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Abstract The existing cyclic redundancy check (CRC)-aided successive cancellation list (CA-SCL) decoder

partitions the decoding process into two steps, where an SCL is followed by a CRC check. An SCL decoder

can approach the maximum-likelihood (ML) decoding performance of the inner polar codes using a sufficiently

large list; however, in this case, CRC is only used for performing error detection. Therefore, the decoding

performance of the outer CRC is different from that of ML because the errors are not rectified, which degrades

the performance of the entire concatenated codes. In this study, we propose a sphere decoder (SD) that can

achieve the ML performance of polar codes concatenated with CRC to address the suboptimality of CA-

SCL decoding. The proposed SD performs joint decoding of the CRC-polar codes in a single step, thereby

avoiding the polar decoding and CRC detection decoding scheme. Because the proposed SD guarantees

the ML decoding performance of the CRC-polar concatenated codes, the simulation results demonstrate

that the block error rate (BLER) of the proposed SD acts as the lower bound of the CA-SCL decoding

performance. Further, a new initial radius selection method is proposed for the SD to reduce the average

decoding complexity. The simulations demonstrate that the proposed initial radius selection method reduces

more amount of decoding complexity when compared with that reduced using sequential step size methods.

Keywords polar codes, sphere decoder, maximum-likelihood decoding, optimal decoding, radius search

Citation Yu Y R, Pan Z W, Liu N, et al. Sphere decoder for polar codes concatenated with cyclic redundancy

check. Sci China Inf Sci, 2019, 62(8): 082303, https://doi.org/10.1007/s11432-018-9743-0

1 Introduction

Polar codes are the first error control code class that can achieve symmetric memoryless channel capacity

using a successive-cancellation (SC) decoder having a decoding complexity of O(N logN) [1], where N

denotes the codeword length. By employing a cyclic redundancy check (CRC)-aided successive cancella-

tion list (CA-SCL) decoder [2, 3], the block error rate (BLER) performance of the polar codes improves

significantly when compared to that of an SC decoder and can be compared with the state-of-art low-

density parity check (LDPC) codes [4]. Further, low-latency SCL decoding algorithms [5,6] are proposed

for improving the throughput of the polar decoder. An SCL decoder can approach the maximum like-

lihood (ML) decoding performance of the inner polar codes using CRC-polar concatenated codes and a

sufficiently large list [2]. However, in this case CRC is only used for error detection. Despite the high

rate of the CRC, the CRC is a shortened cyclic code [7] (Subsection 3.2) that can rectify several error

bits; however, the error correction ability of the CRC is weak due to the high rate of the CRC when

CRC is used in modern digital systems. The representative examples are provided in Table 1, where

the CRC codeword weight distributions are also presented. Two CRC codes have minimum Hamming
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Table 1 CRC codeword weight distributionsa)b)c)

g(x) dmin dmin2 dmin3 Admin
Admin2

Admin2

x6 + x+ 1 3 4 5 53 329 1541

x8 + x7 + x6 + x5 + x4 + x3 + 1 3 4 5 26 347 2673

a) The information lengths of 6- and 8-bit CRCs are K = 22 and K = 32, respectively.

b) dmin, dmin2, and dmin3 denote MHW, second MHW, and third MHW, respectively.

c) Admin
, Admin2

, and Admin3
represent the number of codewords of weights dmin, dmin2, and dmin3, respectively.

weight (MHW) dmin = 3; thus, they can rectify a minimum of one error when a hard-decision method is

employed. A detailed description of the structure of a CRC codeword can be found in [8, 9]. However,

the error correction ability of CRC cannot contribute to the CA-SCL scheme after SCL has produced

L candidate codewords because SC decoding inherently demonstrates an error propagation phenomenon

after the occurrence of an error. Thus, simply correcting several error bits is meaningless. Because an

SCL decoder is suboptimal with a finite list size and because CRC detects but does not correct the errors,

the BLER performance of the CRC-polar concatenated codes can be improved when an optimal decoder

is employed. A sphere decoder that achieves suitable ML decoding performance and considers the error

correction ability of the outer CRC codes can be used as an optimal decoder for the CRC-polar codes.

Sphere decoding for polar codes was initially introduced in [10]. A binary tree can be established

for a sphere decoder by exploring the lower triangular structure of the generator matrix of polar codes.

