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Object localization in 3D from 2D images is an
important computer vision problem that enables
modern robotic vision systems to interact properly
with the objects present in the real world. Ow-
ing to its significance, techniques for recovering
the 6-DOF pose and dimensions of objects from
images has received increasing attention in recent
years [1–3]. However, to the best of our knowledge,
the existing approaches all focus on object-level in-
ference instead of analyzing object parts. Most of
the time we expect a robot to interact with a se-
mantic part of an object (e.g., holding the bar of
a cup), part-level 3D object localization is consid-
erably preferred in practical applications.

Compared with object-level case, localizing ob-
ject parts in 3D is a significantly challenging prob-
lem. First, it requires recovering the orientations
and dimensions of each semantic part separately.
This problem is difficult due to the inherently large
variance of viewpoints, sizes, and shapes of the
semantic parts within an object category. Chal-
lenges are greater if self-occlusions among object
parts are considered. Second, part-level 3D ob-
ject localization is still a novel problem, thus there
is lack methodologies and datasets regarding it.
Training data is particularly scarce since annotat-
ing parts in 3D is inherently difficult and time-
consuming.

We address the aforementioned two problems
and make the first attempt to solve part-level
3D object localization. First, a baseline network
and its training strategies are proposed regarding
this task, which achieves impressive performance
without manual efforts. Second, we propose an

improved network that explores the spatial con-
text among object parts, which further improves
the performance. Finally, we provide high-quality
manual annotations for large-scale dataset to make
it possible for this task to be quantitatively evalu-
ated, thereby helping to push the research further
along this direction.

The 3D part localization network. Given an in-
put RGB image, we assume that the target object
is cropped at first and its category is known, such
as [1], and the target object contains several se-
mantic parts, which are defined previously. Our
objective is to estimate the 3D bounding boxes of
all the semantic parts.

With regard to a certain object part, we
parametrize its 3D bounding box using a 4-tuple
(e, l,d,R) in the object coordinate system, which
will be explained later. Here, e ∈ {0, 1} repre-
sents the possibility of existence of the part, which
solves the problem of the part category not be-
ing fixed in number. The center location of the
bounding box and its dimension are denoted with
l = [x(l), y(l), z(l)] and d = [x(d), y(d), z(d)]T,
respectively. The orientations are encoded by the
matrix R(θ, φ, ψ), parametrized by the azimuth,
elevation and roll angles [4]. For simplicity, we con-
strain the part bounding box to be axis-aligned,
which means that it has the same orientations as
that of the entire object.

Correspondingly, the high-level view of our 3D
part localization network is shown in Figure 1(a).
The network is category specific, based on the
number of parts of the object category. The
cropped image is input into a set of convolutional
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Aero               Baseline                   0.93                               0.29                0.68                  0.332

Baseline+SC               0.93                               0.35                0.62                  0.343

Chair               Baseline                   0.91                               0.13                0.95                  0.221

Baseline+SC               0.90                                0.14                0.91                  0.263

Car                 Baseline                     1                                  0.11                0.99                  0.539

Baseline+SC                  1                                 0.13                 0.97                  0.559

Motor               Baseline                  0.85                               0.24                 0.89                  0.488

Baseline+SC               0.86                               0.27                 0.86                  0.490

Table               Baseline                   0.86                               0.30                 0.58                  0.119

Baseline+SC               0.82                               0.86                 0.43                  0.082

Method Existence (precision)
Viewpoint

3D IoU average

Figure 1 (Color online) (a) Proposed network architecture; (b) three parts of accuracy on 5 categories.

layers to produce a shared high-level feature repre-
sentation. This feature is then entered into a set of
part-specific sub-networks and an object-specific
sub-network. For the part-net, it produces param-
eters w.r.t. the existence e, dimensions d, and
locations l of the parts. For object-net, it involves
the dimensions d0 and azimuth, elevation and roll
angles that define the rotations R.

Exploring spatial context. Note that the pro-
posed network estimates the 3D parameters indi-
vidually for each part. This would be suboptimal
in several cases, especially when a part is severely
occluded. Thus, we explore the context informa-
tion via a simple modification of the initial net-
work. As shown in Figure 1(a), we add a sequence
of relation sub-networks into the original network,
illustrated as the dashed part. These sub-networks
encode the mutual relationships among each pair
of the parts. Since the part bounding boxes are all
axis-aligned, we primarily consider their mutual
relative locations and dimensions. Thus, RelNeti,j
outputs a li,j and a di,j , where

li,j=
[

x(lj)−x(li), y(lj)−y(li), z(lj)−z(li)
]T
, (1)

and di,j is defined similarly. To utilize these pair-
wise estimates to solve individual estimation er-
rors, we let the final estimates meet both the in-
dividual and pairwise predictions. Formally, de-
note the concatenated location and dimension es-
timates for the i-th part as αi = [li,di]

