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Abstract The performance of modern conflict-driven clause learning (CDCL) SAT solvers strongly depends

on branching heuristics. State-of-the-art branching heuristics, such as variable state independent decaying

sum (VSIDS) and learning rate branching (LRB), are computed and maintained by aggregating the occur-

rences of the variables in conflicts. However, these heuristics are not sufficiently accurate at the beginning of

the search because they are based on very few conflicts. We propose the distance branching heuristic, which,

given a conflict, constructs a complete implication graph and increments the score of a variable considering

the longest distance between the variable and the conflict rather than the simple presence of the variable in

the graph. We implemented the proposed distance branching heuristic in Maple LCM and Glucose-3.0, two

of the best CDCL SAT solvers, and used the resulting solvers to solve instances from the application and

crafted tracks of the 2014 and 2016 SAT competitions and the main track of the 2017 SAT competition. The

empirical results demonstrate that using the proposed distance branching heuristic in the initialization phase

of Maple LCM and Glucose-3.0 solvers improves performance. The Maple LCM solver with the proposed

distance branching heuristic in the initialization phase won the main track of the 2017 SAT competition.

Keywords SAT, branching heuristic, conflict-driven clause learning, implication graph

Citation Xiao F, Li C-M, Luo M, et al. A branching heuristic for SAT solvers based on complete implication

graphs. Sci China Inf Sci, 2019, 62(7): 072103, https://doi.org/10.1007/s11432-017-9467-7

1 Introduction

In propositional logic, a variable x may take the truth value 0 (false) or 1 (true). A literal l is a variable

x or its negation ¬x, a clause is a disjunction of literals, a CNF (conjunctive normal formula) formula φ

is a conjunction of clauses, and the size of a clause is the number of literals in it. An assignment of truth

values to the propositional variables satisfies a literal x if x takes the value 1 and satisfies a literal ¬x if

x takes the value 0, satisfies a clause if it satisfies at least one its literals, and satisfies a CNF formula

if it satisfies all of its clauses. The empty clause contains no literals and is unsatisfiable; it represents

a conflict. A unit clause contains exactly one literal and is satisfied by assigning the appropriate truth

value to the variable. A variable is free if it has not been assigned a value. Initially, all variables are free.

A literal is free if its variable is free. For convenience, when variable x is assigned a truth value, we also

say that literals x and ¬x are assigned. An assignment for a CNF formula φ is complete if each variable

in φ has been assigned a value; otherwise, it is considered partial. The SAT problem for a CNF formula

φ is to find an assignment to the variables that satisfies all clauses of φ.
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The SAT problem is a classical NP-complete problem. Thanks to advances in conflict-driven clause

learning (CDCL) SAT solvers [1–6], reducing combinatorial problems to SAT is a powerful generic problem

solving approach. Branching heuristics are one of key elements of the success of CDCL SAT solvers. A

SAT solver roughly works as follows. The solver repeatedly selects a free literal according to the branching

heuristic, satisfies it by assigning the appropriate truth value to its variable, and propagates all unit clauses

implied by its satisfaction until the empty clause is deduced or all variables are assigned a truth value.

The selected literal is referred to as the decision literal, and the decision literal variable is called the

decision variable. The decision literal and all literals satisfied by the subsequent propagation constitute

a decision level. If the empty clause is derived, its derivation is analyzed to learn a new clause. The

new clause is added to the current CNF formula to avoid the same conflict in the remaining search and

determine the decision level to which the solver has to backtrack [5, 7]. If all variables are assigned a

truth value without deriving the empty clause, the problem is satisfiable and the complete assignment is

returned as the solution. Otherwise, the solver derives the empty clause in all branches of the search tree,

thereby proving the unsatisfiability of the problem. Thus, the branching heuristic influences how the

solver derives the empty clause. A clever branching heuristic allows the solver to derive the empty clause

quickly and consequently a learned clause of good quality, which reduces the search space significantly.

State-of-the-art branching heuristics such as variable state independent decaying sum (VSIDS) [7]

and learning rate branching (LRB) [8] maintain a score for each variable during the search process by

aggregating its occurrences in previous conflicts. Then, the variable with the greatest score is selected

as the next decision variable. With the exception of parameters that can take different values, these

heuristics compute the score of a variable in the same manner at the beginning, middle and end of the

search process. Specifically, the scores of all variables in a conflict are incremented by a value without

considering how these variables contribute to the conflict. As the search proceeds, the score of a variable

computed in this manner more accurately reflects its power in leading to a conflict in the near future.

However, at the beginning of the search, the score of a variable is not sufficiently accurate because it is

based on aggregated occurrences in very few conflicts. Therefore, a branching heuristic should consider

more information in the initialization phase of a CDCL SAT solver.

In this paper, we propose a branching heuristic, which we refer to as distance, that can be used

by CDCL SAT solvers in the initialization phase. Similar to LRB and VSIDS, the distance heuristic

initializes the score of all variables to 0. Then, each time the solver derives an empty clause, the heuristic

constructs a complete implication graph starting from all decision literals implying the empty clause.

It then increments the score of each variable in the implication graph by a value that depends on the

longest distance between the variable and the conflict. In this manner, information other than the simple

occurrence of the variable is considered to compute its score.

