂T ) = 1 · 1 = 1, and dT ⊗ dT (V ,W ) =

dT (V ) · dT (W ) = V0W0.

g: the Schwarzschild metric in Schwarzschild spacetime, a bilinear operator on a vector space repre-

sented by a set of coordinate basis tensors (see (1) in Section 2).

gmn: the (m,n)th component of the metric g.

g (V ,W )=
∑

m,n gmnVmWn.

g (V ,V )=
∑

m,n gmnVmVn. If this sum is positive, negative, or zero, then V is a space-like vector, a

time-like vector, or a light-like vector, respectively (and vice versa). Note that a time-like vector may

have space-coordinate components and a space-like vector may have a time-coordinate component.

g (V ,V ) = 1: V is a unit space-like vector.

g (V ,V ) = −1: V is a unit time-like vector.

h: the Minkowski metric in Minkowski spacetime, a bilinear operator on a vector space, which can be

represented by a set of coordinate basis tensors (see (15) in Section 2).
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2 Frequency change in Schwarzschild spacetime

In Newtonian mechanics, the world is described by three-dimensional space and one-dimensional time.

The rate of time is fixed for all observers. Space and time are treated separately. A signal is a function

of time and its spectrum changes by the Doppler effect. In contrast, special relativity describes the

world by four-dimensional Minkowski spacetime, in which a moving observer’s own time is related to the

observer’s velocity so that space and time are inextricably connected. The rates of time are equal for all

static observers but differ from those of moving observers. A signal is a function of its observer’s own

time, which is determined by the observer’s velocity, and its spectrum follows the special relativity version

of the Doppler equation. General relativity also describes the world by four-dimensional spacetime with

combined space and time, but takes into account of gravitational effects. In this theory, the rates of

time of static observers may vary at different positions. A signal is a function of its observer’s own time,

and is determined by both the observer’s velocity and position. The Doppler equation should be further

modified (as shown later) to accommodate the gravitational effect in the spectrum change. This more

complex Doppler shift will be derived next.

Schwarzschild spacetime is one solution of Einstein’s field equations in general relativity. It describes

space and time around a static object with spherical symmetry. Schwarzschild spacetime is characterized

by the Schwarzschild metric as follows [10, 11, 22, 23]:

g ,g00dT ⊗ dT + g11dr ⊗ dr + g22dθ ⊗ dθ + g33dϕ⊗ dϕ

=− c2
(

1−
2GM

c2r

)

dT ⊗ dT +

(

1−
2GM

c2r

)−1

dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θdϕ⊗ dϕ), (1)

where G is the gravitational constant, c represents the speed of light, and M denotes the mass of the

spherical static object (the Sun, white dwarfs, and neutron stars are regarded as static and spherically

symmetric objects, although neither property strictly holds in real star systems). {r, θ, φ} are the spherical

coordinates of the reference frame whose origin is the center of the object. For simplicity, we also define

g = (gmn)06m,n63 and α , 2GM/c2. In general, α is smaller than r; the exceptions are black holes,

which are not discussed in this paper. Therefore, g00 < 0, gnn > 0 for n = 1, 2, 3 and gmn = 0 for

m 6= n. For this reason, the “quared length” (weighted by gmn) g(V ,V ) of a vector V can be zero or

even negative.

From (1), we obtain the unit vectors of the four coordinates in Schwarzschild spacetime. Note that

a unit time-like vector V and a unit space-like vector W satisfy g(V ,V ) = −1 and g(W ,W ) = 1,

respectively. The unit time-coordinate vector and the three unit space-coordinate vectors are, respectively,

given by

Z =
1

c

∂

∂t
=

1

c
(1− α/r)−

1

2

∂

∂T
,

(1− α/r)
1

2

∂

∂r
,

r−1 ∂

∂θ
,

r−1 sin−1 θ
∂

∂ϕ
.

(2)

Note that, T is not only the time coordinate but also represents the time at infinity where there is no

gravitation (or Newtonian time that ignores gravitation effects). The vector Z is simply the unit vector

of a static observer’s time direction at r, by which the observer measures time, and t is the time of the

observer. The dual vector of Z is

cdt = c(1− α/r)
1

2dT. (3)

From the dual vector, we obtain [22]

dt = (1− α/r)
1

2dT, (4)



Liu H, et al. Sci China Inf Sci August 2019 Vol. 62 082304:4

where the relation between dt and dT is r-dependent. This shows that if the rate of time at infinity (or

the rate of Newtonian time) is 1, the relative rate of time at r is (1−α/r)
1

2 . Therefore, the rates of time

depend on r. More specifically, the larger is the r, the larger is the rate of time.

As is well known, an electromagnetic wave is described by two parts: an angular frequency ω and a

spatial wave vector k. In Schwarzschild spacetime, these two parts are combined into a four-dimensional

wave vector [23]:

K = ωZ + ck. (5)

In the geometrical optics approximation, K is a light-like vector [23], i.e., g(K,K) = 0. Meanwhile, Z

is a unit time-like vector without a space-coordinate component, i.e., g(Z,Z) = −1 and k is a space-like

vector without a time-coordinate component, i.e., g(Z,k) = 0. Thus, it is not difficult to obtain

g (k,k) = ω2/c2. (6)

When two static observers occupy different positions, say {r1, r2}, and the first observer at r1 transmits

an electromagnetic wave with angular frequency ω1 to the second observer, the frequency ω2 of the received

wave at r2 is given by [23]

ω2 = ω1

(

1− α/r1
1− α/r2

)
1

2

. (7)

Eq. (5) shows that the angular frequency ω is actually the result of projecting K along Z, i.e., the unit

vector of a static observer’s time direction. Therefore, if the electromagnetic wave vector transmitted by

a static observer at r1 is

Kr1 = ω1Zr1 + ckr1 , (8)

then, the electromagnetic wave vector received by a static observer at r2 is

Kr2 = ω2Zr2 + ckr2 , (9)

where Zri and kri are the unit time-coordinate vector and spatial wave vector for the static observer at

ri (i = 1, 2), respectively. In addition, from (4) and (7), we obtain

ω2/ω1 = dt1/dt2, (10)

where ti is the time of the static observer at ri (i = 1, 2). Therefore, if both observers are static, the

angular frequency ω is inversely proportional to the rate of time. Obviously, if r2 > r1, the frequency

red-shifts; conversely, if r1 < r2, the frequency blue-shifts.