A parallel sphere decoding scheme that can reduce the decoding latency to half of that of the original

scheme has been proposed in [10]. In addition, an optimal path metric has been proposed to determine the

most promising current decoding path [11], where the decoding complexity can be reduced by assigning

the highest priority to the most promising path. Fixed and dynamic lower bounds of a distance metric

have also been proposed [12] for reducing the size of the current decoding search space by pruning the

unlikely candidate paths. Other schemes [12] reduce the sphere decoding complexity without degrading

the ML performance. Further, list sphere decoding has been introduced [13, 14] to address the fact that

sphere decoding exhibits unfixed complexity. Using the path metric [13] and a predetermined list size,

the list sphere decoder can guarantee fixed time complexity [13]. A matrix reordering strategy that

further reduces the complexity of the list sphere decoder [13] has been proposed [14]. In addition, an

early terminating criterion has been proposed for a polar sphere decoder [15]. This early terminating

criterion performs well when the signal-to-noise ratio (SNR) is high, i.e., greater than 5 dB. In addition,

an initial decoding radius selection algorithm has also been proposed [15]. However, the aforementioned

studies have only dealt with single polar codes using a sphere decoder. To the best of our knowledge, no

study has considered a sphere decoder for CRC-polar concatenated codes.

The existing sphere decoder for a single polar code relies on the lower triangular structure of a polar code

generator matrix. However, to achieve the ML decoding performance of CRC-polar concatenated codes,

the conventional two-step decoding scheme that initially decodes the polar codes and that subsequently

performs CRC detection should be avoided. It is expected that a different generator matrix structure

will be required for decoding the CRC-polar concatenated codes. In this study, a nonsystematic CRC is

employed to obtain a generator matrix with a stair structure (defined in Subsection 3.2). We calculate

the generator matrix G of the CRC-polar codes and use the stair structure of G for implementing

sphere decoding. The existing CA-SCL decoding comprises two steps, i.e., SCL is followed by CRC

[3], where CRC is only used for error detection. However, the proposed sphere decoder performs joint

decoding of the CRC-polar codes. Decoding of the CRC-polar codes is completed in a single step, and the

code structure, i.e., the generator matrix, of the CRC-polar concatenated code is completely explored.

In addition, a new initial radius selection method is proposed for reducing the decoding complexity

because the selection of an initial decoding radius is important in sphere decoding. The simulation

results demonstrate that the BLER performance of the proposed decoder acts as the lower bound of the

CA-SCL decoding performance; further, when compared to the existing methods, the proposed initial

radius selection algorithm can reduce the decoding complexity.

This remainder of this study is organized as follows. In Section 2, preliminaries relative to polar codes
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and a sphere decoder are introduced. The proposed sphere decoder is described in Section 3. In Section 4,

our initial radius selection method is proposed. The simulation results are provided in Section 5, and the

conclusion is provided in Section 6.

2 Preliminaries

2.1 Polar codes

Polar codes are linear block codes with the generator matrix Gp = F⊗n, where Gp is an N ×N matrix

and N denotes the codeword length, n = log2N . F2 = [ 1 0
1 1 ]. The encoding process of polar codes can be

expressed as follows:

xN
1 = ũN

1 Gp, (1)

where xN
1 = (x1, . . . , xN ) denotes the coded bits and ũN

1 = (ũ1, . . . , ũN) denotes the source bit sequence.

Note that ũN
1 includes both information bits and frozen bits.

In symmetric memoryless channels, the value of frozen bits does not influence the BLER performance

of polar codes [1]; therefore, for simplicity, the frozen bits are set to zero bits. Here, let A denote the

index set of information bits. GA,p consists of the rows in Gp indicated by the set A. Further, the

encoding process can be rewritten as follows:

xN
1 = uK

1 GA,p, (2)

where uK
1 = (u1, . . . , uK) only represents K information bits. Note that the selection of A is referred to

as polar code construction and is beyond the scope of this study. The readers who are interested in this

topic can refer to [16–18].

2.2 Sphere decoding

Throughout this study, we assume an additive white Gaussian noise (AWGN) channel and a binary-phase

shift keying (BPSK) modulation scheme. Therefore, the sphere decoding of polar codes can be interpreted

as the following optimization problem:

ûN
1 = arg min

ũ
N
1 ∈{0,1}N

‖yN
1 −sN1 ‖22 = arg min

ũ
N
1 ∈{0,1}N

‖yN
1 −(1N

1 −2ũN
1 Gp)‖22 = arg min

ũ
N
1 ∈{0,1}N

∥

∥

∥

∥

1N
1 − yN

1

2
− ũN

1 Gp

∥

∥

∥

∥

2

2

, (3)

where ûN
1 = (û1, . . . , ûN) denotes the decoding output and yN

1 = (y1, . . . , yN) represents the received

signal. Further, sN1 = (s1, . . . , sN ) denotes the BPSK modulation symbol, and 1N
1 is an all-one vector

of length N . Vector-matrix multiplication is performed on the binary Galois field (GF(2)), and the

remaining computations are performed on a real number field. yN
1 is considered to be the sphere center,

and the distance between yN
1 and sN1 is considered to be the radius. Further, the objective of sphere

decoding is to search among all ũN
1 to find the one exhibiting the minimum Euclidean distance to yN

1 .