We implemented the distance heuristic in Glucose-3.0 [9] and Maple LCM [10] (LCM is learned clause

minimization), which are two of the best CDCL SAT solvers. We replaced, in the initialization phase,

the original branching heuristics in these solvers with the distance heuristic and used the resulting solvers

to solve the instances1) from the application and hard combinatorial tracks of the 2014 and 2016 SAT

competitions and the main track of the 2017 SAT competition2). The experimental results demonstrate

that the distance heuristic significantly improves the performance of Glucose-3.0 and Maple LCM. In

particular, the solver Maple LCM Dist, which is an implementation of Maple LCM that incorporates the

distance heuristic [11], was ranked first in the main track of the 2017 SAT competition.

The significance of our contributions is supported by this statement of two leading SAT solver devel-

opers [12]: “We must also say, as a preliminary, that improving SAT solvers is often a cruel world. To

give an idea, improving a solver by solving at least ten more instances (on a fixed set of benchmarks

of a competition) is generally showing a critical new feature. In general, the winner of a competition is

decided based on a couple of additional solved benchmarks.”

The above statement was also quoted in [8, 10] to acknowledge the advances brought about by the

conflict history-based branching (CHB) heuristic and a learned clause minimization approach for CDCL

1) http://www.satcompetition.org/.
2) In the main track of the 2017 SAT competition, the application and hard combinatorial instances are mixed.
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SAT solvers.

The remainder of this paper is organized as follows. Section 2 reviews existing branching heuristics

for SAT solvers. Section 3 describes the proposed distance branching heuristic. Section 4 presents

experimental results, and conclusion is given in Section 5.

2 Existing branching heuristics in CDCL SAT solvers

Intensive efforts have been devoted to devising clever branching heuristics for SAT solvers [8, 13–16]. In

this section, we review some of the most representative branching heuristics.

2.1 VSIDS in Chaff and BerkMin’s heuristic

The VSIDS heuristic was originally introduced in Chaff [5]. VSIDS maintains a score (referred to as

activity) initialized to 0 for each literal of a given SAT instance. Each time the solver derives a conflict, the

VSIDS heuristic increments the score of each literal in the corresponding learned clause by 1. Periodically,

the score of each literal is divided by a constant to favor the literals in recently learned clauses. The

literal with the greatest score is selected as the next decision literal to satisfy recent learned clauses.

BerkMin’s heuristic can be considered an improvement of the VSIDS heuristic in Chaff. First, BerkMin

maintains a score activity[x] for each variable x (rather than each literal of x) of the SAT instance. Each

time the solver derives an empty clause, activity[x] is incremented for each occurrence of a literal of x in

a clause responsible for the conflict. In other words, if k clauses containing a literal of x are responsible

for the conflict, activity[x] is incremented by k. Thus, while Chaff only increments the scores of literals

occurring in the learned clause, BerkMin increments the scores of all variables involved in the conflict,

including variables in the learned clause. Second, BerkMin selects the next decision variable in the most

recent learned clause that has not been satisfied. In other words, the free variable with the greatest

score in the most recent unsatisfied learned clause is selected as the next decision variable. If all learned

clauses are satisfied, the free variable with the greatest score is selected. Third, BerkMin assigns the

value to the selected decision variable x to balance the power of unit propagation after setting x to 0 and

1, respectively.

2.2 VSIDS in recent CDCL SAT solvers

The VSIDS heuristic used in recent CDCL SAT solvers, such as MiniSat [3], Glucose [1], Lingeling [2]

and CryptoMiniSat [6], can be considered an improvement of BerkMin’s heuristic. The VSIDS heuristic

maintains a score (activity[x]) initialized to 0 for each variable x of a given SAT instance. Each time

the solver derives an empty clause, VSIDS increments the score of all variables involved in the conflict

by a value var inc, which is initialized to 1 and updated to var inc/var decay after each conflict, where

var decay is a value in the real interval (0, 1). In MiniSat, var decay = 0.95.

In Glucose, if a variable is assigned in the last decision level by a learned clause with small literal blocks

distance (LBD) and contributes to the conflict, its score is incremented once again by var inc, where the

LBD of a learned clause is the number of different decision levels in which the literals of the clause are

assigned. Here, the purpose is to favor the generation of learned clauses with small LBD [17].

Note that var inc increases after each conflict, which means that a score that has increased due to a

recent conflict has greater importance than a score increased due to an older conflict. In this manner,

a solver does not need to periodically divide the score of each variable by a constant, and the variables

contributing to recent conflicts are naturally favored. The intuition behind the VSIDS heuristic is that

the variable with the greatest score (i.e., the variable occurring most frequently in recent conflicts) should

be selected as the next decision variable. By default, to inherit the essence of the history, the last value

assigned to this variable is reassigned to this variable for branching.

As indicated in a previous study [8], VSIDS and its variants have been the most effective and widespread

decision heuristics for many years, and the success of VSIDS has dramatically raised the bar for new

heuristics. However, VSIDS scores are insufficiently accurate to select variables at the beginning of



Xiao F, et al. Sci China Inf Sci July 2019 Vol. 62 072103:4

a search process because they are based on very few conflicts. In Glucose-2.3 [18] and its variants,

this situation is remedied by varying the value of parameter var decay at the beginning of the search.