Now consider that a new observer at r2 is not static but has a four-dimensional velocity (also called a

4-velocity [23]):

U =
1

c

∂

∂τ

=
dt2
dτ

Zr2 +
1

c

(

dr2
dτ

∂

∂r2
+

dθ

dτ

∂

∂θ
+

dϕ

dτ

∂

∂ϕ

)

=
dt2
dτ

Zr2 +
1

c

(

dr2/dt2
dτ/dt2

∂

∂r2
+

dθ/dt2
dτ/dt2

∂

∂θ
+

dϕ/dt2
dτ/dt2

∂

∂ϕ

)

=
dt2
dτ

[

Zr2 +
1

c
ug

]

, (11)

where

ug ,
dr2
dt2

∂

∂r2
+

dθ

dt2

∂

∂θ
+

dϕ

dt2

∂

∂ϕ

= (1− α/r2)
− 1

2

(

dr2
dT

∂

∂r2
+

dθ

dT

∂

∂θ
+

dϕ

dT

∂

∂ϕ

)

(12)
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Figure 1 (Color online) World lines of (a) a static observer and (b) a moving observer in Schwarzschild spacetime.

is the spatial velocity of the new observer in Schwarzschild spacetime. This velocity is a space-like vector

without a time-coordinate component. The second equality in (12) is Eq. (4) with r = r2 and t = t2. Let

ug = [g(ug,ug)]
1

2 define the magnitude of the spatial velocity ug at r2 in Schwarzschild spacetime [23].

Then, we have

ug =
[

(1− α/r2)
−1(dr2/dt2)

2 + r22(dθ/dt2)
2 + r22 sin

2 θ(dϕ/dt2)
2
]

1

2

=(1 − α/r2)
− 1

2

[

(1 − α/r2)
−1(dr2/dT )

2 + r22(dθ/dT )
2 + r22 sin

2 θ(dϕ/dT )2
]

1

2 , (13)

where the term (1− α/r2)
−1 in the first equality is the element g11 in g.

Note that U is the unit vector of the new observer’s time direction. The new observer measures time

τ based on U . To demonstrate this, we illustrate two examples in Figure 1. The coordinates in Figure 1

are represented in four-dimensional spacetime, but only two dimensions are depicted for simplicity. The

coordinates describe a curve C(τ) in the time versus space plot. This curve, called the observer’s world

line, is parametrized by τ or characterized by tangent vector 1
c

∂
∂τ . A time-like curve means that every

tangent vector of the curve is a unit time-like vector [22]. As the speed of every observer cannot exceed

the light speed, the world lines of all observers are time-like curves. The time τ is precisely the time of

the observer along the curve, and 1
c

∂
∂τ is a metaphorical ruler by which the observer measures time. In

Figure 1(a), the observer at r2 is static and the tangent vector of every position on the curve is 1
c

∂
∂t2

,

so the observer’s time is t2. In Figure 1(b), the observer moves at different velocities through different

positions and its tangent vector is constantly changing. However, at every position of its world line, the

observer can measure the time along the curve using the tangent vector as a ruler. As the 4-velocity U is

a unit time-like vector, Zr2 is a unit time-like vector without space-coordinate components, and ug is a

space-like vector without a time-coordinate component, we have g(U ,U) = −1, g(Zr2 ,Zr2) = −1, and

g(Zr2 ,ug) = 0. Then, it is not difficult to obtain

dt2/dτ = (1− u2g/c
2)−

1

2 , γg. (14)

By comparison, the four-dimensional spacetime in special relativity is Minkowski spacetime, which is

characterized by the so-called Minkowski metric (also called the flat metric) [23]:

h = −c2dT ⊗ dT + dr ⊗ dr + r2[dθ ⊗ dθ + sin2 θdϕ⊗ dϕ], (15)

and let uh be the spatial velocity in Minkowski spacetime. Then, we have

uh =
dr2
dT

∂

∂r2
+

dθ

dT

∂

∂θ
+

dϕ

dT

∂

∂ϕ
, (16)

and the magnitude uh of the spatial velocity uh in Minkowski spacetime can be calculated as

uh = [h(uh,uh)]
1

2 = [(dr2/dT )
2 + r22(dθ/dT )

2 + r22 sin
2 θ(dϕ/dT )2]

1

2 . (17)



Liu H, et al. Sci China Inf Sci August 2019 Vol. 62 082304:6

From (12) and (16), one observes that the spatial velocities in the two spacetimes differ in two respects.

First, the Newtonian time T (a static observer’s time at r2 in Minkowski spacetime) in (16) is replaced

by the time t2 (a static observer’s time at r2 in Schwarzschild spacetime) in (12). Both velocities have the

same direction. Second, the magnitudes of the spatial velocities differ in the two spacetimes. Comparing

(13) and (17), there is one more coefficient (1 − α/r2)
−1 in the first equality of (13) which derives from

g11 in g, besides the different times T and t2.

From (14), and (4) setting r = r2 and t = t2, we have

dτ = (1− u2g/c
2)

1

2 (1− α/r2)
1

2dT. (18)

As the frequency ω′
2 at r2 for the new observer is the component of its own time direction, one must

projectKr2 alongU (the unit vector of the new observer’s time direction). The projected value is given by

ω′
2 = −g (U ,Kr2)

= −γgg(Zr2 + ug/c, ω2Zr2 + ckr2)

= γgω2 − γgg (ug,kr2)

= γgω2 − γgug
ω2

c
cosψ

= ω1γg

(

1−
ug
c

cosψ
)

(

1− α/r1
1− α/r2

)
1

2

, (19)

where ω2 is the frequency observed by the static observer at r2, and

cosψ =
g (ug,kr2)

√

g (kr2 ,kr2) g (ug,ug)
. (20)

The static observer shares the sameKr2 as the moving observer at r2 but with a different time direction.

