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A generalized pigeon-inspired optimization (GPIO) algorithm is proposed to enhance the exploitation ability of the

original pigeon-inspired optimization (PIO) algorithm. Three variants of the PIO algorithms, including the original PIO,

GPIO with ring structure (PIOr), and GPIO with ring structure and simplified landmark operator (PIOrs), are analyzed

from a component-wise perspective. To analyze the property of various operators, experimental tests are performed on

two types of optimization problems: single-objective and multimodal. The aim is not to compare the performance or

effectiveness of various PIO algorithms, but to analyze the properties of different components of the PIO algorithms in

addressing different types of optimization problems. Based on the result comparison and component analysis, it can be

concluded that different operators of PIO algorithms have various exploration or exploitation abilities during the search.

The exploitation ability and diversity of solution maintenance ability should be enhanced for various PIO algorithms in

addressing multimodal optimization or more complex engineering problems.

Appendix A Single-objective optimization

Appendix A.1 Parameters settings and benchmark functions

The aim of single objective optimization is to find the maximum or minimum of a solved problem. The single-objective

benchmark functions, which have been conducted in the experiments. Without loss of generality, six unimodal benchmark

functions and five multimodal benchmark functions are selected in the experimental study. The six unimodal benchmark

problems are Sphere, Schwefel’s P2.22, Schwefel’s P1.2, Step, Quadric Noise, and Rosenbrock function. The five multimodal

benchmark problems are Rastrigin, Noncontinuous Rastrigin, Ackley, Griewank, and Generalized Penalized functions. The

dimension is 20 for all tested functions, and all functions are shifted in the objective space and fmin indicates the minimum

value of the function.

To ensure a reasonable statistical result necessary, all functions are run 50 times to compare different approaches. The

number of iterations and parameter settings are the same for three variants of PIO algorithms. In all experiments, PIO

variants have 100 individuals, let factor R = 0.2 [5]. Each algorithm runs 50 times, the maximum iteration for the map and

compass operator Nc1max = 900, and the maximum iterations for the landmark operator Nc2max = 100.

Appendix A.2 Experimental results and analysis

The result comparisons of three PIO variants on eleven single-objective optimization problems are listed in Table A2.

“PIOr” algorithm indicates that GPIO algorithm with the local ring structure in the map and compass operator. “PIOrs”

algorithm indicates that the “PIOr” algorithm with the simplified landmark operator. “Best,” “Mean,” and “std. dev.”

indicate the best, the mean, and the standard deviation of the best solutions found over multiple runs, respectively.

Figure A1 gives the search error results of PIO algorithms in solving eleven single objective optimization problems. The

original PIO algorithm has a fast convergence speed at the beginning of the search, however, it performs less well in refining

the potential solutions. The original PIO algorithm has an advantage in exploration ability but the exploitation ability

should be enhanced. In contrast, PIOr and PIOrs algorithms have a better performance on the accuracy of solutions but

convergence slightly slower than the original PIO algorithm. The exploitation ability is enhanced for GPIO algorithms with

the ring structure and simplified landmark operator.

Table A2 gives the results of three variants of PIO algorithm on single-objective optimization problems. The PIOrs

algorithm is performed much best among three algorithms. This may be because that the optima is in the middle of the

* Corresponding author (email: mluhui@buaa.edu.cn)



Cheng S, et al. Sci China Inf Sci 2

Table A1 Eleven benchmark functions, which include six unimodal functions and five multimodal functions, are used in

experimental study. The n indicates the dimension of the function. All functions are shifted in the objective space and

fmin indicates the minimum value of the function.

Function name Test function Dimension n Search space fmin

Sphere f1(x) =
∑n
i=1 x

2
i + bias1 20 [−100, 100]n -450.0

Schwefel’s P2.22 f2(x) =
∑n
i=1 |xi|+

∏n
i=1 |xi| 20 [−10, 10]n -330.0

Schwefel’s P1.2 f3(x) =
∑n
i=1(

∑i
k=1 xk)2 20 [−100, 100]n -450.0

Step f4(x) =
∑n
i=1(bxi + 0.5c)2 20 [−100, 100]n 330.0

Quadric Noise f5(x) =
∑n
i=1 ix

4
i + random[0, 1) 20 [−1.28, 1.28]n -450.0

Rosenbrock f6(x) =
∑n
i=1[100(xi+1 − x2i )2 + (xi − 1)2] 20 [−10, 10]n -330.0

Rastrigin f7(x) =
∑n
i=1[x2i − 10 cos(2πxi) + 10] 20 [−5.12, 5.12]n 120.0

Noncontinuous f8(x) =
∑n
i=1[y2i − 10 cos(2πyi) + 10]

20 [−5.12, 5.12]n 330.0Rastrigin
yi =

{
xi |xi| < 1

2
round(2xi)

2
|xi| > 1

2

Ackley
f9(x) = −20e

−0.2
√

1
n

∑n
i=1 x

2
i

20 [−32, 32]n -330.0
−e

1
n

∑n
i=1 cos(2πxi) + 20 + e

Griewank f10(x) = 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos( xi√

i
) + 1 20 [−600, 600]n -450.0

f11(x) = π
n
{10 sin2(πy1) +

∑n−1
i=1 (yi − 1)2

20 [−50, 50]n 180.0Generalized ×[1 + 10 sin2(πyi+1)] + (yn − 1)2}

Penalized +
∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + 1
4

(xi + 1)

u(xi, a, k,m) =


k(xi − a)m xi > a,

0 −a < xi < a

k(−xi − a)m xi < −a

Table A2 Result comparisons on eleven single objective optimization problems with shifts in the objective space.