Glucose-2.3 initializes var decay to 0.8 (rather than 0.95), and then increments var decay by 0.01 every

5000 conflicts until var decay reaches a cruise value of 0.95 (after 75000 conflicts). Consequently, the

variable scores increase more quickly at the beginning of the search in Glucose-2.3 and its variants. In

Glucose-2.3, after each conflict, the scores of all variables involved in the conflict are increased without

considering how these variables contribute to the conflict.

2.3 LRB

The LRB heuristic [19] was recently proposed as an improvement to the CHB heuristic [8]. Similar to

the CHB heuristic, LRB is based on the exponential recency weighted average algorithm used in non-

stationary multi-armed bandit problems, and the fact that CDCL SAT solvers frequently and repeatedly

assign a truth value to a variable x and cancel the value assigned to x upon backtracking. Note that the

score LRB(x) of variable x is initialized to 0. Here, let p be the period between the time at which x is

assigned a value and the time at which that value is canceled. Let age be the number of conflicts that

the solver derives during period p, and let nbConflicts be the number of conflicts wherein x is involved

during p. When the value of x is canceled, the heuristic updates LRB(x) as follows:

LRB(x)← (1− a)× LRB(x) + a× nbConflicts/age,

where parameter a is a value in the real interval (0, 1). In another study [8], a is initialized to 0.4 and

decreased by 10−6 after each conflict until it reaches 0.06. As in the VSIDS heuristic, a conflict at the

beginning of the search (i.e., one of the first 34× 104 conflicts) contributes to the LRB score of a variable

more than a conflict of the cruise search because the score is not sufficiently accurate at the beginning of

the search process.

The intuition behind the LRB heuristic is that a free variable contributing to most conflicts during

the period in which it was assigned a value is likely to help derive new conflicts quickly if it is assigned

a value again. In particular, the variable contributing to all conflicts during the periods in which it was

assigned a value has an LRB score close to the maximum value 1 and should be selected as the next

branching variable. Note that, as in the VSIDS heuristic, the change of the LRB score of a variable due

to a conflict is not dependent on how the variable contributes to the conflict.

The MapleCOMSPS and MapleCOMSPS LRB solvers combine LRB and VSIDS heuristics and were

ranked first in the main and industrial tracks of the 2016 SAT competition, respectively. In these solvers,

the VSIDS heuristic is used to select decision variables for initialization when the number of conflicts

is less than 10000. Then, MapleCOMSPS maintains the LRB heuristic and uses it to select decision

variables for 2500 s. It then maintains the VSIDS heuristic and uses it to select decision variables for

the remaining time. MapleCOMSPS LRB regularly switches between LRB and VSIDS heuristics and

allocates the same amount of time to LRB and VSIDS. See [20] for details.

The Maple LCM solver was developed fromMapleCOMSPS by incorporating an effective learned clause

minimization technique [10]. In [10], Maple LCM was referred to as Maple+. Maple LCM inherits the

initialization phase of MapleCOMSPS, wherein the VSIDS heuristic is used to select decision variables

when the number of conflicts is less than 10000. Then, it uses the LRB heuristic for 2500 s before

switching to the VSIDS heuristic for the remaining time. Note that Maple LCM was the second-best

solver in the main track of the 2017 SAT competition. It was beaten by Maple LCM Dist, which was

developed from Maple LCM by incorporating the proposed distance branching heuristic.

2.4 Look-ahead heuristics and their integration into CDCL SAT solvers

VSIDS and LRB heuristics compute the score of a variable based on past events; thus, they can be

referred to as “look-back” heuristics. Differing from look-back heuristics, look-ahead heuristics compute

the score of a variable by considering what will happen if this variable is assigned a truth value. A typical

look-ahead heuristic is Jeroslow-Wang [15], which selects the next decision variable based on the number
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of its occurrences in unsatisfied clauses (i.e., clauses not containing any satisfied literal but containing

at least two free variables). We are unaware of any state-of-the-art CDCL SAT solver that combines a

look-back heuristic and a look-ahead heuristic, likely because it is unclear how this could be accomplished.

The first difficulty in integrating a look-ahead heuristic into a CDCL SAT solver is that, for efficiency,

the solver typically does not maintain the number of occurrences of each variable in unsatisfied clauses.

In fact, a CDCL SAT solver usually does not even maintain the list of unsatisfied clauses; thus, it must

check the literals of a clause to know if the given clause is satisfied by the current partial assignment.

The second difficulty is how a look-ahead heuristic score is combined with a VSIDS or LRB score

because these different scores do not vary at the same scale. For example, assume that the VSIDS score

of a variable x is 1. Then, if x is involved in the 200th conflict occurring later, the VSIDS score of x will

be increased by more than 28528 (≈ (1/var decay)200) if var decay = 0.95, while a look-ahead score of x

will not change to the same extent.