The second equality in (19) follows from (9), (11), and (14), and the second-to-last and last equalities

follow from (6) with k = kr2 and (7), respectively. We also define the FSP β:

β , γg

(

1−
ug
c

cosψ
)

(

1− α/r1
1− α/r2

)
1

2

, (21)

which is independent of angular frequency ω1. In terms of the signal frequency ω1 of the transmitter, the

frequency ω′
2 of the moving observer at r2 is then given by

ω′
2 = βω1. (22)

Clearly, the FSP β in (21) can be separated into two parts. The first part,

β1 , γg

(

1−
ug
c

cosψ
)

(23)

is similar to the special relativity version of the Doppler equation [23], namely

β′
1 = γh

(

1−
uh
c

cosψ′
)

. (24)

Here, γh is similar to γg in (14) but with ug replaced by uh, and ψ
′ is the intersection angle between uh

and kr2 . When r1, r2 → ∞, Eqs. (23) and (24) are equivalent. Furthermore, if uh ≪ c, then γh ≈ 1 and

we retrieve the conventional equation

β′
1 =

(

1−
uh
c

cosψ′
)

, (25)

Therefore, Eq. (23) is merely a gravitationally modified Doppler equation. The parameter β1 is called

the gravitationally modified Doppler frequency shift parameter (GMDFSP).
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The second part is purely derived from the gravitational effect (or Einstein effect in [24]), and is called

the gravitational frequency shift parameter (GFSP):

β2 ,

(

1− α/r1
1− α/r2

)
1

2

. (26)

Thus, the FSP can be rewritten as

β = β1β2. (27)

Clearly, when β is very far from 1, ω′
2 and ω1 in (22) are widely different, meaning that the signal

frequencies of a moving observer at r2 and a transmitter at r1 are widely different (implying a large

frequency shift). The contributions of the two parts of β1 and β2 can be considered separately. If the

difference between β1 and 1 (or β2 and 1) is large or small, the gravitationally modified Doppler effect

(gravitational effect) is significant or negligible, respectively.

For a static observer at r2, we have ug = 0 and γg = 1, and the FSP β in (21) is constant and equal to

β2. In this case, Eq. (19) reduces to (7). Moreover, when ug or ψ in (23) changes over time τ , β1 is also

a function of τ . Similarly, when r1 or r2 in (26) changes over time τ , β2 is a function of τ . Consequently,

both β in (21) and the frequency ω′
2 in (22) are functions of τ . In general, we also have 0 < β1(τ) < ∞

(as ug < c), and 0 < β2(τ) <∞ (as α < r1 and r2). Therefore, 0 < β(τ) <∞.

Eq. (21) is the basic equation for calculating the FSP β. This equation depends on the parameters

r1, ug, r2, and cosψ, which are related to the transmitter position and receiver trajectory. Fixing the

transmitter position, the FSP β for different receiver trajectories will be calculated in Section 3.

3 A signal in Schwarzschild spacetime

Section 2 established the basic principles of the FSP when an electromagnetic wave is propagating through

Schwarzschild spacetime. From these principles, one can easily derive the variation of a signal transmitted

through Schwarzschild spacetime in particular scenarios. For consistency with Section 2, we here denote

the times of the transmitter at a fixed position r1 and a moving receiver at r2 as t1 and τ , respectively,

and the time at infinity as T . When a single-frequency complex exponential signal ejω1t1 is transmitted

at r1 to a spaceship at r2 in the absence of noise, a different signal will be received by the spaceship;

that is,

ejω1t1 → ejω1B(τ), (28)

where B(τ) =
∫ τ

0 β(τ
′)dτ ′, and β(τ ′) is the FSP in (21). If β is constant, B(τ) = βτ . A periodical signal

f1(t1) with fundamental angular frequency ω can be expanded as a Fourier series:

f1(t1) =

∞
∑

k=−∞

ake
jkωt1 , (29)

with

ak =
ω

2π

∫

π/ω

−π/ω

f(t1)e
−jkωt1dt1. (30)

The received signal is then given by

f2(τ) =

∞
∑

k=−∞

ake
jkωB(τ). (31)

Regarding the fundamental frequency of a non-periodic signal as infinitesimal (∆ω), the transmitted

signal can be expanded as [25]

f1(t1) =

∞
∑

k=−∞

ake
jk∆ωt1 , (32)



Liu H, et al. Sci China Inf Sci August 2019 Vol. 62 082304:8

Receiver positionTransmitter position

r
2r

2

u
h

Star

Figure 2 (Color online) A spaceship leaving a star and communicating with a transmitter at a fixed position.

with

ak =
∆ω

2π

∫

π/∆ω

−π/∆ω

f1(t1)e
−jk∆ωt1dt1. (33)

Then, the received signal is

f2(τ) =

∞
∑

k=−∞

ake
jk∆ωτ =

∞
∑

k=−∞

∆ω

2π

∫

π/∆ω

−π/∆ω

f1(t1)e
−jk∆ωt1dt1e

jk∆ωB(τ). (34)

As ∆ω → 0, the received signal can be rewritten as

f2(τ) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f1(t1)e
−jωt1dt1e

jωB(τ)dω =
1

2π

∫ ∞

−∞

f̂1(ω)e
jωB(τ)dω = f1(B(τ)), (35)

where f̂1(ω) is the Fourier transform of f1(t1).

In general, a bandlimited communication signal with bandwidth W is given by

f1(t1) =
1

2π

∫ W

−W

f̂1(ω)e
jωt1dω. (36)

When β is a non-zero constant, from (35), the received signal is

f2(τ) =
1

2π

∫ βW

−βW

1

β
f̂1

(

ω

β

)

ejωτdω. (37)

Then, the spectrum of the received signal is broadened when β < 1, narrowed when β > 1, and un-

changed when β = 1. When β is a function of time τ , the received signal is f1(B(τ)). As inferred from [26],

the signal f1(B(τ)) is bandlimited only when β(τ) is constant. Thus, a bandlimited signal transmitted

through Schwarzschild spacetime becomes a non-bandlimited signal. Clearly, the non-bandlimited-ness

increases with the varying rate of β(τ). The non-bandlimited-ness is contributed by the gravitationally

modified Doppler effect and the gravitational effect. A large (small) varying rate of β1(τ) (or β2(τ))

implies a large (possibly negligible) non-bandlimited-ness contributed by β1(τ) (or β2(τ)).

