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Lei LIU1,2, Matjaž PERC3 & Jinde CAO1*

1School of Mathematics, Southeast University, Nanjing 210096, China;
2College of Science, Hohai University, Nanjing 211100, China;

3Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia

Received 26 April 2018/Revised 28 June 2018/Accepted 5 September 2018/Published online 5 June 2019

Abstract In this paper, we present stochastic intermittent stabilization based on the feedback of the

discrete time or the delay time. By using the stochastic comparison principle, the Itô formula, and the Borel-

Cantelli lemma, we obtain two sufficient criteria for stochastic intermittent stabilization. The established

criteria show that an unstable system can be stabilized by means of a stochastic intermittent noise via

a discrete time feedback if the duration time τ is bounded by τ∗. Similarly, stabilization via delay time

feedback is equally possible if the lag time τ is bounded by τ∗∗. The upper bound τ∗ and τ∗∗ can be

computed numerically by solving corresponding equation.
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1 Introduction

It is well known that noise can be used to destroy some good properties of a system, such as stability. It

is Khasminskii [1] who pointed out that noise can stabilize an unstable system. In the past two decades,

an increasing number of scholars have focused on this area [2–4] and the references therein. Arnold et

al. [5] has showed a necessary and sufficient condition under which a linear system can be stabilized

by linear noise. Mao et al. [6] has researched the stochastic stabilization and destabilization theory for

a general nonlinear system with the coefficient satisfying the global locally Lipschitz condition. Mao

et al. [7, 8] have further evolved the stochastic stabilization technique to the locally Lipschitz condition

case. By applying the original technique, Appleby et al. [9] have researched the stochastic stabilization for

functional systems. Mao et al. [10] have revealed another interesting phenomenon that even a slight white

noise can suppress the potential explosive solutions to a population system, and several scholars [11, 12]

have further generalized this effect to more general systems. For a system with the coefficient not

satisfying the linear growth condition, Wu et al. [12] showed that nonlinear noise can not only suppress

the explosive solutions but also stabilize the system in an almost-sure sense.

Most of the stochastic feedback control techniques are designed based on continuous observation, which

is not easy to realize in practice. Actually, a time lag exists between the time when an observation is

made and the feedback is given to the system, that is to say, feedback control depends on the past

state. Consequently, time-delay feedback control has been used widely [13–19]. On the other hand,
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the observation might be taken at a consecutive time, such as τ, 2τ, . . ., where τ is the duration time

of every observation. Hence, many discrete time feedback control techniques have been proposed and

discussed by several authors [20–24]. It is worth pointing out that Mao and his collaborators [25, 26]

combined stochastic stabilization technology with discrete-time feedback control or time-delay feedback

control techniques respectively, and they have stabilized an unstable system via discrete-time observation

noise or delay time observation noise.

Moreover, intermittent control technology has recently attracted the attention of several scholars [27–

37]. Compared to the classic continuous control strategy, the intermittent control strategy is more

economical and can simulate the real world better. Intermittent control is more acceptable in practice

than continuous feedback control because the former decreases a controller’s wear and tear, thereby

extending the controller’s working life and reducing the cost. To the author’s best knowledge, most of

the intermittent control strategies in existing literature are periodical, and hence face a strict restriction

in practice. Recently, several scholars [37,38] have investigated the stabilization on networks via aperiodic

intermittent control.

Motivated by the above discussion, our main aim in this study is to investigate the stochastic stabi-

lization based on the aperiodic intermittent control strategy with discrete time feedback or time-delay

feedback. By using some stochastic analysis techniques, including the Itô formula, stochastic comparison

principle, and Borel-Cantelli lemma, sufficient criteria on stochastic aperiodic intermittent stabilization

are obtained via discrete time feedback or time-delay feedback techniques respectively, ensuring that the

controlled system is almost surely exponentially stable. The established results generalize and improve

the existing results.

2 Preliminaries

Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t>0,P) be a complete probability space

with a filtration {Ft}t>0 satisfying the usual conditions. Let τ > 0 and C = C([−τ, 0];Rn) be the

family of continuous functions ξ from [−τ, 0] to R
n with the norm ‖ξ‖ = sup−τ6θ60 |ξ(θ)| < ∞. Let

L2
F0

([−τ, 0];Rn) denote the family of all F0-measurableC([−τ, 0];Rn) valued random variables ζ = {ψ(θ) :
−τ 6 θ 6 0} such that sup−τ6θ60E|ζ(θ)|2 < ∞, where E| · | stands for the mathematical expectation

operator with respect to the given probability measure P . The abbreviation a.s. means almost surely or

with probability 1.