Thus, we have implemented another look-ahead strategy in Glucose-3.0 to break ties among variables

with the greatest VSIDS score. Let φ be a CNF that does not contain any unit clause, let x be a free

variable with the greatest VSIDS score in φ, and let v be its last assigned value. If unit propagation

derives the empty clause from φ after assigning v to x, then x is selected as the next decision variable with

the value v. Otherwise, UP(φ∧x = v) denotes the number of variables assigned in φ by unit propagation

after assigning v to x, and S denotes the set of free variables with the greatest VSIDS score. We compute

UP(F ∧x = v) for each x of the first min(|S|, T ) variables in S, where T is an integer parameter. If one of

these unit propagations derives the empty clause, the decision variable is selected accordingly; otherwise,

the variable x with the greatest UP(φ ∧ x = v) is selected as the next decision variable with the value v.

The intuition behind this strategy is to branch on the variable that allows the immediate derivation of

a conflict or a CNF formula containing the lowest number of variables among the min(|S|, T ) possible

branches while maintaining the effectiveness of VSIDS.

We have tested this strategy in Glucose-3.0 with parameter values T = 2, 3, . . . , 20. The best results

were obtained with T = 12. Unfortunately, even with T = 12, this strategy did not improve the

performance of Glucose-3.0, thereby confirming the difficulty of combining look-ahead and look-back

heuristics in CDCL SAT solvers.

3 The proposed distance branching heuristic based on implication graphs

A common feature of the LRB and VSIDS heuristics is that they count the simple occurrences of variables

in previous conflicts to compute variable scores, regardless of how these variables contribute to the

conflict. Intuitively, variable scores computed in this manner are only sufficiently accurate to distinguish

the variables when a large number of conflicts is considered.

In this section, we describe the proposed distance branching heuristic, which computes the score of a

variable according to its distance to the empty clause rather than its simple presence in the complete

implication graphs of the empty clause. The proposed distance heuristic is intended to be used at the

beginning of the search process when there are very few conflicts.

3.1 Complete implication graph of the empty clause

When a CDCL SAT solver derives an empty clause during the search process, the complete implication

graph G = (V,E) of the empty clause can be defined recursively as follows:

(1) Graph G contains the special vertex 2 ∈ V , which represents the empty clause.

(2) If c is the clause from which the empty clause is derived (i.e., the empty clause is derived because

all literals of c are assigned false), then each literal l of c is a vertex of G and (l,2) is an arrow of G (i.e.,

l ∈ V and (l,2) ∈ E).

(3) If l ∈ V and clause c′ is the reason for l in the current partial assignment (i.e., ¬l is a literal of c′

and each other literal l′ of c′ is assigned false), then l′ is a vertex of G and (l′, l) is an arrow of G (i.e.,

l′ ∈ V and (l′, l) ∈ E).
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Figure 1 Complete implication graph implying the empty clause from clause x70 ∨¬x24 ∨¬x67. Numbers in parentheses

below vertices represent the longest distance from the vertex to 2.

The above definition also provides a way to construct the complete implication graph of the empty

clause from clause c. Note that an implication graph is a directed acyclic graph, where vertices without

preceding vertices are decision literals and vertex 2 has no successor. The graph depicts how decision

literals imply the empty clause.

Figure 1 shows a complete implication graph implying the empty clause 2 from clause 140@3∨47@3∨

133@3. Following the terminology of [4], the vertex name a@b means that literal la is assigned at decision

level b. An even number a represents a positive literal and an odd number a negative literal; thus, la = xa

2

if a is even and la = ¬xa+1

2

if a is odd. For example, clause 140@3∨ 47@3∨ 133@3 in Figure 1 is in fact

clause x70 ∨ ¬x24 ∨ ¬x67.

Note that each vertex in an implication graph also identifies a clause. A vertex without any predecessor

identifies a unit clause (i.e., a variable with a truth value). For example, the vertex 55@3 identifies the

unit clause ¬x28. A vertex with predecessor identifies a non-unit clause. For example, the vertex 140@3

identifies, together with the incoming edges, the clause ¬x24∨¬x38∨¬x20∨¬x42∨x70. Note that the set

of all clauses in an implication graph is clearly unsatisfiable. It has been stated that this set is minimally

unsatisfiable [21] in the sense that, if any clause is removed from the set, then it will become satisfiable.

A literal and its negation cannot both occur in an implication graph. We replace each literal with

its variable in the implication graph because the purpose is to determine how to increase the score of a

variable by analyzing the implication graph. We say that a variable x contributes to a conflict if there

is at least a path from the variable to the conflict in the implication graph, and we say that x depends

on clause c to contribute to the conflict if there is a path from x to the conflict in the implication graph

containing clause c.

3.2 Distance score based on implication graphs

All variables of a complete implication graph are involved in the derivation of the empty clause and

contribute to the conflict. Our purpose is to estimate, from the current conflict, how an involved variable

contributes to a future conflict. In fact, for each variable x in a complete implication graph of the empty

clause, a CDCL SAT solver can compute the set of clauses on which x depends to contribute to the

conflict, which could be considered when computing the score of x under the following hypothesis.
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Figure 2 Example to illustrate that, when a variable needs more clauses to imply a conflict, it has lower probability of

being involved in a future conflict. For simplicity, each vertex represents a positive literal xi in the implication graph.

Dependence hypothesis. A variable x that contributes to the current conflict and depends on fewer

clauses than variable x′ has higher probability of contributing to a future conflict than x′.