T, and the

final estimates to optimize as α
∗
i . Moreover, let

αi,j = [li,j ,di,j ]
T be the pairwise estimates out-

put by the network. To obtain α
∗
i , we solve the

following problem:

min{α∗

i
}i

∑

i

(α∗
i−αi)

2+λ
∑

(i,j)

[ϕ(α∗
i ,α

∗
j )−αij ]

2, (2)

where ϕ(·) computes the relative spatial offsets fol-
lowing (1) and λ is a positive constant controlling
the relative weights. The resulting problem is a
least square system, which can be solved efficiently
using linear programming. Finally, we use the
solved location and dimension estimates to sub-
stitute the individually estimated ones for further
processing.

Data collection. Since 3D object part local-
ization from images is still a novel task, there
lacks mature datasets for training and evalua-
tion. To solve this problem, we implement an
annotation tool. This tool provides a set of seg-
mented 3D objects sampled from the ShapeNet
dataset [5]. First, users are asked to select a 3D
object that can align several possible parts. For
those parts that cannot be aligned properly at this
time, users could select another 3D model. As for
groundtruth, for each object we record the exis-
tence status of all parts, three viewpoint angles,
and the coordinate of eight vertices of 3D bound-
ing boxes in object coordinate frame, which could
be consistent since the coordinates of each cate-
gory object are oriented in the same direction.
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Besides, data augmentation is also explored by
synthesizing images using the off-the-shelf part an-
notations in modern 3D model datasets. Although
manually annotated 3D part bounding boxes pro-
vide accurate training data, they are still expen-
sive to obtain. Moreover, training deep neural net-
works heavily relies on the availability of large-
scale training data. Inspired by recent approaches
on rendering for CNN [6], we make use of exist-
ing 3D shape datasets to rapidly generate a large
number of synthesized training images.

Experiments and discussions. Since this task
has not been addressed previously, making direct
comparisons is difficult. Thus, the primary ex-
periments is that we conduct evaluations to ana-
lyze different parts of the proposed approach, to
provide baseline results for further research and
indicate the underlying challenges and scopes for
improvement.

We train the network using the synthesized im-
ages, while perform evaluations on the Object-
Net3D images. In this setting, we test the general-
ization ability of the network trained from synthe-
sized data on realistic situations. The results on
the 5 categories are summarized in Figure 1(b).

Following the conventions of 3D object detec-
tion and viewpoint estimation, we apply four met-
rics for evaluation. For part existence, a simple
accuracy is applied here. Subsequently, we cal-
culate 3D IoU (intersection over union) in object
coordinate frame for evaluation of part location
and dimension. As for viewpoint estimation, two
metrics [4] are used here: MedErr measures the
median error of the rotation matrix, Accπ

6
mea-

sures the accuracy of viewpoint error within π

6 .
From the results, we can observe that our baseline
network can achieve promising performance. After
incorporating the spatial context information, the
localization IoUs are improved consistently regard-
ing all the categories. It can be demonstrated that
such improvements are more significant regarding
the challenging small parts.

Conclusion. We focus on the task of part-level
3D detection from a single image, to our knowl-
edge, no relevant research has been conducted be-
fore. In an attempt to solve this problem, we pro-
pose a baseline network and improve it by con-
sidering spatial context. We also enhance Ob-
jectNet3D [7] and PASCAL3D+ [8] datasets by
annotating 3D bounding box of all parts of ob-
ject to evaluate our model. Regarding the evalu-
ation experiments we achieve a significant result
and considerable studies require to be conducted.
Future work should deal with a considerably effec-
tive network concerning both viewpoint and 3D
box; larger and more accurate datasets would also

be helpful.
Limitation. We estimate the positions and di-

mensions of part 3D bounding boxes. Instead of
estimating the complex orientations, we assume
that part bounding boxes share the same orien-
tations with object bounding boxes. In this case,
the bounding box we obtain is not the most fitting
one. Since the actual orientations may be different
among the parts, such as the two wings of an air-
plane, the assumption that different parts share a
same viewpoint in an image is only reasonable to
obtain an axis-aligned bounding box (AABB) in
our study. For motion parts, such as a car’s door,
although it is still possible to obtain its AABB ac-
cording to previous assumptions, we remove the
images that the part has moved. It seems that es-
timating an oriented bounding box (OBB) in 3D
would be more preferable although challenging for
future research.
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