Consider the following unstable system:

ẋ = f(x(t)) (1)

on t > 0, where f : Rn → R
n with f(0) = 0 is a Borel measurable function. It is well known that the

unstable system (1) can be stabilized by the stochastic feedback control g(x(t))dB(t), where g : Rn → R
n

with g(0) = 0, and B(t) is a scalar Brownian motion. The main aim of this study is to stabilize the

system by the stochastic intermittent control h(t)g(x(t))dB(t), where

h(t) =

{

1, t ∈ [ti, si),

0, t ∈ [si, ti+1), i = 0, 1, 2, . . . ,

and ti+1− si is the rest width and si− ti is the control width. Now we need some notations for the inter-

mittent control strategy. Let infi(si − ti) = ϕ > 0, supi(ti+1 − ti) = ω > 0, and ψ = lim supk→∞ ψk > 0,

where ψk = (tk+1 − sk)(tk+1 − tk)
−1 and ψ is the maximum proportion of the rest width ti+1 − si in the

time span ti+1 − ti.

Now we impose a hypothesis of f and g.

Assumption 1. Assume that there exists α > 0, σ > 0, and ρ > 0 such that

|f(x)− f(y)| 6 α|x− y|, |g(x)− g(y)| 6 σ|x− y|, and |xTg(x)| > ρ|x|2
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for any x, y ∈ R
n.

Then the intermittent controlled system can be rewritten as

dY = f(Y (t))dt+ h(t)g(Y (t))dB(t). (2)

3 Main results

3.1 Stabilization based on discrete-time feedback

In practice, if the state x(t) is observed at discrete time, then the controlled system can be rewritten as

dX(t) = f(X(t))dt+ h(t)g(X(δt))dB(t), (3)

where δt = [ t
τ
]τ = kτ, ∀t ∈ [kτ, (k + 1)τ).

Theorem 1. Let Assumption 1 and ρ2 − 0.5σ2 > α hold. The system can be stabilized in an almost-

sure sense by stochastic intermittent control based on discrete time feedback if the intermittent rate

ψ ∈ (0, 1− (ρ2 − 0.5σ2)−1α) and the duration time τ ∈ (0, τ∗), where τ∗ is the root of (16). That is to

say, the solution to controlled system (3) has the following property:

lim sup
t→+∞

log |X(t)|
t

< 0, a.s. (4)

Proof. The proof is divided into three steps. The first step is to show that system (1) can be stabilized

by intermittent noise, and the second step is to make moment estimation on the error of systems (2)

and (3). Finally, the third step shows the intermittent stochastic stabilization based on discrete time

feedback.

Step 1. The main aim of this step is to show the pth moment exponential stability of the auxiliary

system (2). Choosing p ∈ (0, 2ρ−2(1−ψ)−1((1−ψ)(ρ2−0.5σ2)−α)) and setting t0 = 0, when t ∈ [t0, s0),

it follows from the Itô formula that

d|Y (t)|p 6 p(α+ 0.5σ2 + 0.5(p− 2)ρ2)|Y (t)|pdt+ p|Y (t)|p−2|Y T(t)|g(Y (t))dB(t).

By means of Lemma 1, we have

E|Y (t)|p 6 E|Y (0)|p exp{p(α+ 0.5σ2 + 0.5(p− 2)ρ2)(t− t0)}. (5)

Similarly, when t ∈ [s0, t1), we have

|Y (t)|p = |Y (s0)|p exp{pα(t1 − s0)} = |Y (0)|p exp{a1(s0 − t0) + a2(t− s0)},

where a1 = p(α+ 0.5σ2 + 0.5(p− 2)ρ2), and a2 = pα. This, together with (5), implies

E|Y (s1)|p = E|Y (0)|p exp{a1(s1 − t1) + a2(t1 − s0)}. (6)

Repeating the above-mentioned procedure, when t ∈ [ti, si), we have

E|Y (t)|p 6 E|Y (0)|p exp
{

a1

i−1
∑

k=0

(sk − tk) + a2

i−1
∑

k=0

(tk+1 − sk) + a1(t− ti)

}

= E|Y (0)|p exp
{

a1

i−1
∑

k=0

sk − tk
tk+1 − tk

(tk+1 − tk) + a2

i−1
∑

k=0

tk+1 − sk
tk+1 − tk

(tk+1 − tk) + a1(t− ti)

}

= E|Y (0)|p exp
{

a1

i−1
∑

k=0

(1 − ψk)(tk+1 − tk) + a2

i−1
∑

k=0

ψk(tk+1 − tk) + a1(t− ti)

}

,



Liu L, et al. Sci China Inf Sci July 2019 Vol. 62 072201:4

and when t ∈ [si, ti+1),

E|Y (t)|p 6 E|Y (0)|p exp
{

a1

i−1
∑

k=0

(1− ψk)(tk+1 − tk) + a2

i−1
∑

k=0

ψk(tk+1 − tk) + a1(si − ti) + a2(t− si)

}

.