The intuition behind the dependence hypothesis can be summarized as follows. The involvement of

a clause in unit propagation (i.e., the fact it becomes unit) depends on many factors and is somewhat

random. If a variable depends on few clauses to contribute to a conflict, the probability that these few

clauses are simultaneously involved in future unit propagations to imply a future conflict is greater than

if the variable depends on more clauses. To observe this, we consider two examples. In set {x1,¬x1 ∨

x2,¬x1 ∨ ¬x2}, variable x1 depends only on two clauses to contribute to a conflict. Its probability to

contribute to a future conflict is high because a conflict is derived once x1 is assigned true. However,

the probability that variable x3 in Figure 2 contributes to a future conflict is significantly less because

x3 depends on four clauses to contribute to the conflict. In fact, x3 does not contribute to the conflict if

clause x4 ∨ ¬x7 ∨ ¬x8 ∨ ¬x9 is learned but is removed when the learned clause database is reduced, or

when x10 is not assigned because one decision literal implying it is not assigned. This holds because the

set of clauses of the implication graph is minimally unsatisfiable and becomes satisfiable if any clause is

not included in the implication graph (i.e., it does not become unit) for some reason during the search.

The number D of clauses on which a variable depends to contribute to a conflict can be considered

a measure of the probability by which the variable contributes to the conflict. Unfortunately, we are

unaware of any algorithm that can compute D for all variables in time O(|Cmax| × n), where |Cmax| and

n are the length of the longest clause and the number of vertices in the implication graph, respectively.

Therefore, we construct the complete implication graph and compute the number of vertices in the longest

path, denoted longDist[x], for each variable x with a path to the conflict using Algorithm 1. The intuition

behind longDist[x] is that a variable depending on many clauses likely requires a long path to reach the

conflict. Note that the complexity of Algorithm 1 is O(|Cmax| × n), which is the same complexity as the

conflict analysis in CDCL SAT solvers.

The distance score of variable x, denoted distAct[x], based on the dependence hypothesis is defined as

follows. The score distAct[x] is initialized to 0. Then, when x contributes to a conflict (i.e., when unit

propagation derives the empty clause and x occurs in the corresponding complete implication graph),

Algorithm 2 increments distAct(x) by inc×1/longDist[x], where inc is a global variable initialized to 1 and

dist Decay is intended to assign more importance to recent conflicts, similar to the var decay parameter

in the VSIDS heuristic. The default value of dist Decay is 0.95, which is the default value of var decay

in MiniSat.

Algorithm 3 shows a solver that selects decision variables in the initialization phase according to the

proposed distance score. It employs the distance score in the first α conflicts, where the value of parameter

α is fixed empirically. For each of the first α conflicts, the solver calls Algorithm 2 to construct a complete

implication graph and update the distance score of each variable in the graph. All other aspects of the

solver are unchanged. After the initialization phase, the solver employs its own branching heuristic (e.g.,

VSIDS or LRB) to select decision variables.
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Algorithm 1 computeLongestdistances(C)

Input: C, a clause in which all literals are falsified by the current partial assignment

1: for each variable x in C do

2: longDist[x] ← 0; seen[x] ← 1;

3: end for

4: for each assigned variable x in the decreasing order of their assigning time do

5: if seen[x] == 1 then

6: R ← reason[x];

7: if R 6= no reason then

8: for each variable y in clause R do

9: if x 6= y then

10: if seen[y] == 0 then longDist[y] ← longDist[x] + 1, seen[y] ← 1;

11: else if longDist[y] < longDist[x] + 1 then longDist[y] ← longDist[x] + 1;

12: end if

13: end if

14: end for

15: end if

16: end if

17: end for

18: for each assigned variable x such that seen[x] == 1 do

19: seen[x] ← 0;

20: end for

Algorithm 2 updatedistanceScore(C)

Input: C, a clause in which all literals are falsified by the current partial assignment

1: Call Algorithm 1 to construct the complete implication graph G that falsifies C and compute longDist[x] for each

variable x occurring in G;

2: for each variable x occurring in G do

3: distAct[x]← distAct[x] + inc× 1/longDist[x];

4: end for

5: inc← inc/dist Decay;

Algorithm 3 Solver Dist(α): a CDCL SAT solver using the distance branching heuristic for the first α conflicts

1: dist Decay ← 0.95; nbConflicts ← 0;

2: for each variable x do

3: distAct[x] ← 0;

4: end for

5: while true do

6: cl ← unitpropagate();

7: if all literals in cl are falsified then

8: nbConflicts ← nbConflicts +1; /* a new conflict is derived */

9: if the current decision level is 0 (i.e., there is no decision literal) then

10: return UNSAT;

11: end if

12: if nbConflicts 6 α then

13: updatedistanceScore(cl); /* call Algorithm 2 */

14: end if

15: Conflict analysis to learn a new clause;

16: Backtrack to the second highest level in the new learned clause;

17: else

18: if nbConflicts 6 α then

19: x← the free variable with the greatest distance score distAct[y];

20: else

21: x← the free variable selected using the solver’s own branching heuristic;

22: end if

23: Assign x to true or false based on a polarity heuristic such as phase saving;

24: end if

25: end while
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4 Empirical evaluation

We implemented Algorithm 3 in the Glucose-3.0 [9, 18] and Maple LCM [10] CDCL SAT solvers under

the dependence hypothesis. The resulting solvers are referred to as Glucose-3.0 Dist(α) and Maple LCM

Dist(α), respectively. In other words, Glucose-3.0 Dist(α) (Maple LCM Dist(α)) is Glucose-3.0 (Maple

LCM) with the exception that it uses the distance heuristic under the dependence hypothesis to select

decision variables when the number of conflicts (nbConflicts) is not greater than α.