3.1 Variation of a signal from an object moving along a straight trajectory

This subsection considers the simple case of a receiver moving away from a star at constant dr2/dT , uh.

The transmitter position r1, receiver position r2, and center of the star are along the same line, as shown

in Figure 2. Suppose that at time τ = 0, T is zero and the receiver begins detecting a transmitted signal

at position r0. At the Newtonian time T (τ) when the receiver’s time is τ , we have

r2 = r0 + uhT (τ). (38)

From (13) and (38),

ug = (1− α/(r0 + uhT (τ)))
−1dr2/dT = (1− α/(r0 + uhT (τ)))

−1uh. (39)

As a function of τ , the Newtonian time T (τ) can be obtained from (18), (38), and (39):

dτ =
(

1− u2g/c
2
)

1

2 (1− α/r2)
1

2 dT =

[

1− α/(r0 + uhT (τ))− (1 − α/(r0 + uhT (τ)))
−1 u

2
h

c2

]

1

2

dT, (40)
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where the relation between τ and T depends on uh and r0. When uh and r0 are provided, T is a fixed

function of τ . Because cosψ = 1 in (19), the GMDFSP and GFSP are, respectively, derived from (23),

(26), (38), (39) and (40) as follows:

β1(τ) =
(

1− u2g/c
2
)− 1

2 (1− ug/c)

= [1− (1− α/(r0 + uhT (τ)))
−2u2h/c

2]−
1

2 × [1− (1− α/(r0 + uhT (τ)))
−1uh/c]

=

(

1− α/(r0 + uhT (τ))− uh/c

1− α/(r0 + uhT (τ)) + uh/c

)
1

2

,

β2(τ) =

(

1− α/r1
1− α/(r0 + uhT (τ))

)
1

2

.

(41)

As T (τ) depends only on the coefficients uh and r0, β1(τ), β2(τ), and β(τ) = β1(τ)β2(τ) also depend

only on uh and r0.

The speed uh cannot exceed the speed of light, i.e., uh < c. If uh ≪ c, we have

(

1− α/(r0 + uhT (τ))− uh/c

1− α/(r0 + uhT (τ)) + uh/c

)
1

2

≈ 1− (1− α/(r0 + uhT (τ)))
−1
uh/c, (42)

where (1− α/(r0 + uhT (τ)))
−1

is generally close to 1, and β(τ) can be written as

β(τ) ≈

(

1−
uh/c

1− α/(r0 + uhT (τ))

)(

1− α/r1
1− α/(r0 + uhT (τ))

)
1

2

. (43)

We also have

dτ ≈ (1− α/(r0 + uhT (τ)))
1

2dT. (44)

As the studied stars are not black holes, α < r0 (see Section 2). If α ≪ r0, the star is far from being

a black hole. Eq. (43) then gives

β(τ) ≈ (1− α/r1)
1

2

(

1−
uh
c

−
αuh/c

r0 + uhT (τ)

)(

1 +
α/2

r0 + uhT (τ)

)

≈ (1− α/r1)
1

2

[

1−
uh
c

+

(

1−
3uh
c

)

α/2

r0 + uhT (τ)

]

. (45)

From (44), we also have

dτ ≈ (1− α/[2(r0 + uhT (τ)])dT. (46)

Since T (0) = 0,

τ ≈ T (τ)−
α

2uh
ln(1 + uhT (τ)/r0). (47)

Furthermore, if uhT (τ) ≪ r0, i.e., the spaceship flies a relatively short distance throughout the com-

munication time, (45) gives

β(τ) ≈ (1− α/r1)
1

2

[

1−
uh
c

+
1

2

(

1−
3uh
c

)

α/r0
1 + uhT (τ)/r0

]

≈ (1− α/r1)
1

2

[

1−
uh
c

+
α

2r0

(

1−
3uh
c

)(

1−
uhT (τ)

r0

)]

= C0 + C1T (τ), (48)

where

C0 , (1− α/r1)
1

2

[

1−
uh
c

+
α

2r0

(

1−
3uh
c

)]

,

C1 , −
uhα

2r20
(1− α/r1)

1

2

(

1−
3uh
c

)

.

(49)
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From (47), we also have

τ ≈ (1− α/(2r0))T (τ) = C2T (τ), (50)

where C2 , 1 − α/(2r0). Consequently, a signal f1(t1) transmitted at r1 is received by the spaceship at

r2(τ) as

f2(τ) ≈ f1(C0τ + C3τ
2), (51)

where C3 , C1/(2C2). From [26], one observes that a bandlimited signal f1(t1) becomes a non-

bandlimited signal f2(τ) at the receiver. This raises the following question: Is f1(t1) bandlimited in

the fractional Fourier domain [27,28]? To answer this question, we first consider a single-frequency signal

f1(t1) = ejωt1 ,

which is received by the spaceship as

f2(τ) ≈ ejω(C0τ+C3τ
2).

The received signal is a chirp signal with initial frequency C0ω and frequency rate 2C3ω. Therefore,

f2(τ) is bandlimited in the fractional Fourier domain with the frequency rate 2C3ω. However, if f1(t1)

contains multiple frequency, then f2(τ) is not bandlimited in any fractional Fourier domain. To see this,

let us consider the following two-frequency signal:

f1(t1) = ejω1t1 + ejω2t2 = p1(t1) + q1(t1),

with ω1 6= ω2. The received signal by the spaceship is then

f2(τ) ≈ ejω1(C0τ+C3τ
2) + ejω2(C0τ+C3τ

2) = p2(τ) + q2(τ).