By the definition of ψ, we have for any ε > 0, there exists a positive integer N such that ∀k > N, ∀t >
0, ψk < ψ + ε. Noting that t ∈ [ti, si), the exponent can be rewritten as

a1

i−1
∑

k=0

sk − tk
tk+1 − tk

(tk+1 − tk) + a2

i−1
∑

k=0

tk+1 − sk
tk+1 − tk

(tk+1 − tk)

= C1 + a1

i−1
∑

k=N+1

(1− ψk)(tk+1 − tk) + a2

i−1
∑

k=N+1

ψk(tk+1 − tk), (7)

where C1 = a1
∑N

k=0
sk−tk

tk+1−tk
(tk+1 − tk) + a2

∑N

k=0
tk+1−sk
tk+1−tk

(tk+1 − tk). This implies

C1 + a1

i−1
∑

k=N+1

(sk − tk) + a2

i−1
∑

k=N+1

(tk+1 − sk) + a1(t− ti)

6 C1 + a1

i−1
∑

k=N+1

(1− ψ − ε)(tk+1 − tk) + a2

i−1
∑

k=N+1

ψ(tk+1 − tk) + a1(t− ti)

6 C1 + [a1(1 − ψ − ε) + a2(ε+ ψ)]

i−1
∑

k=N+1

(tk+1 − tk) + a1(t− ti),

and when t ∈ [si, ti+1),

C1 + a1

i−1
∑

k=N+1

(sk − tk) + a2

i−1
∑

k=N+1

(tk+1 − sk) + a1(si − ti) + a2(t− si)

6 C1 + a1(si − ti) + a2(t− si) + [a1(1− ψ − ε) + a2(ε+ ψ)]

i−1
∑

k=N+1

(tk+1 − tk). (8)

This implies

lim sup
t→+∞

log E|Y (t)|p
t

6 −γp + ε, (9)

where γp = p[(0.5(2− p)ρ2 − 0.5σ2)(1 − ψ)− α]. Letting ε→ 0 yields

lim sup
t→+∞

1

t
log E|Y (t)|p 6 −γp. (10)

Then we can claim that there exists a T > t0, ∀t > T ,

E|Y (t)|p 6 e−
−γp
2

t. (11)

Step 2. Let X(t) = X(t; 0, x0), and Y (t) = Y (t; 0, x0) for simplicity. The main aim now is to perform

some moment estimation on the solution process X(t) to system (3) and the error process X(t)− Y (t).

Using the Itô formula [39], we can derive

|X(t)|2 = |X(0)|2 +
∫ t

0

2X(s)Tf(X(s))ds+

∫ t

0

|g(X(δs))|2ds+
∫ t

0

X(s)Tg(X(δs))dB(s),

which means

E|X(t)|2 6 E|X(0)|2 + 2α

∫ t

0

E|X(s)|2ds+ σ2

∫ t

0

E|X(δs)|2ds
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6 E|X(0)|2 + 2α

∫ t

0

sup
06u6s

E|X(u)|2ds+ σ2

∫ t

0

sup
06u6s

E|X(δu)|2ds.

The well-known Gronwall inequality implies

sup
06s6t

E|X(s)|2 6 E|X(0)|2 exp{(2α+ σ2)t}.

On the other hand,

X(t)−X(δt) =

∫ t

δt

f(X(s))ds+

∫ t

δt

h(s)g(X(δs))dB(s).

Using the Hölder inequality along with the isometric isomorphism theorem [39], we have

E|X(t)−X(δt)|2 = 2E

∣

∣

∣

∣

∫ t

δt

f(X(s))ds

∣

∣

∣

∣

2

+ 2E

∣

∣

∣

∣

∫ t

δt

h(s)g(X(δs))dB(s)

∣

∣

∣

∣

2

6 2α2τ

∫ t

δt

E|X(s)|2ds+ 2σ2

∫ t

δt

E|X(δs)|2ds

6 (2α2τ + 2σ2)τE|X(0)|2 exp{(2α2 + σ2)t}
=: H1(τ, 2)E|X(0)|2 exp{β2t}, (12)

where H1(τ, 2) = (2α2τ + 2σ2)τ , and β2 = 2α2 + σ2. Applying the Itô formula again to |X(t)− Y (t)|2
yields

|X(t)− Y (t)|2 =

∫ t

0

2(X(s)− Y (s))T(f(X(s))− f(Y (s)))ds

+

∫ t

0

h2(s)|g(X(δs))− g(Y (s))|2ds+M(t), (13)

where M(t) =
∫ t

t0
2σh(s)(X(s)− Y (s))T(g(X(δs))− g(Y (s)))dB(s) is a local martingale. Taking expec-

tation on both sides of (13), we have

E|X(t)− Y (t)|2 6

∫ t

0

2αE|X(s)− Y (s)|2ds+ 2σ2

∫ t

0

h2(s)E|X(δs)− Y (s)|2ds

6 (2α+ 4σ2)

∫ t

0

E|X(s)− Y (s)|2ds+ 4σ2

∫ t

0

h2(s)E|X(δs)−X(s)|2ds.