The set of clauses on which a variable x depends to contribute to a conflict or the longest distance of x

to the conflict is not the only thing a SAT solver can learn from an implication graph. In fact, Algorithm 1

can be easily adapted to compute the number of vertices in the shortest path, denoted shortDist[x], from

x to the conflict in the implication graph, which could be considered to compute the score of x under the

following hypothesis.

Nearness hypothesis. A variable closer to the conflict in the implication graph has higher probability

of contributing to a future conflict.

To evaluate the nearness hypothesis, we replaced longDist[x] with shortDist[x] in Algorithm 2 to

compute the short distance score for each variable. We then implemented Glucose-3.0 shDist(α) and

Maple LCM shDist(α), i.e., Glucose-3.0 and Maple LCM, respectively, with the exception that the short

distance score is used under the nearness hypothesis to select decision variables when the number of

conflicts is not greater than α.

We compiled the above solvers using the Makefile of their base solver, and then solved the instances

from the application and hard combinatorial tracks of the 2014 and 2016 SAT competitions, as well as

the main track of the 2017 SAT competition. The experiments were performed using Intel Xeon CPUs

E5-2680 v4@2.40 GHz under Linux with 20 GB of memory.

Table 1 compares Glucose-3.0, Glucose-3.0 shDist(5 × 104), Glucose-3.0 Dist(5 × 104), Maple LCM,

Maple LCM shDist(5× 104), Maple LCM Dist(104), Maple LCM Dist(2.5× 104), Maple LCM Dist(5×

104), Maple LCM Dist(7.5 × 104) and Maple LCM Dist(10 × 104) with a cutoff time of 5000 s for

each solver and instance as in the SAT competition. Note that Maple LCM Dist(104) corresponds to

Maple LCM Dist, which was the best solver at the 2017 SAT competition. For each solver and group

of benchmarks, Table 1 shows the total number of instances (#instances) in each group, the number of

(satisfiable + unsatisfiable) instances solved within the cutoff time, and the mean run time of the solved

instances, as well as the score of the solver in the main track (application + crafted) of each year, com-

puted as follows. The score is initialized to 0. Then, for each instance in the main track, if the instance

is solved within the cutoff time, the score is increased by the solving time in seconds; otherwise, the score

is increased by 104 (i.e., two times the cutoff time). This score scheme is referred to as PAR-2 and was

used in the 2017 SAT competition to rank solvers. Here, the lower the score, the better the solver. The

best results are shown in bold in Table 1.

Three observations can be made from the results given in Table 1.

• The distance heuristic based on the dependence hypothesis, given in Algorithm 3 and used in

the initialization phase of Glucose-3.0 and Maple LCM, improves the performance of Glucose-3.0 and

Maple LCM, particularly in terms of the PAR-2 score. The solvers with the distance heuristic out-

performed their counterpart base solvers without the distance heuristic in the considered tracks of the

2014, 2016, and 2017 SAT competitions. Maple LCM Dist(104) significantly outperformed Maple LCM

on the instances of the 2017 SAT competition, and Maple LCM Dist(5 × 104) performed better than

Maple LCM Dist(104). Note that Glucose-3.0 and Maple LCM are highly efficient solvers.

• The Glucose-3.0 shDist(5×104) andMaple LCM shDist(5×104) solvers, which are based on the near-

ness hypothesis, demonstrated worse performance than Glucose-3.0 Dist(5×104) andMaple LCM Dist(5×

104), indicating that a solver should use the longest rather than shortest distance in the complete impli-

cation graph to compute the score of a variable.

• The performance of the distance heuristic is not very sensitive to α. In fact, Maple LCM Dist(104),

Maple LCM Dist(2.5 × 104), Maple LCM Dist(5 × 104), Maple LCM Dist(7.5 × 104), and Maple LCM

Dist(10 × 104) solved more instances than their base solver, i.e., Maple LCM. Nevertheless, when α 6
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Table 1 Comparison of different implementations of the proposed distance branching heuristic on instances of different