Here, Gp denotes a lower triangular matrix. By utilizing the structure of Gp, the problem (3) can be

represented as a depth-first binary tree search with a pruning strategy. The sphere decoder is assigned

an initial radius r0 = +∞ and begins by guessing the value of ũN , ũN−1, ũN−2, . . ., and ũ1. When

ũi, 1 6 i 6 N is obtained, the distance di between yN
i and ũN

i is compared to the current sphere radius

r. If di < r, the current result ũN
i is considered to be promising; further, decoding is continued. If di > r,

the current search at level i terminates, and the value of ũi+1 is flipped. This process continues until ũ1

is obtained. The distance d1 between yN
1 and ũN

1 is compared to the current sphere radius r. If d1 < r,

the current radius is updated to r = d1; further, the current optimal estimate is updated to ûN
1 = ũN

1 .

If d1 > r, no update is performed; further, the decoder proceeds to flip bits at high levels. The sphere

decoding terminates when no codeword has a smaller distance to yN
1 than the current radius r. Further,

the bit sequence ûN
1 corresponding to the current radius r is selected as the decoding output. Note that

sphere decoding achieves ML performance because the search space includes all 2K codewords.
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3 Proposed sphere decoder

In this section, we describe the proposed decoder for the CRC-polar concatenated codes. Specifically,

the generator matrix G of the CRC-polar code is calculated, and the structure of G is analyzed. The

proposed sphere decoder relies on the special structure of G. To facilitate clear understanding, examples

are provided in the following subsections.

3.1 Calculation of the CRC generator matrix

Because CRC is a shortened cyclic code, it can be characterized by a generator polynomial g(x) =

xr+ar−1x
r−1+· · ·+a1x+1, where r denotes the length of the CRC check bits and ai ∈ {0, 1} , 1 6 i 6 r−1.

Note that g(x) can be described by vector v(g(x)) as follows:

v(g(x)) = (1, ar−1, . . . , a1, 1). (4)

Here, assume that K information bits must be attached to r bits of CRC. The last row (i.e., the K-th

row) of the CRC generator matrix GCRC can be given as follows:

G
(K)
CRC = (01, . . . , 0K−1,v(g(x))) = (01, . . . , 0K−1, 1, ar−1, . . . , a1, 1), (5)

where 0i denotes the i-th zero bit placed before v(g(x)). The remaining rows of GCRC can be obtained

by the left circulating shift of G
(K)
CRC

1). An example of GCRC with g(x) = x3 + x + 1 [19], i.e., v(g(x))

= (1011), and K = 3 is provided in the following equation:

GCRC =









1 0 1 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1









. (6)

Note that GCRC in (6) is not in systematic form. Note that CRC is typically used as a systematic

code in digital communication systems; however, in the proposed sphere decoder, the systematic form of

GCRC is not required. The only difference between systematic and nonsystematic forms is the mapping

between the source bit sequence and coded word, i.e., systematic and nonsystematic forms represent the

same code; thus, there is no difference in the BLER.

We use a nonsystematic CRC generator matrix because the nonsystematic form can be partitioned as

follows:

GCRC = [UK×r|DK×K ], (7)

whereDK×K is an invertible lower triangular matrix that can be obtained naturally by the left circulating

shift of v(g(x)). The characteristic of DK×K is used to obtain a CRC-polar code generator matrix that

can be directly used in the proposed sphere decoding method.

3.2 Calculation of the CRC-polar generator matrix

To obtain the CRC-polar code generator matrix, polar codes with K + r unfrozen bits should be con-

structed, where K denotes the length of the data and r denotes the length of the CRC bits. The index

set of K+r unfrozen bits is denoted as A. In Gp = F⊗n, further, the rows that correspond to the indices

in A are selected to form GA,p, where GA,p has K + r rows and N columns. The generator matrix G of

the CRC-polar concatenated code can be obtained as follows:

G = GCRCGA,p. (8)

Examples of G are provided in (9) and (10). Here, GCRC is the same as that in a previous study (6),

and polar codes have length N = 8.

1) This process is equivalent to using K linearly independent CRC codewords to form the generator matrix.
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GA,p =

























1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

























, (9)

G = GCRCGA,p =









1 1 1 1 1 1 0 0

1 1 0 0 0 1 1 0

1 0 1 0 0 1 0 1









. (10)

A generator matrix with a stair structure is used in the proposed sphere decoder. A stair matrix can

be defined as follows.

Definition 1. Matrix A is a stair matrix with the following characteristics.