Notably, p2(τ) and q2(τ) are both chirp signals but with different frequency rates; therefore, a common

fractional domain in which both fractional Fourier transforms of p2(τ) and q2(τ) are bandlimited cannot

be found [29]. Consequently, f2(τ) is not bandlimited in the fractional Fourier domain. The same rule

applies to any multiple-frequency signal.

3.2 Variation of a signal transmitted to a conic trajectory

In general, when a spacecraft moves around a star with no extra force, it follows a conic trajectory. The

change in a signal received by a spaceship following such a trajectory is worthy of attention. A conic

trajectory may be elliptic, parabolic or hyperbolic (see Figure 3), depending on the mechanical energy

of the spaceship (i.e., the summed gravitational potential energy (< 0) and kinetic energy (> 0)). If

the mechanical energy is smaller than, larger than, or equal to 0, the trajectory is elliptic, parabolic, or

hyperbolic, respectively.

Consider that the transmitter is fixed at a location close to a star and that a spaceship with an onboard

receiver moves around the star with a conic trajectory. The trajectory radius relative to the center of the

star is [30]

r2 = p/(1 + e cosϕ), (52)

where p = h2/(GM) with

h = r22dϕ/dT, (53)

e = [1 + 2h2E/(G2M2m)]
1

2 is the eccentricity of the trajectory (0 < e < 1 for an ellipse, e = 1 for a

parabola, or e > 1 for a hyperbola,), and m is the mass of the spaceship. The mechanical energy E and

angular momentum h are constants satisfying mechanical energy conservation and angular momentum

conservation, respectively. T is the Newtonian time and M is the mass of the star. If the semi-major

axis a of the spaceship orbit is known, then we have

p =











a(1− e2), for 0 < e < 1,

2a, for e = 1,

a(e2 − 1), for e > 1.

(54)
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Figure 3 (Color online) A spaceship moving around a star with (a) an elliptic, (b) a parabolic, and (c) a hyperbolic

trajectory while communicating with a transmitter at a fixed position.

Combining (52) and (53), the angular velocity in Newtonian time is given by

dϕ

dT
= hr−2

2 =
h

p2
(1 + e cosϕ)

2
. (55)

The radial velocity of the spaceship relative to the center of the star in Newtonian time is

dr2
dT

=
pe sinϕ

(1 + e cosϕ)2
dϕ

dT
=
h

p
e sinϕ. (56)

As θ = π/2, from (12), (13), (52), (55), and (56), we get

ug =
h

p
(1− α/r2)

− 1

2 [e sinϕ∂/∂r2 + pr−2
2 ∂/∂ϕ] (57)

and

ug =
h

p
(1 − α/r2)

− 1

2

[

(1 − α/r2)
−1e2 sin2 ϕ+ (1 + e cosϕ)2

]
1

2 . (58)

From (18), (52), (55), and (58), we then obtain

dτ =

{

1− α/r2 −
h2

c2p2
[

(1 − α/r2)
−1e2 sin2 ϕ+ (1 + e cosϕ)2

]

}
1

2 p2

h
(1 + e cosϕ)

−2
dϕ. (59)

Supposing that the transmitted signal approximately propagates along straight lines and given that

θ = π/2 in (9), we let

kr2 = k cos η∂/∂r2 + k sin ηr−1
2 ∂/∂ϕ, (60)

where k is a parameter and η is the intersection angle between kr2 and the radial direction at r2. As

clarified in Figure 3(b), we have

cos η =
r2 − r1 cosϕ

(r21 + r22 − 2r1r2 cosϕ)
1

2

, sin η =
r1 sinϕ

(r21 + r22 − 2r1r2 cosϕ)
1

2

. (61)

Setting k = kr2 and ω = ω2 in (6) and using (60) and (61), we get

k =
ω2

c

(r21 + r22 − 2r1r2 cosϕ)
1

2

[(1− α/r2)−1(r2 − r1 cosϕ)2 + r21 sin
2 ϕ]

1

2

. (62)

Applying (57), (60)–(62), cosψ in (19) is given by

cosψ =
g(kr2 ,ug)

√

g(kr2 ,kr2)g(ug,ug)
=

g(kr2 ,ug)

ugω2/c
, (63)

where

g(kr2 ,ug)
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Figure 4 (Color online) A signal propagating from star system A to another faraway star system B.

=
hω2

pc
(1−α/r2)

− 3

2 sinϕ[r2e−r1(1+e cosϕ)α/r2+r1][(1−α/r2)
−1(r2−r1 cosϕ)

2+r21 sin
2 ϕ]−

1

2 . (64)

When the initial value of ϕ and the values of h and p (or a and e) are given, ϕ as a function of τ can

be obtained from (52) and (59). As shown in (52), (58) and (63), r2, ug, and cosψ are functions of ϕ;

therefore, they can be also solved as functions of τ . Furthermore, as shown in (21), (23), and (26), the

FSP, GMDFSP, and GFSP depend only on r1, r2, ug, and cosψ; therefore, they can be also solved as

functions of τ .

3.3 Variation of a signal during interstellar communications

Conceivably, aliens in a faraway star system might someday send electromagnetic waves containing infor-

mation to our solar system. Moreover, mankind can conceivably reach other star systems in the future.

These events might elicit frequent communications between different star systems. Therefore, calculating

the signal changes between different star systems is a worthwhile task.

Consider a signal transmitted from a star system A to another faraway star system B. Suppose that

the relative velocity vh between the two stars has a constant magnitude vh along a fixed direction in

Newtonian time T (see Figure 4). As the two stars are distantly separated, the gravitation of one

star can be neglected if the signal is much closer to the other star. When the signal approaches the

transmitter, the gravitational effect is almost totally caused by star A. When the signal approaches the

receiver, the gravitational effect is almost totally caused by star B. When the signal is far from both

stars, the gravitation can be neglected. Therefore, the whole process can be separated into two parts:

(a) propagation of the signal from the transmitter position near star A to a moving position that is at

the same velocity as vh and far away from either star (hereafter, faraway position), and (b) propagation

of the signal from the faraway position to the receiver position near star B. Process (a) is identical to

that considered in Subsection 3.1 and shown in Figure 2. Now set the parameter of the frequency shift

as βa. The faraway position r∞ → ∞ and moves away from the transmitter position with velocity vh. If

the transmitter position is fixed, then we have (21)

βa = (1− v2h/c
2)−

1

2 (1− vh/c)(1− α1/r1)
1

2 , (65)

where α1 = 2GM1/c
2, M1 is the mass of star A, and r1 is the radial distance of the transmitter.