SAT competitions with cutoff time of 5000 s for each solver and instance

SAT 2014 SAT 2016 SAT 2017
Total

App. Crafted App. Crafted Main

Solver #Instances 300 300 300 200 350 1450

#solved 229 180 159 58 179 805

Glucose-3.0
#Sat + #Unsat 102+127 84+96 67+92 5+53 77+102 –

Mean time 625 s 848 s 771 s 1644 s 1071 s –

Score 2205765 3047941 1901709 –

#Solved 230 183 157 60 171 801

Glucose-3.0 shDist(α) #Sat + #Unsat 103+127 88+95 64+93 8+52 70+101 –

α = 50000 Mean time 686 s 834 s 791 s 1740 s 1078 s –

Score 2180402 3058587 1974338 –

#Solved 226 188 156 60 178 808

Glucose-3.0 Dist(α) #Sat + #Unsat 101+125 91+97 64+92 8+52 77+101 –

α = 50000 Mean time 596 s 936 s 751 s 1458 s 990 s –

Score 2170664 3044636 1896220 –

#Solved 265 218 175 56 219 933

Maple LCM
#Sat + #Unsat 121+144 93+125 74+101 8+48 103+116 –

Mean time 1054 s 779 s 1023 s 1619 s 878 s –

Score 1619132 2959689 1502282 –

#Solved 259 220 170 56 222 927

Maple LCM shDist(α) #Sat + #Unsat 113+146 96+124 72+98 8+48 108+114 –

α = 50000 Mean time 1000 s 808 s 906 s 1664 s 906 s –

Score 1646760 2987204 1481132 –

#Solved 266 219 174 59 226 944

Maple LCM Dist(α) #Sat + #Unsat 119+147 96+123 72+102 8+51 110+116 –

α = 10000 Mean time 1075 s 767 s 1050 s 1773 s 889 s –

Score 1603923 2957307 1440914 –

#Solved 265 223 173 60 225 946

Maple LCM Dist(α) #Sat + #Unsat 118+147 98+125 74+99 7+53 109+116 –

α = 25000 Mean time 1028 s 799 s 977 s 1693 s 925 s –

Score 1570597 2940601 1458125 –

#Solved 272 220 174 58 225 949

Maple LCM Dist(α) #Sat + #Unsat 125+147 96+124 72+102 7+51 109+116 –

α = 50000 Mean time 1012 s 758 s 936 s 1620 s 847 s –

Score 1522024 2936824 1440575 –

#Solved 263 221 177 56 223 940

Maple LCM Dist(α) #Sat + #Unsat 116+147 97+124 75+102 7+49 109+114 –

α = 75000 Mean time 1040 s 798 s 984 s 1538 s 817 s –

Score 1609878 2930296 1452191 –

#Solved 259 220 177 56 223 935

Maple LCM Dist(α) #Sat + #Unsat 114+145 95+125 73+104 8+48 107+116 –

α = 100000 Mean time 934 s 732 s 1057 s 1529 s 757 s –

Score 1612946 2942713 1438811 –

50000, the heuristic appears to give the best results, indicating that when the number of conflicts is

greater than 50000, the VSIDS and LRB heuristics in Glucose-3.0 or Maple LCM already perform well

and there is less need to construct a complete implication graph to use the proposed distance heuristic.

Table 2 compares Glucose-3.0, Glucose-3.0 shDist(5 × 104), Glucose-3.0 Dist(5 × 104), Maple LCM,

Maple LCM shDist(5× 104), and Maple LCM Dist(5× 104) with a cutoff time of 5 h for each solver and

instance, in the same manner as Table 1. Note that the percentage taken by the first 50000 conflicts

in the five-hour search is substantially less than that of 5000 s search. The results in Table 2 confirm
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Table 2 Comparison of different implementations of the distance branching heuristic on instances of different SAT com-

petitions with a cutoff time of 5 h for each solver and instance

SAT 2014 SAT 2016 SAT 2017
Total

App. Crafted App. Crafted Main

Solver #Instances 300 300 300 200 350 1450

#Solved 244 199 183 77 208 911

Glucose-3.0
#Sat + #Unsat 108+136 92+107 70+113 7+70 88+120 –

Mean time 1311 s 1737 s 1977 s 3131 s 2293 s –

Score 6317547 9242878 5588944 –

#Solved 242 199 183 77 212 913

Glucose-3.0 shDist(α) #Sat + #Unsat 109+133 94+105 71+112 8+69 89+123 –

α = 50000 Mean time 1156 s 1400 s 2338 s 3030 s 2654 s –

Score 6282352 9301164 5530648 –

#Solved 246 202 187 82 208 925

Glucose-3.0 Dist(α) #Sat + #Unsat 112+134 95+107 72+115 9+73 89+119 –

α = 50000 Mean time 1440 s 1528 s 2449 s 3120 s 2343 s –

Score 6134896 9029803 5599344 –

#Solved 277 226 202 82 253 1040

Maple LCM
#Sat + #Unsat 127+150 99+127 78+124 11+71 117+136 –

Mean time 2332 s 1836 s 2972 s 3952 s 2338 s –

Score 4552900 8700408 4083514 –

#Solved 275 230 203 82 253 1043

Maple LCM shDist(α) #Sat + #Unsat 125+150 102+128 80+123 10+72 117+136 –

α = 50000 Mean time 2506 s 1964 s 2905 s 4059 s 2270 s –

Score 4560870 8662553 4066310 –

#Solved 278 229 204 84 254 1049

Maple LCM Dist(α) #Sat + #Unsat 128+150 102+127 79+125 12+72 118+136 –

α = 50000 Mean time 2078 s 1874 s 3096 s 4142 s 2262 s –

Score 4354830 8611512 4030548 –

the performance of the proposed distance heuristic based on the dependence hypothesis, even when

it affects a very small percentage of the search. The performance of Glucose-3.0 shDist(5 × 104) and

Maple LCM shDist(5 × 104) is somewhat surprising with the five-hour cutoff time because these solvers

perform worse than their base solvers when the cutoff time is 5000 s. This phenomenon might be explained

as follows. The search is diversified due to the distance heuristic based on the nearness hypothesis, and

this diversification is not profitable with a short cutoff time but is profitable with a long cutoff time.