A is an m× t full row rank matrix. The last nonzero element in the i-th (1 6 i 6 m− 1) row is in the

p-th (1 6 p 6 t− 1) column, and the last nonzero element in the (i+ 1)-th row is in the q-th (2 6 q 6 t)

column. If q > p for any 1 6 i 6 m− 1, A is a stair matrix with m stairs.

Example 1. For matrices A and B that are shown below, A is a stair matrix with four stairs, and B

is not a stair matrix even though it can be converted into A by adding the third row to the second row.

Note that an invertible lower triangular matrix will always be a stair matrix.

A =













1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1













, B =













1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1













. (11)

As can be observed, GA,p in (9) is naturally a stair matrix because GA,p can be obtained by deleting

the rows of Gp, which is an invertible lower triangular matrix. In addition, G = GCRCGA,p in (10) is

also a stair matrix. Further, we prove that such a case is not a coincidence.

Lemma 1. If the nonsystematic CRC generator matrixGCRC = [UK×r|DK×K ] is used, G = GCRCGA,p

is a stair matrix.

Proof. Partition GCRC into two sub-matrices GCRC = [UK×r|DK×K ], where DK×K is a lower triangu-

lar matrix. DK×K is invertible, i.e., all the elements in the main diagonal of DK×K are one. Partition

GA,p into two sub-matrices as follows:

GA,p =

[

G1,r×N

G2,K×N

]

. (12)

Further, we obtain the following:

G = GCRCGA,p = [UK×r|DK×K ]

[

G1,r×N

G2,K×N

]

= UG1 +DG2. (13)

Prior to analyzing the structure of UG1 and DG2, we define the following helper function γ. γ(i),

1 6 i 6 K + r, denotes the column number of the last nonzero element in the i-th row of GA,p. For

example, in (9), (γ(1), . . . , γ(6)) = (2, 3, 4, 6, 7, 8). First, we analyze the structure of UG1.

Recall that GA,p is a stair matrix and that the last nonzero element in the first row of G2,K×N is in

the γ(r+1)-th column, which indicates that the columns from γ(r+1) to N are all zero column vectors

of length r in G1,r×N . Therefore, G1,r×N can be partitioned as follows:

G1,r×N = [G̃1,r×(γ(r+1)−1)|Or×(N−γ(r+1)+1)]. (14)
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Further, UG1 takes the following form:

UG1 = U [G̃1,r×(γ(r+1)−1)|Or×(N−γ(r+1)+1)]

= [UK×rG̃1,r×(γ(r+1)−1)|UK×rOr×(N−γ(r+1)+1)]

= [UK×rG̃1,r×(γ(r+1)−1)|OK×(N−γ(r+1)+1)]. (15)

Next, we analyze the structure of DG2. According to Definition 1, G2,K×N is a stair matrix because

G2,K×N can be obtained by extracting the last K rows from GA,p (GA,p is a stair matrix as defined in

Definition 1). The following equation always holds (1̃ indicates that 1̃ is in the γ(r + 1)-th column):

DG2 =

















1 0 0 0

∗ 1
. . . 0

∗ . . . 1 0

∗ · · · ∗ 1

















K×K





















∗ · · · ∗ 1̃ 0 0 0 0 0 0

∗ · · · ∗ ∗ ∗ ∗ 1 0 0 0
...

...
...
...
...
...
...
...
...
...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0

∗ · · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1





















K×N

(a)
=





















∗ · · · ∗ 1̃ 0 0 0 0 0 0

∗ · · · ∗ ∗ ∗ ∗ 1 0 0 0
...

...
...
...
...
...
...
...
...
...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0

∗ · · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1





















K×N

= G̃2
(b)
= [G̃2,left|G̃2,right]. (16)

Thus, G2 and G̃2 have identical stair structures. Equation (a) in (16) can be easily checked by

calculating all the elements in G̃2 sequentially. The matrix partition (b) produces G̃2,left and G̃2,right.

G̃2,left is a K× (γ(r+1)−1) matrix, and G̃2,right is a K× (N −γ(r+1)+1) matrix. With this partition,

G̃2,right is a stair matrix with K stairs. Further, we can obtain the following:

G = GCRCGA,p = [UK×r|DK×K ]

[

G1,r×N

G2,K×N

]

= UG1 +DG2

= [UK×rG̃1,r×(γ(r+1)−1)|OK×(N−γ(r+1)+1)] + [G̃2,left|G̃2,right]

= [UK×rG̃1,r×(γ(r+1)−1) + G̃2,left|G̃2,right], (17)

where G̃2,right is a stair matrix with K stairs; thus, G is also a stair matrix with K stairs because G̃2,right

is placed at the right partition of G. Further, G can be used in the proposed sphere decoder.