Process (b) is similar to that in Subsection 3.2 and shown in Figure 3(a). Now set the parameter of

the frequency shift as βb, and suppose an elliptic trajectory of the receiver position r2. By (52), we then

obtain

r2 = p/(1 + e cosϕ), (66)

where 0 < e < 1. Letting ug be the spatial velocity of the receiver in Schwarzschild spacetime, (58) gives

ug =
h

p
(1 − α2/r2)

− 1

2

[

(1 − α2/r2)
−1e2 sin2 ϕ+ (1 + e cosϕ)2

]
1

2 . (67)

Substituting r1 with r∞ = ∞ in (63) gives

cosψ = sinϕ[1− (1− α/r2)
−1αe cosϕ/r2][(1− α/r2)

−1 cos2 ϕ
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+ sin2 ϕ]−
1

2 [(1 − α/r2)
−1e2 sin2 ϕ+ (1 + e cosϕ)2]−

1

2 . (68)

By (59), we have

dτ =

{

1− α2/r2 −
h2

c2p2
[

(1− α2/r2)
−1e2 sin2 ϕ+ (1 + e cosϕ)2

]

}
1

2 p2

h
(1 + e cosϕ)

−2
dϕ, (69)

where τ is the time of the receiver and ϕ can be solved as a function of τ . As shown in (66)–(68) that r2,

ug and cosψ are functions of ϕ, and hence, of τ . Therefore, by (21), βb can be also solved as a function

of τ :

βb(τ) = (1− u2g/c
2)−

1

2

(

1−
ug
c

cosψ
)

(1 − α2/r2)
− 1

2 . (70)

Combining processes (a) and (b), the FSP of the whole process is given as

β(τ) = βaβb(τ) = (1 − v2h/c
2)−

1

2 (1− u2g/c
2)−

1

2

(

1−
vh
c

)(

1−
ug
c

cosψ
)

×

(

1− α1/r1
1− α2/r2

)
1

2

. (71)

The GMDFSP and GFSP are then given as

β1(τ) = (1− v2h/c
2)−

1

2 (1 − u2g/c
2)−

1

2 (1− vh/c)
(

1−
ug
c

cosψ
)

(72)

and

β2(τ) =

(

1− α1/r1
1− α2/r2

)
1

2

, (73)

respectively.

3.4 Variation of a signal transmitted from a moving position to a moving spaceship

In the above studies, the transmitter was spatially fixed. The results for a stationary transmitter are

easily extended to those of a moving transmitter as follows. The frequency of a moving transmitter is

simply the projection along its own 4-velocity. Suppose that when the moving transmitter is at r1, it

transmits a signal with frequency ω′
1. The relation between the frequency of the static observer at r1 and

the moving transmitter at r1 is then obtained by (19), with r2 replaced by r1:

ω1 = ω′
1(1− u21g/c

2)
1

2

(

1−
u1g
c

cosψ1

)−1

, (74)

where cosψ1 = g(kr1 ,u1g)/
√

g(kr1 ,kr1)g(u1g,u1g), kr1 is the spatial wave vector at r1, and u1g is the

spatial velocity (with magnitude u1g) of the moving transmitter in Schwarzschild spacetime. Applying

unmodified Eq. (19), which relates the frequencies of a moving observer at r2 and a static observer at

r1, the frequency of the moving receiver at r2 is given by

ω′
2 = ω1(1− u22g/c

2)−
1

2

(

1−
u2g
c

cosψ2

)

(

1− α/r1
1− α/r2

)
1

2

, (75)

where cosψ2 = g(kr2 ,u2g)/
√

g(kr2 ,kr2)g(u2g,u2g), kr2 is the spatial wave vector at r2, and u2g is the

spatial velocity (with magnitude u2g) of the moving receiver in Schwarzschild spacetime. Then, we have

ω′
2 = ω′

1

(

c2 − u21g
c2 − u22g

)
1

2

(

c− u2g cosψ2

c− u1g cosψ1

)(

1− α/r1
1− α/r2

)
1

2

. (76)

Eq. (76) is extended from (19). As determined in the three scenarios above, the specific parameters

in (76) are related to the trajectories of the transmitter and receiver.
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Figure 5 (Color online) FSPs from gravitational effect (GFSP; top panels) and gravitationally modified Doppler effect

(GMDFSP; bottom panels) vs. time for a spaceship moving away from (a), (d) the Sun, (b), (e) a white dwarf, and (c), (f)

a neutron star. Results are plotted for different initial positions of the receiver and different transmitter positions.

4 Numerical examples

This section illustrates the above analyses with some numerical examples. The studied stars are a Sun-

like star, a white dwarf, and a neutron star. The approximate mass M⊙ and radius R⊙ of the Sun are

1.9891× 1030 kg and 6.955× 108 m, respectively [31]. The mass and radius of the Sun-like star are set to

the Sun’s mass and radius, respectively. The mass Mw and radius Rw of the white dwarf are set to M⊙

and 0.9%R⊙ (nearly the radius of the Earth), respectively. The mass Mn and radius Rn of the neutron

star Mn are set to 2.01M⊙ and 1.71× 10−5R⊙ or 12 km, respectively. All of these settings are consistent

with [32–39].

4.1 Spaceship moving away from a star

In this subsection, we consider a signal transmitted from a fixed position to a spaceship moving away

from the Sun, a white dwarf, or a neutron star as shown in Figure 2. In all examples, uh = dr2/dT is set

to the third cosmic velocity (escape velocity of the solar system) 16.7 km/s.