It follows from (12) that

∫ t

0

h(s)E|X(δs)−X(s)|2ds 6 H1(τ, 2)E|X(0)|2
∫ t

0

h(s) exp{β2s}ds

6 H1(τ, 2)β
−1
2 E|X(0)|2(exp{β2t} − 1).

Thus, we have

ϕ1(t) 6 β1

∫ t

0

ϕ(s)ds+ 4σ2H1(τ, 2)E|X(0)|2β−1
2 exp{β2t}, (14)

where ϕ1(t) = E|X(t)− Y (t)|2, and β1 = 2α+ 4σ2. By the well-known Gronwall inequality, we have

ϕ(t) 6 4σ2H1(τ, 2)E|X(0)|2β−1
2 exp{β2t}+ β1β

−1
2 4σ2H1(τ, 2)(3σ

2)−1(exp{β1t} − exp{β2t})
= H1(τ, 2)β

−1
2 [4σ2 exp{β2t}+ 4/3(exp{β1t} − exp{β2t})]E|X(0)|2

=: H1(τ, 2)β
−1
2 G1(t)E|X(0)|2, (15)
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where G1(t) = [4σ2 exp{β2t}+ 4/3(exp{β1t} − exp{β2t})]. Simple computations show that

E|X(t)− Y (t)|p 6
(

E|X(t)− Y (t)|2
)

p
2 6 (H1(τ, 2)β

−1
2 )

p
2G

p
2

1 (t)E|X(0)|p.

Step 3. In this step, we will show the almost surely stable system (3). For any sufficiently small

ε ∈ (0,min{1, 2p exp{−0.5γpT }(E|X(0)|p)−1}), it is easy to show that the following equation has a

unique root τ∗ > 0:

ε+ 2p
(

H1(τ, 2)β
−1
2

)

p
2
(

G1(τ + 2γ−1
p log(ε−12p(E‖ξ‖p)−1))

)

p
2

= 1. (16)

For any τ ∈ (0, τ∗), we choose k̄ such that

2 log 2pε−1(E|X(0)|p)−1

τγp
6 k̄ 6 1 +

2 log 2pε−1(E|X(0)|p)−1

τγp
. (17)

From the definition of ε, we get T < 2γ−1
p log 2pε−1(E|X(0)|p)−1 6 k̄τ . We hence see from (11) that

E|Y (ik̄τ)|p 6 exp{−λik̄τ}. (18)

By the elementary inequality (a+ b)p 6 2p(ap + bp) for any a, b > 0, we have

E|X(k̄τ)|p 6 2pE|Y (k̄τ)|p + 2pE|X(k̄τ)− Y (k̄τ)|p. (19)

It follows from (18) that

2p(E|X(0)|p)−1 exp{−0.5γpk̄τ} < ε, k̄τ < τ +
2 log 2pε−1(E|X(0)|p)−1

γp
. (20)

This gives

E|X(k̄τ)|p 6

[

ε+ 2p
(

H1(τ, 2)β
−1
2

)

p
2
(

G1(τ + 2γ−1
p log(ε−12p(E|X(0)|p)−1))

)

p
2

]

E|X(0)|p

:= E|X(0)|p exp{−λ1k̄τ}, (21)

where λ1 = (kτ)−1 log[ε+2p
(

H1(τ, 2)β
−1
2

)

p
2
(

G1(τ+2γ−1
p log(ε−12p(E|X(0)|p)−1))

)

p
2 ]−1. Using the time-

homogeneity property, we therefore have

E|X(ik̄τ)|p 6 E|X(0)|p exp{−λ1ik̄τ}. (22)

We conclude from the Hölder inequality and the Burkholder-Davis-Gundy (B-D-G) inequality [39] that

E sup
06t6k̄τ

|X(t)|2 6 3E|X(0)|2 + 3E

[

∫ k̄τ

0

f(X(t))dt

]2

+ 3E

[

sup
06s6k̄τ

∫ s

0

σ2h(s)g(X(δs))dB(s)