3.3 CRC-polar sphere decoder

In this subsection, the decoding process of the proposed sphere decoder is described. We begin by defining

an index matrix P to characterize the stair structure of the K ×N matrix G.

Definition 2. A K × 2 matrix P that describes the stair structure of G is referred to as an index

matrix if the elements in P are obtained through ρ(i) as follows:

Pi,1 = ρ(i − 1) + 1, Pi,2 = ρ(i), 1 6 i 6 K, (18)

where the value of ρ(i), 1 6 i 6 K is the column number of the last nonzero element in the i-th row of G

(ρ(0) = 0). For example, P corresponding to G in (10) can be given as follows:

P =









1 6

7 7

8 8









. (19)

A simple example of the proposed sphere decoder with P is given in the following. This example can

be easily extended to a general form, which will be discussed later.

Example 2. An example of the proposed sphere decoder for CRC-polar codes is shown as follows with

data length K = 3, CRC length r = 3, and polar code length N = 8.
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d3

Figure 1 (Color online) Sphere decoding process.

The corresponding generator matrices of CRC (GCRC), polar code (GA,p), and CRC-polar concate-

nated code (G = GCRCGA,p) are already presented in (6), (9), and (10), respectively. Here, we denote

the signal received from the AWGN channel as y8
1 = (y1, . . . , y8). For simplicity, we express the received

signal as ỹ8
1 = (ỹ1, . . . , ỹ8) = (1−y1

2 , . . . , 1−y8

2 ).

According to the stair structure of G in (10) and with the help of P , the segmented distance metrics

d1, d2, and d3 are calculated as follows (
∑3

i=1 di equals the square of Euclidean norm in (3)):

d3 =

P3,2
∑

j=P3,1

(

ỹj −
3
∑

l=3

ulGl,j

)2

= (ỹ8 − u3)
2, (20)

d2 =

P2,2
∑

j=P2,1

(

ỹj −
3
∑

l=2

ulGl,j

)2

= (ỹ7 − u2)
2, (21)

d1 =

P1,2
∑

j=P1,1

(

ỹj −
3
∑

l=1

ulGl,j

)2

= (ỹ6 − u1 ⊕ u2 ⊕ u3)
2 + (ỹ5 − u1)

2 + (ỹ4 − u1)
2 + (ỹ3 − u1 ⊕ u3)

2

+ (ỹ2 − u1 ⊕ u2)
2 + (ỹ1 − u1 ⊕ u2 ⊕ u3)

2, (22)

where ul denotes the l-th information bit and Gl,j denotes the element of G in the l-th row and j-th

column.

It can be observed that u3 appears in d3 for the first time. u2 and u1 appear for the first time in d2
and d1, respectively. This implies that the sphere decoder can be implemented via a binary tree search,

as shown in Figure 1. Therefore, we can obtain generator matrix G with a stair structure.

As depicted in Figure 1, the initial decoding radius r0 is +∞. Here, (u3, u2, u1) = (0, 0, 0) is initially

obtained as the currently optimal estimate, and r1 =
√
d1 + d2 + d3 is used to update the current sphere

radius. Further, u1 is flipped to 1, and (u3, u2, u1) = (0, 0, 1) is obtained. r2 =
√

d̃1 + d2 + d3 is then

compared to r1, where d̃1 denotes the recalculation of (22) after u1 is flipped. The result is r1 > r2; thus,

r2 is selected as the current radius, and (u3, u2, u1) = (0, 0, 1) is saved as the currently optimal estimate

(corresponding to the red line in Figure 1). Further, u2 is flipped to 1; therefore, (u3, u2) = (0, 1) is

obtained. Subsequently, the decoder finds that
√

d̃2 + d3 > r2, where d̃2 denotes the recalculation of (21)

after u2 is flipped. Therefore, the branches with blue lines are pruned because they cannot be the ML

estimates (the distance metric increases monotonically). Further, u3 is flipped to 1, and d̃3 is calculated.

After comparison,
√

d̃3 > r2; thus, the branches with yellow lines are pruned. Finally, the currently

optimal estimate (u3, u2, u1) = (0, 0, 1) is selected as the decoding output.

The aforementioned process can be extended to a general form, i.e., in a general case, the binary tree

in Figure 1 grows taller. Under the (N,K) CRC-polar codes, the height of the full binary tree is K.

The distance metric at the i-th level (counting from the bottom) is obtained through the i-th row of the
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index matrix P and the corresponding columns in G. A general sphere decoder for CRC-polar codes is

described in Algorithms 1–3.

Algorithm 1 is the main function of the proposed decoding algorithm. In Algorithm 2, we employ a

recursive process to describe the sphere decoding process, which is more flexible than pseudocodes [10].