Function PIO Algorithm PIOr Algorithm PIOrs Algorithm

min Best Mean std. dev. Best Mean std. dev. Best Mean std. dev.

f1 -450.0 -449.9545 -129.8536 154.598 -449.9975 -338.0024 56.1273 -450 -450 0

f2 -330.0 -329.9734 -322.8629 2.5067 -329.9716 -327.9311 0.6183 -330 -330 0

f3 -450.0 -449.5960 1597.0869 1029.19 -449.9550 -291.8497 75.6135 -450 -450 0

f4 330.0 332 671.04 167.3488 330 458.52 54.6440 330 330 0

f5 -450.0 -449.9999 -449.9436 0.03578 -449.9997 -449.9882 0.00990 -449.9999 -449.999 0.0001

f6 -330.0 -329.6544 378.6816 435.908 -329.9396 9.7354 254.538 -330 -330 0

f7 120.0 126.2499 173.8971 14.0680 128.5750 168.7941 12.6749 120 120 0

f8 330.0 336.3286 373.4176 15.9409 347.1279 364.7003 12.1574 330 330 0

f9 -330.0 -329.9133 -324.3104 1.2418 -329.9694 -326.1617 0.9297 -330 -330 0

f10 -450.0 -449.9912 -446.0030 1.7833 -449.9658 -447.9332 0.5870 -450 -450 0

f11 180.0 181.1209 185.5914 3.6204 180.8585 182.6084 1.1359 180.2486 181.008 0.4325
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(a) Sphere f1 (b) Schwefel’s P2.22 f2 (c) Schwefel’s P1.2 f3
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(d) Step f4 (e) Quadric Noise f5 (f) Rosenbrock f6
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(g) Rastrigin f7 (h) Noncontinuous Rastrigin f8 (i) Ackley f9
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Figure A1 Error results of PIO algorithms in solving eleven single-objective optimization problems
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search range for these tested problems. In order to remove the “central effect,” the problems with shifts in the decision

space are utilized in the experimental study. The optimum is shifted with a random value at each dimension for all test

functions. The result comparisons of three PIO variants on problems with shift optima are listed in Table A3. The result in

the Table A3 is worse than the result in the Table A2 for each algorithm on the same problem. The difficulty of problems

is increased for problems with the shift in the decision space. From Table A3, the PIOrs algorithm still obtains the mostly

best solutions for all problems. In addition, it has the smallest standard deviation for all problems except the function f7,

which indicates that the PIOrs algorithm has a stability on the solved problems. The original PIO algorithm could obtain

some good results on several tested problems, however, the solutions are not stable for the same problem in the different

run. To solve a problem more effective and efficiency, the search ability and the stability of an algorithm should be enhanced

at the same time.

Table A3 Result comparisons on eleven single-objective optimization problems with shifts in the decision space and the

objective space.

Function PIO Algorithm PIOr Algorithm PIOrs Algorithm

min Best Mean std. dev. Best Mean std. dev. Best Mean std. dev.

f1 -450.0 -406.6161 -82.7614 175.1069 -386.6978 -245.5877 87.0741 -386.8429 -235.6471 91.8911

f2 -330.0 -326.1658 -322.4870 2.2212 -328.6017 -327.2909 0.8453 -328.4839 -326.9341 0.7521

f3 -450.0 185.292 1678.981 917.004 -385.2693 -203.5297 128.7335 -389.0915 -218.0989 97.160

f4 330.0 411 690.48 161.671 379 508.66 69.6211 371 484.36 62.9726

f5 -450.0 -449.9892 -449.9317 0.05137 -449.9944 -449.9829 0.01096 -449.9904 -449.9858 0.00167

f6 -330.0 -195.5868 337.5790 414.6021 -172.78354 73.6510 228.8222 -189.4281 23.9319 177.8420

f7 120.0 145.1287 178.0790 15.5009 151.9303 168.4252 8.9956 142.7233 168.2880 10.1484

f8 330.0 350.2371 371.9953 14.2346 346.6376 364.2946 10.4029 345.9856 362.4029 10.1492

f9 -330.0 -326.3079 -324.1183 0.9196 -327.3391 -325.2198 0.78257 -326.3491 -325.1235 0.6541

f10 -450.0 -448.0579 -445.6862 2.1494 -448.5219 -447.4485 0.6290 -448.4442 -447.5527 0.4957

f11 180.0 181.5406 186.1719 3.8381 180.4898 184.1995 2.2526 180.9450 183.4089 1.7372