In Figure 5(a)–(c), the initial distances of the receiver to the center of the Sun, white dwarf, and

neutron star, at which the receiver obtains its first signals, are 5R⊙, 5Rw, and 5Rn, respectively. In the

solar system, the gravitational effect is negligibly smaller than gravitationally modified Doppler effect,

because GFSP β2(τ) is very close to 1 in all three cases. As β1(τ) and β2(τ) are both nearly constant,

the non-bandlimited-ness due to the gravitationally modified Doppler effect and gravitational effect is

negligible in this system. In contrast, when the transmitter and receiver are both near the white dwarf, the

gravitational effect and gravitationally modified Doppler effect are comparable and the non-bandlimited-

ness contributed by the gravitational effect is noticeable. When the transmitter is close to the neutron

star, the gravitationally modified Doppler effect is negligibly smaller than the gravitational effect, and the

frequency rate contributed by β2(τ) is huge, causing a high non-bandlimited-ness. When the receiver is

placed far from the star, β2(τ) is nearly constant in the communications of all star systems (solar, white

dwarf, and neutron star systems; see the curves of r2 = 500R⊙, 500Rw, and 500Rn in Figure 5(d)–(f),

respectively). When the receiver is far away from the star, it is negligibly affected by the star’s gravitation.

Consequently, the frequency rate is very small and the non-bandlimited-ness is barely noticeable.

Figure 6 shows the difference between the gravitationally modified Doppler effect β1(τ) and the Doppler

effect (special relativity version) β′
1(τ), and the difference between the time τ of a moving receiver and the
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Figure 7 (Color online) FFTs of a 104 Hz signal transmitted in (a), (d), (g) the solar system, (b), (e), (h) a white dwarf

system, and (c), (f), (i) a neutron star system with or without gravitational effects at τ = 50 s (top panels), 150 s (center

panels), and 250 s (bottom panels). The transmitters in the solar, white dwarf, and neutron star systems are located at

2R⊙, 2Rw, and 2Rn, respectively. The initial positions of the receivers are 4R⊙, 4Rw , and 4Rn, respectively. The sampling

rate is 2.5 times the signal frequency.

Newtonian time T . As the gravitation is much higher in a neutron star system than in other star systems,

these differences are much more evident in the neutron star system. Therefore, the neutron star system is

selcted for highlighting these differences. As shown in Figure 6(a), the gravitationally modified Doppler

effect β1(τ) exceeds the Doppler effect β′
1(τ) because β

′
1(τ) is close to 1, but the difference gradually tends

to zero as the receiver moves away from the neutron star. Although τ increases approximately linearly

with T (Figure 6(b)), the difference between τ and T increases dramatically at the beginning and later
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increases linearly with T (Figure 6(c)).

Figure 7 demonstrates the non-bandlimited-ness of a signal in these star systems. The FFTs of a

special bandlimited signal — a single-frequency complex exponential signal are calculated at different

times during signal transmission through the solar system, the white dwarf system, and the neutron

star system. In the solar system, the FFTs with and without gravitational effects are nearly identical

in the same time periods. The bands with and without the gravitational effect are both very narrowly

distributed around the centric frequency 104 Hz. In the white dwarf system, the FFTs are also closely

located in frequency, but the FFTs slightly translate to the left under the gravitational effect. The

bands with and without gravitational effect are both very narrowly centered about their slightly different

frequencies. At small time periods in the neutron star system, the FFT peaks at much lower frequency

and spans over a much broader frequency band under the gravitational effect than that without the

gravitational effect. At later times, the band under the gravitational effect becomes narrower.

4.2 Spaceship moving around a star with conic trajectories

This subsection considers a signal transmitted from a fixed position to a spaceship moving around the

Sun, a white dwarf, or a neutron star with an elliptic, a parabolic, or a hyperbolic trajectory as shown

in Figure 3.

As shown in Figure 8(a), (d), and (g), the gravitational effect is negligibly smaller than the gravitation-

ally modified Doppler effect in all three cases in the solar system. Accordingly, the non-bandlimited-ness

contributed by the gravitational effect is negligible in this system. In the white dwarf system (Figure 8(b),

(e), and (g)), the differences between β(τ) and β1(τ) are small but noticeable for all three trajecto-

ries. Therefore, the gravitational effect should be considered in the white dwarf system. However, the

non-bandlimited-ness contributed by the gravitational effect is negligible in all trajectories because the

variation in β2(τ) is small. When the spaceship moves around the neutron star (Figure 8(c), (f), and

(i)), the gravitational effect becomes significant. The variations in β2(τ) are very noticeable, especially

in the elliptic trajectory, and the non-bandlimited-ness contributed by the gravitational effect cannot be

ignored. However, the variation in β1(τ) is more significant, so the non-bandlimited-ness contributed by

the gravitationally modified Doppler effect is more significant than that contributed by the gravitational

effect.

In all systems (the Sun, white dwarf, and neutron star systems), the non-bandlimited-ness is mainly

contributed by the gravitationally modified Doppler effect. Furthermore, in the elliptic trajectories,

when the spaceship is located its closest or farthest distance to the transmitter (see positions A and B

in Figures 3 and 8), the frequency rate derived from β1(τ) is high and leads to a high non-bandlimited-

ness. In the parabolic and hyperbolic trajectories, the frequency rates are also high when the spaceship

is located near its closest position to the transmitter (see positions C and D in Figures 3 and 8), but

are nearly zero when the spaceship moves far from the transmitter. The levels of non-bandlimited-ness

differ among the systems, being highest in the neutron star system, slight in the white dwarf system, and

negligible in the solar system.