Algorithm 3 is a sub-function that obeys the sphere decoding principle proposed in [20], i.e., the bit value

(0 or 1) of ui that results in a small distance metric di is first selected as an estimate of ui.

In the remainder of this section, we discuss about the proposed decoder. Note that the proposed

decoder performs joint decoding of CRC-polar concatenated codes and immediately estimates the data

bits uK
1 with optimal ML performance. The error correction capabilities of the polar and CRC codes

are combined while using G = GCRCGA,p to calculate the Euclidean distance between the estimated

codewords and the received signal. We avoid the conventional scheme in which the polar codes are

decoded first; further, CRC detection is performed; thus, the error correction capabilities of the polar

and CRC codes are not reflected individually.

The CRC-polar code has better BLER than a single polar code because outer CRC improves the

distance spectrum of polar codes, e.g., increased minimum distance [21]. If we completely explore such

improvement afforded by the outer CRC, i.e., by achieving the ML decoding performance of concatenated

codes, the error correction ability of CRC is reflected automatically. The proposed sphere decoder

achieves the ML performance of the CRC-polar concatenated codes; therefore, we conclude that the

error correction abilities of CRC and polar codes are completely utilized.

Algorithm 1 Proposed sphere decoder, main function

Input: g(x), GA,p, ỹ
N
1 .

Output: ûK
1,output.

1: Calculate GCRC through g(x);

2: G = GCRCGA,p;

3: Obtain P in Definition 2;

4: ûK
1 ⇐ null array; //Temporary bit estimate

5: dK
1 ⇐ null array; //Distance metric

6: d
K

1 ⇐ null array; //Auxiliary distance metric to avoid redundant calculations

7: r ⇐ +∞; //Initial radius

8: ûK
1,output ⇐ SphereDecoder(K,P ,G, ỹN

1 , ûK
1 ,dK

1 ,d
K

1 , r).

Algorithm 2 SphereDecoder

Input: k,P ,G, ỹN
1 , ûK

1 ,dK
1 ,d

K

1 , r.

Output: ûK

1,current optimal
.

1: for a ⇐ 1 : 2 do

2: if a = 1 then

3: [ûk, dk, dk] ⇐ SelectFirstBit(k,P ,G, ỹN
1 , ûK

1 );

4: else

5: ûk ⇐ ûk ⊕ 1, dk ⇐ dk;

6: end if

7: if
∑K

i=k di > r2 then

8: continue //Pruning operation

9: else

10: if k = 1 then

11: r2 ⇐
∑K

i=1 di; //Update radius

12: ûK

1,current optimal
⇐ ûK

1 ; //Update bit estimate

13: else

14: ûK
1,current optimal ⇐ SphereDecoder(k − 1,P ,G, ỹN

1 , ûK
1 ,dK

1 ,d
K

1 , r).

15: end if

16: end if

17: end for
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Algorithm 3 SelectFirstBit

Input: k,P ,G, ỹN
1 , ûK

1 .

Output: ûk, dk, dk.

1: ûk ⇐ 0;

2: dtmp1 ⇐
∑Pk,2

i=Pk,1
(ỹi −

∑K
j=k ûjGj,i)2;

3: ûk ⇐ 1;

4: dtmp2 ⇐
∑Pk,2

i=Pk,1
(ỹi −

∑K
j=k ûjGj,i)

2;

5: if dtmp1 > dtmp2 then

6: ûk ⇐ 1;

7: dk ⇐ dtmp2;

8: dk ⇐ dtmp1;

9: else

10: ûk ⇐ 0;

11: dk ⇐ dtmp1;

12: dk ⇐ dtmp2.

13: end if

4 Initial radius selection

Proper selection of the initial radius is important for reducing the complexity of sphere decoding [22,23].

In Algorithm 1, the initial radius is simply set to +∞, which may increase unnecessary binary tree

searches. In this section, a new initial radius selection algorithm is proposed. First, we introduce various

notations for the existing method. Further, we discuss the proposed initial radius selection algorithm.

Based on the distance lower bound method proposed in [12], the authors in [15] have introduced a

progressive initial radius selection criterion. Upon receiving ỹN
1 = (ỹ1, . . . , ỹN ) = (1−y1

2 , . . ., 1−yN

2 ), the

minimum possible radius can be calculated as follows:

r2min =

N
∑

i=1

dmin(i), (23)

where dmin(i) = min{(ỹi− 0)2, (ỹi− 1)2}. In this method, the coded bit xi corresponding to ỹi is either 0

or 1, and the bit value resulting in small (ỹi − xi)
2 is selected to estimate the minimum possible distance

between ỹN
1 and xN

1 . Because r2min may not be achievable, the sphere decoding radius is set as follows [15]:

r2w = r2min + wα, (24)

where w denotes the w-th sphere decoding and the initial radius is r21 = r2min + α. Eq. (24) implies that

the radius will continue to increase until the ML codeword is included in the sphere once r2w is small and

causes failure in finding the ML codeword, i.e., no codeword is included in radius r2w. Here, as proposed

in [15], the typical α value is 1, and α is fixed as constant regardless of the remaining parameters such

as SNR. However, the complexity of sphere decoding is dependent on SNR, i.e., high SNR results in low

complexity [12]. Therefore, SNR should be considered while designing the initial radius.