]2

6 3E|X(0)|2 + 3(α2k̄τ + 4σ2)

∫ k̄τ

0

E sup
06s6t

|X(s)|2dt. (23)

The Gronwall inequality and the Hölder inequality give

E sup
06t6k̄τ

|X(t)|p 6 30.5pE|X(0)|p exp{1.5pk̄τ(α2k̄τ + 4σ2)}. (24)

Making use of the time-homogeneity property and Chebyshev’s inequality [39], we see from (24) that

P
(

sup
ik̄τ6t6(i+1)k̄τ

|X(t)|p > e−0.5λik̄τ

)

6 E sup
ik̄τ6t6(i+1)k̄τ

|X(t)|pe0.5λik̄τ 6 30.5p exp{1.5pk̄τ(α2k̄τ + 4σ2)}E|x(ik̄τ)|p

6 30.5p exp{1.5pk̄τ(α2k̄τ + 4σ2)}E|X(0)|p exp{−0.5γpik̄τ}.
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t
0

t
1

t
2

S
0

S
1

0 2 3 4 5 6τ τ τ τ τ τ

Figure 1 A specific time series for controller h(t)g(X(δt)) on [0, 5τ ].

Using the well-known Borel-Cantelli lemma [39], we get

lim sup
t→+∞

log |X(t)|
t

6 −λ1 < 0. a.s. (25)

The proof is completed.

Remark 1. It follows from Assumption 1 and f(0) = 0, g(0) = 0 that |f(y)| 6 α|y|, |g(y)| 6 σ|y|.
By using a similar technique from Lemma 4.3.2 in [39], we can claim that for any Y (0) 6= 0, P{Y (t) 6=
0, ∀t > 0} = 1, a.s. This implies that |Y (t)| is derivable in an almost-sure sense.

Remark 2. The controller h(t)g(X(δt)) integrated the discrete time feedback, aperiodic intermittent

control and the stochastic stabilization technique. To express the controller explicitly, we consider a

specific case (see Figure 1) for example. In this case, the specific expression of the controller h(t)g(X(δt))

on [0, 5τ ] is

h(t)g(X(δt)) =























































g(X(0)), t ∈ [0, τ),

g(X(τ)), t ∈ [τ, 2τ),

h(t)g(X(2τ)) =

{

g(X(2τ)), t ∈ [2τ, s0),

0, t ∈ [s0, 3τ),

0, t ∈ [3τ, 4τ),

h(t)g(X(4τ)) =

{

g(X(4τ)), t ∈ [4τ, s1),

0, t ∈ [s1, 5τ).

(26)

When the discrete observation interval is no more than τ∗ and the intermittent rate ψ ∈ (0, 1 − (ρ2 −
0.5σ2)−1α), system (1) can be stabilized.

3.2 Stabilization based on time-delay feedback

On the other hand, the observation might depend on the past state because of the lag time between

the observation time and the control time. Hence, the corresponding controlled system has the following

form:

dX = f(X(t))dt+ h(t)g(X(t− τ))dB(t). (27)

Theorem 2. Let Assumption 1 and ρ2 − 0.5σ2 > α hold. The system can be stabilized in the almost-

sure sense by the intermittent controller based on time-delay feedback if the intermittent rate ψ ∈
(0, 1− (ρ2 − 0.5σ2)−1α) and the lag time is no more than τ∗∗, where τ∗∗ is the root of (41).

Proof. The procedure of this proof is similar to that of Theorem 1. The stability of auxiliary system

(2) has been proved in Theorem 1. The following proof constitutes two steps. The moment estimation

has been carried out in step 1 and the stability of system (27) has been proved in step 2. For any

ξ ∈ L2
F0
([−τ, 0];Rn) arbitrarily, we can write Y (t) = Y (t; 0, ξ), X(t; τ,X(τ)) = X(t) for t > 0.

Step 1. The main aim of this step is to perform moment estimation on X(t)−Y (t). Applying the Itô

formula to |X(t)|2 yields

E|X(t)|2 6 E|X(0)|2 + 2α

∫ t

0

E|X(s)|2ds+ σ2

∫ t

0

E|g(X(s− τ))|2ds. (28)

Simple computations show that

E|X(t)|2 6 (1 + σ2τ)E‖ξ‖2 + (2α+ σ2)

∫ t

0

sup
06u6s

E|X(u)|2ds. (29)
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By virtue of the Gronwall inequality, we have

sup
06s6t

E|X(s)|2 6 E‖ξ‖2(1 + σ2τ) exp{(2α+ σ2)t}. (30)

Using the elementary inequality along with system (25) yields

|X(u+ θ)−X(u)|2 6 2

∣

∣

∣

∣

∣

∫ u+θ

u

f(X(s))ds

∣

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∣

∫ u+θ

u

g(X(t− τ))dB(s)

∣

∣

∣

∣

∣

2

6 2τα2

∫ u+τ

u

|X(s)|2ds+ 2

∣

∣

∣

∣

∣

∫ u+θ

u

g(X(t− τ))dB(s)

∣

∣

∣

∣

∣

2

.