Anyway, the results of Table 2 show that using the longest distance to increase the score of a variable

during the first 50000 conflicts always performs better than using the shortest distance.

When a CDCL SAT solver derives an empty clause, we say that a variable is in the conflict level if it is

assigned after the last decision variable. The conflict analysis of a CDCL SAT solver is typically performed

in the conflict level. Here, let n1 denote the number of variables in the conflict level and let n2 denote the

total number of variables in the completed implication graph. For the 1450 instances tested in this paper,

n2 is approximately equal to 30×n1 on average. We implemented the distance branching heuristic based

on the dependence hypothesis in Maple LCM Dist(α) using a partial implication graph with min(n2, k×

n1) vertices for k = 1, 2, 5, 10, 15, respectively. The partial implication graph was constructed in a

backward manner using Algorithm 1 as the complete implication graph, with the exception that the

construction stopped when the limited number of vertices was reached. The resulting solver is denoted

Maple LCM Dist(α, k). Table 3 compares the results of these solvers with a cutoff time of 5000 s for each

solver and instance.

Table 3 shows that the complete implication graph in Maple LCM Dist(50000) gives the best results

because it solves more instances than Maple LCM Dist(50000, k) for all values of k (except for k = 10),

and the mean solving time of Maple LCM Dist(50000) is less than that of of Maple LCM Dist(50000, 10).
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Table 3 Comparison of solvers with complete and partial implication graphs

SAT 2014 SAT 2016 SAT 2017
Total

App. Crafted App. Crafted Main

Solver #Instances 300 300 300 200 350 1450

Maple LCM Dist(α) #Solved 272 220 174 58 225 949

α = 50000 #Sat + #Unsat 125+147 96+124 72+102 7+51 109+116 –

Complete graph Mean time 1012 s 758 s 936 s 1620 s 847 s 937 s

Maple LCM Dist(α,k) #Solved 264 220 173 58 229 944

α = 50000 #Sat + #Unsat 119+145 95+125 73+100 8+50 114+115 –

k = 1 Mean time 990 s 743 s 872 s 1614 s 863 s –

Maple LCM Dist(α,k) #Solved 266 219 177 58 223 943

α = 50000 #Sat + #Unsat 121+145 94+125 76+101 8+50 108+115 –

k = 2 Mean time 1004 s 779 s 1044 s 1633 s 886 s –

Maple LCM Dist(α,k) #Solved 267 218 178 54 224 941

α = 50000 #Sat + #Unsat 123+144 94+124 75+103 7+47 109+115 –

k = 5 Mean time 1022 s 758 s 1038 s 1593 s 912 s –

Maple LCM Dist(α,k) #Solved 265 221 178 60 225 949

α = 50000 #Sat + #Unsat 122+143 96+125 74+104 9+51 107+118 –

k = 10 Mean time 964 s 731 s 1007 s 1692 s 955 s 962 s

Maple LCM Dist(α,k) #Solved 258 219 178 57 227 939

α = 50000 #Sat + #Unsat 114+144 94+125 74+104 7+50 111+116 –

k = 15 Mean time 961 s 775 s 1049 s 1633 s 848 s –

Moreover, Maple LCM Dist(50000) does not need to adjust the value of k.

5 Conclusion

State-of-the-art CDCL SAT solvers typically compute the score of a variable based on its simple presence

in previous conflicts. When there are few previous conflicts, as in an initialization phase of the search,

a CDCL SAT solver must learn more from the implication graph of a conflict to maintain the score of a

variable. In this paper, we tested two hypotheses to design a branching heuristic for CDCL SAT solvers

in the initialization phase: (1) The dependence hypothesis stating that a variable depending on fewer

clauses to contribute to the current conflict has higher probability of contributing to a future conflict;

and (2) the nearness hypothesis stating that a variable closer to the current conflict in the implication

graph has higher probability of contributing to a future conflict. When an empty clause is derived, the

dependence hypothesis uses the longest distance of variable x to the conflict in the complete implication

graph to update the score of x, whereas the nearness hypothesis uses the shortest distance of x to the

conflict. We refer to the heuristic based on the dependence hypothesis as the distance branching heuristic.

We conducted experiments on 1450 instances of the main tracks of three recent SAT competitions.

The results demonstrate that using the proposed distance branching heuristic in the initialization phase

significantly improves the performance of two of the best CDCL SAT solvers.

It is important to highlight that Maple LCM Dist, which is a preliminary implementation of the

distance branching heuristic in the Maple LCM solver, was ranked first in the main track of the 2017

SAT Competition, and the new Maple LCM Dist(5 × 104) solver further improves the performance of

Maple LCM Dist. Therefore, the gains obtained due to the distance branching heuristic are important,

and the distance branching heuristic offers a significant contribution to CDCL SAT solvers.
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