The proposed initial radius selection method considers both r2min in (23) and SNR. In the AWGN

channel with BPSK, when codeword xN
1 is transmitted, we can obtain the received signal yN

1 as follows:

yN
1 = (1− 2xN

1 ) + nN
1 , (25)

where nN
1 = (n1, . . . , nN) is the N -dimensional Gaussian additive noise with variance σ2

AWGN. Here, let

ỹN
1 = (1 − yN

1 )/2. Therefore, Rsquare = ||ỹN
1 − xN

1 ||2 = ||nN
1 /2||2 is subject to Chi-square distribution.

Because the codeword length N is even, the cumulative distribution function of Rsquare is given as follows:

F (Rsquare) = 1− e−
Rsquare

2σ2

N/2−1
∑

k=0

1

k!

(

Rsquare

2σ2

)k

, Rsquare > 0, (26)

where σ = 0.5σAWGN because we have transformed yN
1 into ỹN

1 . After receiving ỹN
1 , the minimum possible

radius r2min is obtained through (23), which implies that Rsquare > r2min. Inspired by the increasing radius
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search (IRS) [23], we set the following:

Pr(Rsquare 6 β0|Rsquare > r2min) = γ, (27)

where β0 > r2min.

Eq. (27) indicates that the probability that the ML codeword is included in the radius value β0 is γ

when r2min. Using simple calculations, β0 can be obtained as follows (β0 is the zero point of (28)):

F (β0)− γ − (1− γ)F (r2min) = 0. (28)

Further, β0 is selected as the initial decoding radius. When β0 is small and leads to failure in finding

the ML codeword, we replace r2min in (28) with β0 to obtain a new β1 for the next decoding turn as

follows:

F (β1)− γ − (1− γ)F (β0) = 0. (29)

Generally, once radius βk fails to find the ML codeword, the next search radius βk+1 can be obtained

as follows:

F (βk+1)− γ − (1− γ)F (βk) = 0. (30)

This process continues until the ML codeword is included in radius βk. Note that βk+1 > βk because

F (β) is an increasing function in β. βk+1 in (30) can be calculated offline, and γ can be obtained via

simulations. We observed that γ = 0.6 is suitable for various configurations, and the corresponding

simulation results are given in Section 5.

5 Simulation results

Here, we first demonstrate the BLER performance of the proposed sphere decoder. Further, we discuss

the average decoding complexity with the proposed initial radius selection method.

5.1 BLER performance

A sphere decoder is suitable for short codes; thus, here, we focus on short polar codes of lengths 32 and

64, as done in [10–12]. Here, the channel is AWGN with BPSK modulation, and Eb/N0 denotes the

SNR in terms of the average energy of information bits. For a single polar code, R = K/N , where K

is the number of information bits and N is the codeword length. For CRC-polar concatenated codes

with K information bits and r CRC bits, the rate remains R = K/N because r CRC bits that are

determined by K information bits do not carry information. Here, let P (N,K) denote the polar codes

that carry K information bits of length N . P (N,K + r) represents the CRC-polar concatenated codes

with K information bits, r CRC bits, and codeword length N . SPSD denotes a single polar code (SP)

that is decoded by SD. Note that all the codes discussed in this section are constructed by Gaussian

approximation [16] at Eb/N0 = 6 dB. For SC-based algorithms, min-sum approximation is employed

for the log-likelihood ratio (LLR) update in a check node, and a hardware-friendly LLR-based path

metric [24] is used in SCL decoding.

Here, P (32, 22) and P (32, 22+6) are simulated for polar codes of length 32. The generator polynomial

of the 6-bit CRC is g(x) = x6 +x+1. Figure 2 depicts the BLER of P (32, 22) and P (32, 22+6). As can

be observed, the SC decoder and SPSD demonstrate the worst BLER performance because they do not

concatenate with CRC. As the list size L increases from 32 to 256, the BLER of the CA-SCL decoder

remains mostly unchanged, which indicates that L = 32 is sufficient for P (32, 22 + 6). The proposed

sphere decoder yields the best BLER, achieving an ML decoding performance of P (32, 22 + 6).