The B-D-G inequality [39] and Assumption 1 yield

E sup
06θ6τ

|X(u+ θ)−X(u)|2 6 2τα2

∫ u+τ

u

E|X(s)|2ds+ 2E sup
06θ6τ

∣

∣

∣

∣

∣

∫ u+θ

u

g(X(s− τ))dB(s)

∣

∣

∣

∣

∣

2

6 2τα2

∫ u+τ

u

E|X(s)|2ds+ 8σ2E

∫ u+τ

u

E|X(s− τ)|2ds.

Taking the supremum on [0, τ ] gives

E sup
06θ6τ

|X(u+ θ)−X(u)|2 6 2τα2

∫ u+τ

u

E|X(s)|2ds+ 8σ2

∫ u+τ

u

E|x(s− τ)|2ds

6 (2τα2 exp{(2α+ σ2)τ} + 8σ2)(1 + σ2τ)τE‖ξ‖2 exp{(2α+ σ2)u}.

Thus we have

E sup
06θ6τ

|X(t+ θ)−X(t)|p 6 H2(τ, p) exp{(pα+ 0.5pσ2)t}E‖ξ‖p, (31)

where H2(τ, p) =
(

2τ2α2 exp{(2α+σ2)τ}+8σ2τ
)0.5p

(1+σ2τ)0.5p. On the other hand, subtracting system

(2) from system (27) gives

X(t)− Y (t) =

∫ t

τ

(

f(X(s))− f(Y (s))
)

ds+

∫ t

τ

(

g(X(s− τ)) − g(Y (s))
)

dB(s). (32)

E|X(t)− Y (t)|2 6

∫ t

τ

(

2αE|X(s)− Y (s)|2 + σ2E|X(s− τ) − Y (s)|2
)

ds

6

∫ t

τ

(2α+ 2σ2)E|X(s)− Y (s)|2ds+ 2σ2

∫ t

τ

E|X(s− τ)−X(s)|2ds. (33)

Note that

E|X(t− τ) −X(t)|2 6 H2(τ, 2) exp{(2α+ σ2)(t− τ)}E‖ξ‖2 := H3(τ, 2) exp{(2α+ σ2)t}E‖ξ‖2, (34)

where H3(τ, p) =
(

H2(τ, 2) exp{−(2α+σ2)τ}
)0.5p

. Let ϕ2(t) = E|X(t)−Y (t)|2 for simplicity. Submitting

(34) into (33) yields

ϕ2(t) 6 2σ2H3(τ, 2)E‖ξ‖2
∫ t

τ

exp{(2α+ σ2)s}ds+
∫ t

τ

(2α+ 2σ2)ϕ2(s)ds

6 2σ2H3(τ, 2)(2α+ σ2)−1E‖ξ‖2 exp{(2α+ σ2)t}+
∫ t

τ

(2α+ 2σ2)ϕ2(s)ds

6 β3H3(τ, 2)E‖ξ‖2 exp{(2α+ σ2)t}+
∫ t

τ

(2α+ 2σ2)ϕ2(s)ds,
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where β3 = 2σ2(2α+ σ2)−1. From the Gronwall inequality,

ϕ2(t) 6 (2α+ 2σ2)β3H3(τ, 2)E‖ξ‖2
∫ t

τ

exp{(2α+ 2σ2)(t− s)} exp{(2α+ σ2)s}ds

+ β3H3(τ, 2) exp{(2α+ σ2)t}E‖ξ‖2

= β3H3(τ, 2)

[

(2 + 2ασ−2) exp{−σ2τ} exp{(2α+ 2σ2)t} − (1 + 2ασ−2) exp{(2α+ σ2)t}
]

E‖ξ‖2

:= β3H3(τ, 2)G2(t)E‖ξ‖2, (35)

where G2(t) = (2 + 2ασ−2) exp{−σ2τ} exp{(2α+ 2σ2)t} − (1 + 2ασ−2) exp{(2α+ σ2)t}.
Step 2. In this step, we will show the almost-sure stability of system (27). For given 0 < ε < 1 and

p ∈ (0, 2ρ−2(1 − ψ)−1((1 − ψ)(ρ2 − 0.5σ2)− α)), we set T1 > max{2γ−1
p log 4p(E‖ξ‖p)−1ε−1, T }. By the

elementary inequality (a+ b)p 6 2p(ap + bp) for any a, b > 0, we have

E|X(τ + T1)|p 6 2p
(

E|Y (τ + T1)|p + E|X(τ + T1)− Y (τ + T1)|p
)