As the gravitational effects in the solar system and white dwarf system are insignificant and the

variation in β2(τ) is more significant in the elliptic trajectory than that in the other trajectories, we

analyze only the spectrum of a signal transmitted to a spaceship following an elliptic trajectory in the

neutron star system. The spectral results are presented in Figure 9. When accounting for the gravitational

effect β2(τ) only, the single-frequency complex exponential signal expands over a noticeable frequency

band. This confirms that the gravitational effect contributes non-negligibly to the non-bandlimited-

ness. When considering the gravitationally modified Doppler effect β1(τ) only, the signal expands over

even broader frequency band. The spectrum of the whole effect β(τ) appears similar to that of the

gravitationally modified Doppler effect, confirming that non-bandlimited-ness is mainly determined by

the gravitationally modified Doppler effect.
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Figure 8 (Color online) FSPs of the gravitationally modified Doppler effect (β1(τ)), gravitational effect (β2(τ)), and the

whole frequency shift parameter (β(τ)), as functions of time. The spaceship moves around (a), (d), (g) the Sun, (b), (e), (h)

a white dwarf, and (c), (f), (i) a neutron star with different conic trajectories: an ellipse (e = 0.2, top panels), a parabola

(e = 1, center panels) and a hyperbola (e = 2, bottom panels) with a = 5R⊙, 5Rw and 5Rn, respectively.
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Figure 9 (Color online) FFTs of a 105 Hz signal under (a) gravitational effects only (β2(τ)), (b) gravitationally modified

Doppler effect only (β2(τ)), and (c) the whole effect (β(τ)). The signals are transmitted in the neutron star system from

2Rn to the spaceship following an elliptic trajectory with e = 0.7 and semi-major axis a = 5Rn. The sampling rate is 2.5

times the signal frequency.

4.3 Communications between different star systems

This subsection computes the gravitational effect on a signal transmitted from a Sun-like star, a white

dwarf, and a neutron star system to another Sun-like star, white dwarf, and neutron star system, re-

spectively, as shown in Figure 4. The receiver moves with an elliptic trajectory. Assuming that the
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Figure 10 (Color online) FSPs of the gravitationally modified Doppler effect (β1(τ)), gravitational effect (β2(τ)), and the

whole frequency shift parameter (β(τ)), as functions of time. The signal is received at a position with an elliptic trajectory

(e = 0.0167) in (a), (d), (g) a Sun-like star system, (b), (e), (h) a white dwarf system, and (c), (f), (i) a neutron star system,

and is transmitted from a fixed position in another Sun-like star, white dwarf, and neutron star systems.

communications last from a few seconds to a few minutes, vh in (71) is set to 104 km/s.

In Figure 10(a), (d), and (g), a signal sent by an intelligent species in another system enters the

solar system for a relatively short period of time. If the signal comes from a Sun-like system, the

gravitational effect can be neglected. If the signal comes from a white dwarf system, the gravitational

effect is comparable to the gravitationally modified Doppler effect. Meanwhile, if the signal comes from

a neutron star system, the gravitational effect is significant and the gravitationally modified Doppler

shift is relatively small. However, regardless of the signal source system, the FSP β(τ) is nearly constant

over short time periods. Consequently, the frequency rate is nearly zero and the non-bandlimited-ness is

negligible.

In Figure 10(b), (e), and (h), a signal from a star system is transmitted to a white dwarf system. On

one hand, if the source star system is a Sun-like star system or a white dwarf system, the gravitational

effect can be neglected. On the other hand, if the source star is a neutron star, the gravitational effect

is more significant than the gravitationally modified Doppler effect. Because β2(τ) is nearly constant,

the non-bandlimited-ness contributed by the gravitationally modified Doppler effect dominates in this

case. Therefore, neither the gravitational nor the gravitationally modified Doppler effect can be ignored.

The gravitational effect provides a large frequency shift, whereas the gravitationally modified Doppler

effect generates high non-bandlimited-ness. In any case, the frequency rate is noticeable and the non-

bandlimited-ness is significant.

In Figure 10(c), (f), and (i), a neutron star system receives a signal from a star system. Both the

gravitationally modified Doppler effect and the non-bandlimited-ness contributed by this effect are sig-

nificant. However, while β2(τ) differs largely from 1 and the gravitational effect is significant in all three

cases, β2(τ) is much less variable than β1(τ). Therefore, the non-bandlimited-ness is mainly contributed

by the gravitationally modified Doppler effect.
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5 Conclusion

We studied here the variation of signals in Schwarzschild spacetime and derived a general equation for

the FSP. The FSP was divided into a GMDFSP component and a GFSP component. In addition,

the time rates of a transmitter and receiver may differ. The FSP was calculated as a function of the

receiver’s time in three scenarios (a)–(c) as described in Subsections 3.1–3.3, respectively. Relative to

the gravitationally modified Doppler effect, the gravitational effect in scenario (a) was negligible in the

solar system, comparable in the white dwarf system, and more significant in the neutron star system.

These results suggests that for deep space missions in the solar system, such as Mars exploration, the

gravitational effect can be neglected. In this scenario, non-bandlimited-ness was only contributed by the

gravitational effect. The non-bandlimited-ness contributed by the gravitational effect was more significant

in the neutron star system than in the other systems. When a receiver was close to, for example, a neutron

star, the difference between the gravitationally modified Doppler effect and the special relativity version

of the Doppler effect, and that between the time τ of a moving receiver and the Newtonian time T , were

both significant. Similarly to scenario (a), the gravitational effect in scenario (b) was insignificant in the

solar system, lightly significant in the white dwarf system, and decidedly significant in the neutron star

system. The non-bandlimited-ness was mainly contributed by the gravitationally modified Doppler effect

in all star systems, but the contribution from the gravitational effect cannot be ignored in the neutron

star system. In scenario (c), when the communications were passed between a Sun-like star system and

another Sun-like star system (or a white dwarf system and another white dwarf system), the gravitational

effect is negligible; however, when a white dwarf communicated with a Sun-like star, the gravitational

effect was insignificant only if the signals were received (not transmitted) in the white dwarf star system.

If the receiver was located in a Sun-like star system, the gravitational effect became noticeable. In a

neutron star, the gravitational effect was noticeable and comparable to gravitationally modified Doppler

effect. In all cases of scenario (c), the non-bandlimited-ness was mainly contributed by the gravitationally

modified Doppler effect.

Although transmitter position is usually fixed, all results are easily extendible to the case of moving

transmitters (see Subsection 3.4). Finally, the investigations will assist our understanding of ignal models

in deep space communications.
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