P (64, 32) and P (64, 32 + 8) are simulated for polar codes of length 64. The generator polynomial of

the 8-bit CRC is g(x) = x8 + x7 + x6 + x5 + x4 + x3 + 1. Figure 3 depicts the BLER of P (64, 32) and

P (64, 32 + 8). As shown, the SC decoder and SPSD still provide the worst BLER, and, as L increases,

the BLER of CA-SCL continues to improve up to L = 256. Even when L = 256 is used for the CA-SCL

decoder, the BLER of the proposed sphere decoder still outperforms the CA-SCL decoder due to the ML

performance of the proposed method.
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Figure 2 (Color online) BLER performance of P (32, 22)

and P (32, 22 + 6).

Figure 3 (Color online) BLER performance of P (64, 32)

and P (64, 32 + 8).

5.2 Average complexity

Here, we present the average complexity of the sphere decoder with the proposed initial radius selection

algorithm. The computation of one (ỹj −
∑

ulGl,j)
2 assumes unit complexity because it is the basic

computation in Algorithm 3. One such computation is also referred to as a visited node in binary tree

search [12, 15]. Note that the fixed lower bound algorithm in [12] is employed in our simulations. In

addition, in the proposed radius selection method, the γ parameter is fixed to 0.6 in all the simulations.

We compare the proposed radius selection method to the existing radius method [15], the genie-aided

radius r2genie [15], and the fixed lower bound technique [12]. For any radius selection method, the sphere

decoder with the genie-aided radius [15] yields the lower bound of the average complexity because it is an

ideal radius. The genie-aided radius [15] indicates that the decoder already knows the distance between

the ML codeword xN
1,ML and the received signal ỹN

1 , i.e., r2genie = ||ỹN
1 − xN

1,ML||2. In simulations,

this can be realized by performing sphere decoding twice, i.e., the first decoding is employed to obtain

r2genie = ||ỹN
1 − xN

1,ML||2, and the second decoding uses r2genie as the initial radius. The complexity

of the second decoding is considered equal to that of the genie-aided radius. The fixed lower bound

technique [12] does not involve a radius selection scheme; thus, the average complexity of this technique

serves as a baseline that indicates the degree to which the complexity is reduced using the proposed

radius selection scheme. Note that the proposed sphere decoder relies on the same binary search process

in [10]. Therefore, the average complexity of the proposed sphere decoder is essentially the same as that

of the common sphere decoder.

We denote the average complexity under different Eb/N0 and different rate R = K/N in Figures 4

and 5, respectively. Here, the number of iterations in the simulation is 104. Under various configurations,

the average complexity of the sphere decoder with the proposed initial radius is less than that of a previous

method [15] and approaches the complexity of the genie-aided radius. Specifically, as depicted in Figure 4,

for P (32, 22 + 6), the proposed scheme exhibits advantages over the existing method [15] relative to a

higher Eb/N0 regime (Eb/N0 > 3.5 dB). For P (64, 32+8), the proposed scheme does not exhibit obvious

advantages over the existing method [15]. This phenomenon may result from the fact that α = 1 in [15]

is near-optimal for decoding P (64, 32 + 8). Note that, compared to [12], the proposed radius selection

scheme significantly reduces the average complexities by up to two orders of magnitude, which confirms

the effectiveness of the proposed radius selection method. In Figure 5, for both P (32, 32R + 6) and

P (64, 64R+ 8), the proposed scheme demonstrates advantages over the existing method [15] relative to

the low (R 6 0.3) and high (R > 0.6) rate regions, while the proposed and existing methods demonstrate

similar average complexity in the medium rate region.
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Figure 4 (Color online) Average complexity comparison

under different Eb/N0 (proposed radius scheme: γ = 0.6;

previous radius scheme [15]: α = 1).

Figure 5 (Color online) Average complexity comparison

under different R at Eb/N0 = 4.5 dB (proposed radius

scheme: γ = 0.6; previous radius scheme [15]: α = 1).

6 Conclusion

In this study, a sphere decoder has been proposed to decode the CRC-polar concatenated codes. The

existing CA-SCL decoder divides the decoding process into two steps, where the SCL decoder is followed

by a CRC check and where CRC is only used for error detection. The proposed sphere decoder finishes

decoding in a single step and achieves the ML performance with complete exploration of the structure

of the CRC-polar code. In addition, a new initial radius selection method was proposed to reduce the

average decoding complexity. The simulation results confirm that the BLER performance of the proposed

decoder acts as the lower bound of the CA-SCL decoding performance. In addition, the proposed radius

selection method achieves a lower average complexity than that achieved using several existing methods.

The sphere decoder for decoding longer CRC-polar codes will be studied in the further work.
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