. (36)

Submitting (35) into (36) yields

E|X(τ + T1)|p 6 2p
(

exp{−0.5γp(τ + T1)}+
(

β3H3(τ, 2)G2(τ + T1)
)0.5p

E‖ξ‖p
)

. (37)

Note that

|X(τ + T1 + u)|p 6 2p|X(τ + T1)|p + 2p|X(τ + T1 + u)−X(τ + T1)|p. (38)

Taking supremum over [0, τ ], and expectation on both sides of equality (38) yields

E sup
06u6τ

|X(τ + T1 + u)|p 6 2pE|X(τ + T1)|p + 2pE sup
06u6τ

|X(τ + T1 + u)−X(τ + T1)|p. (39)

Submitting (31) and (37) into (39) yields

E sup
06u6τ

|X(τ + T1 + u)|p

6

(

4p(E‖ξ‖p)−1 exp{−0.5γp(τ + T1)}+ 2pH2(τ, p) exp{(pα+ 0.5pσ2)(τ + T1)}

+ 4p(β3H3(τ, 2)G2(τ + T1))
0.5p

)

E‖ξ‖p.

By the definition of T1, we have 4p(E‖ξ‖p)−1 exp{−0.5γp(T1)} < ε < 1. Hence,

E sup
06u6τ

|X(τ + T1 + u)|p

6

(

ε exp{−0.5γpτ} + 2pH2(τ, p) exp{(pα+ 0.5pσ2)(τ + T1)}+ 4p
(

β3H3(τ, 2)G2(τ + T1)
)0.5p

)

E‖ξ‖p.
(40)

It is easy to see that there a smallest positive root τ∗∗ to the following equation:

ε exp{−0.5γpτ} + 2pH2(τ, p) exp{(pα+ 0.5pσ2)(τ + T1)} + 4p
(

β3H3(τ, 2)G2(τ + T1)
)0.5p

= 1. (41)

For any τ ∈ (0, τ∗∗), we have

ε exp{−0.5γpτ}+ 2pH2(τ, p) exp{(pα+ 0.5pσ2)(τ + T1)}+ 4p
(

β3H3(τ, 2)G2(τ + T1)
)0.5p

= δ = exp{−λ2(2τ + T1)} < 1,

where λ2 = (2τ + T1)
−1 log δ−1. It is then seen from (40) that

E‖X2τ+T1
‖p 6 exp{−λ2(2τ + T1)}E‖ξ‖p. (42)
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Making use the the time-homogeneity property and repeating the above procedure, we have

E‖Xk(2τ+T1)‖p 6 exp{−kλ2(2τ + T1)}E‖ξ‖p, (43)

for all k = 1, 2, . . . . By a similar technique applied in (23) and (24), we have

E sup
k(2τ+T1)−τ6s6t

|X(t)|2 6 E‖Xk(2τ+T1)‖2 exp{(2α+ σ2)(t− k(2τ + T1))}. (44)

Let ∆ = 2τ + T1 for simplicity. The Hölder inequality and the B-D-G inequality imply

E sup
k∆6t6(k+1)∆

|X(t)|2 6 3E|X(k∆)|2 + 3E

[
∫ (k+1)∆

k∆

f(X(t))dt

]2

+ 3E

[

sup
k∆6t6(k+1)∆

∫ s

k∆

σ2h(s)g(X(s− τ))dB(s)

]2

6 3E|X(k∆)|2 + 3∆α2E

[
∫ (k+1)∆

k∆

E(X(t))dt

]2

+ 12∆σ2

∫ (k+1)∆

k∆

E|X(t− τ)|2dt. (45)

Invoking (44) yields

E sup
k∆6t6(k+1)∆

|X(t)|2

6 3

{

1 + (2 + σ2)−1[exp{(2α+ σ2)∆} − 1][1 + exp{−(2α+ σ2)∆τ}]
}

E‖Xk∆‖2. (46)

We hence see from the Hölder and Chebyshev inequalities that

P
(

sup
k∆6t6(k+1)∆

|X(t)|p > e−0.5kλ2∆

)

6 E

(

sup
ik̄τ6t6(i+1)k̄τ

|X(t)|p
)

e0.5kλ2∆ 6 C0.5p
5 e−0.5kλ2∆,

where C5 = 3{1+(2+σ2)−1[exp{(2α+σ2)∆}− 1][1+exp{−(2α+σ2)∆τ}]}. By applying the stochastic

analysis technique presented in step 3 of Theorem 1, we can claim that the solution to controlled system

(27) has the following property:

lim sup
t→+∞

log |X(t)|
t

< 0, a.s. (47)

The proof is completed.

Remark 3. When ψ = 0, Theorems 1 and 2 become the criteria for stochastic stabilization via discrete

time feedback and delay feedback respectively, and are compatible with the existing results in [25, 26].

Hence, we have developed the results presented by Mao and Guo et al. [25, 26].

On the other hand, if the feedback is continuous, then a criterion of stochastic intermittent stabilization

is obtained.

Corollary 1. Let Assumption 1 and α+ (0.5σ2 − ρ2)(1− ψ) < 0 hold. System (2) can be stabilized in

the almost-sure sense by the intermittent controller, that is to say

lim sup
t→+∞

log |Y (t)|
t

6 −(0.5ρ2 − 0.5σ2)(1− ψ) + α < 0, a.s. (48)

Remark 4. If f(x) = αx, g(x) = σx, then ρ = σ and Corollary 1 showed that a linear system dx = αxdt

can be stabilized by intermittent noise σh(t)xdB(t) with ψ ∈ (0, 1− 2ασ−2). Especially, when ψ = 0, it

is just the classical result in [1, 5]. Thus, we have evolved the classical stochastic stabilization theorem.

Remark 5. Corollary 1 reveals that although the intermittent control strategy can decrease the work

time, the intensity of noise has to be increased and the exponential convergence rate decreases.
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Figure 2 (Color online) This curve shows a stochastic trajectory of X(t) generated by the Euler-Maruyama scheme for

system (50) with τ = 0.1 on [0, 30].
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Figure 3 (Color online) This curve shows a stochastic trajectory of X(t) generated by the Euler-Maruyama scheme for

stochastic system (51) with τ0 = 0.1 on [0, 10].

4 Numerical example

Example 1. Consider the unstable scalar linear system ẋ(t) = x with x(0) = 1. Stabilized by continuous

time noise with intensity σ2 = 5, the system becomes

dY (t) = Y (t)dt+
√
5Y (t)dB(t). (49)

The classical stochastic stabilization result in [39] showed that the controlled system (49) is almost

surely stable with limt→∞ log |Y (t)|/t = −1.5, a.s. In this study, we integrate the stochastic stabilization

technology with the intermittent control strategy-based discrete time feedback or delay time feedback.

In this example, we consider the intermittent control strategy as follows:

h(t) =

{

1, t ∈ [i, i+ 0.5),

0, t ∈ [i+ 0.5, i+ 1), i = 0, 1, 2, . . . ,

which means the maximum proportion ψ = 0.5, with p = 0.1, ε = 0.02, and γp = 0.0125.

(1) Stabilized by the discrete time observation noise, the controlled system becomes

dX(t) = X(t)dt+
√
5h(t)X(δt)dB(t). (50)

The parameters in Theorem 1 are β1 = 22, β2 = 7, H1(τ, 2) = (2τ +10)τ , and G1(t) = 20e7t +4/3(e22t −
e7t). Theorem 1 implies the system (50) is almost surely exponentially stable (see Figure 2). That is

to say, the unstable system ẋ(t) = x can be stabilized by the intermittent noise based on discrete time

feedback.

(2) Stabilized by delay time observation noise, the controlled system becomes

dX(t) = X(t)dt+
√
5h(t)X(t− τ0)dB(t). (51)

The parameters in Theorem 1 are β3 = 10/7, T1 = 50, G2(t) = 2.4e−5τe12t − 1.4e7t, ξ(θ) = 1, ∀θ ∈
[−τ0, 0], H2(τ, 0.1) =

(

(2τ2 + 40τ)(1 + 5τ)
)0.05

, H3(τ, 0.1) = H2(τ, 0.1)e
−0.35τ . By virtue of Theorem 2,

the system (51) is almost surely exponentially stable (see Figure 3). Thus, the unstable system can be

stabilized by the intermittent noise based on time-delay feedback.
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5 Conclusion

In this study, we investigated stochastic intermittent stabilization based on discrete time feedback or

delay time feedback. First, using some stochastic analysis techniques, including the stochastic comparison

principle and the Itô formula, we showed that a given unstable system can be stabilized by stochastic

intermittent noise in an almost-sure sense. Second, we showed that the controlled system is almost surely

exponentially stable based on discrete time feedback, provided the duration time is sufficiently small by

using the Borel-Cantelli lemma and the time-homogeneity property. Finally, we also showed that the

almost-sure stability of the controlled system can also be guaranteed based on time-delay feedback if the

lag time is sufficiently small.
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