There is a sharp decreasing in the Figure A1 for PIOrs algorithm. This is caused by the central effect that the optimum

is in the center of the most test problems. Figure A2 gives the search error results of PIO algorithms in solving problems

with shifts in the decision space. The optimum is decreased more smoothly for PIOrs algorithm in solving problems with a

shift in the decision space. Based on the experimental results on problems with or without the shift in the decision space,

the conclusions could be drawn as follows. The exploitation ability of PIO algorithm could be enhanced by the individuals

with the ring structure. The application scenarios could be extended with the generalized mapping function. With the

simplified landmark operator, the algorithm could be implemented simply. Thus, the generalized PIO algorithms, or more

precisely, the PIOrs algorithm has better performance and more application scenarios than the original PIO algorithm.

Appendix B Multimodal optimization

Appendix B.1 Multimodal optimization problems

Most traditional optimization algorithms, which designed for single-objective optimization problems, are aiming to find

one global optimum for the solved problems. However, many real-world problems may have more than one satisfactory

solutions. Not only one global optimum, but also other global/local optima are needed for the solved problems. Thus, the

aim of multimodal optimization is to locate multiple global/local optimal values for the solved problems.

The equal maxima function, which is given in (B1), could be used to illustrate the multimodal optimization problem

with the equal global optima.

f(x) = sin6(5× π × x) (B1)

where x ∈ [0, 1]. Solutions for Eq. (B1) are shown in the Fig. B1 (a). There are five equal global optima for Eq. (B1).

The Eq. (B1) has multiple equal global optima. The uneven decreasing maxima function, which is shown in B1 (b), could

be used to illustrate the multimodal optimization problem with one global optimum and several local optima. Solutions for

Eq. (B2) are shown in Fig. B1 (b). There are four local optima and one global optimum for Eq. (B2).

f(x) = e(−2 log(2)( x−0.08
0.854

)2) sin6(5π(x0.75 − 0.05)) (B2)

where x ∈ [0, 1].

Various swarm intelligence and evolutionary computation algorithms have been applied to solve multimodal optimization

problems [1, 3, 4, 6, 7, 9–13]. Normally, two kinds of approaches have been utilized to solve the multimodal optimization

problems. The one is an algorithm with a diversity maintenance mechanism or other special strategies to handle the

problem, such as species conserving strategy [7], niching strategy with local search method [9], adaptive elitist population [6],

neighborhood mutation [10], and dynamic fitness sharing strategy [4], just to name a few. The other approach is transferring

the multimodal optimization problem to other kinds of optimization problems, such as the multiobjective optimization

problems [11,13].
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Figure A2 Error results of PIO algorithms in solving eleven single-objective optimization problems with shift in the

decision space
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Figure B1 Example of functions with multiple optima.

Appendix B.2 Performance criteria

Normally, the accuracy of the best solution found in multiple runs is used for algorithm evaluation in the single-objective

optimization. The evaluation time is also considered under some circumstances. The evaluation becomes complicated

in multimodal optimization. Several criteria, such as accuracy of the solutions found, the diversity of solutions, and the

number of the satisfied solutions could be used to evaluate the performance of an optimization algorithm. In addition, the

evaluation time also should be considered in the multimodal optimization.

Two criteria, which are both calculated based on multiple runs, are utilized to evaluate the performance of various PIO

algorithms [8]. The first performance criterion, which denotes as the NPF , is the total number of global optima found over

multiple runs. The peak ratio (PR) is the second performance criterion, which used to measure the average percent of all

known global optima found in all runs. The Eq. (B3) shows the calculation of the peak ratio value.

PR =

NR∑
run=1

NPFi

NKP ×NR
=

NPF

NKP ×NR
(B3)

where NPFi indicates the number of global optima found at the end of the i-th run, NR is the number of runs, and the

NKP is the number of known global optima for the solved problem [8].

Appendix B.3 Parameters settings and Benchmark functions

Eight multimodal optimization benchmark functions and the properties of each tested benchmark function are listed in

Table B1 [8]. The aim is to reveal the functions of different components in PIO variants during the search process. The

original PIO algorithm and two GPIO variants are used to solve different multimodal optimization problems. The accuracy

level ε = 1.0E−01 is used in the experimental study. The parameters, which include factor R, number of iterations Nc1max

and Nc2max for two operators, are the same for three variants of PIO algorithms. The detailed parameter settings for all

PIO algorithms are as follows:

• the map and compass factor R = 0.2, population size Np = 100;

• the maximum iteration number Nc1max = 450 and Nc2max = 50, respectively.

Table B1 The eight benchmark problems with different properties are used in the experimental study.

Func. Function Name
Optima

Niche radius r Maximum Number of Global Optima
(global/local)

f1 (1D) Five-Uneven-Peak Trap 2 / 3 0.01 200.0 2

f2 (1D) Equal Maxima 5 / 0 0.01 1.0 5

f3 (1D) Uneven Decreasing Maxima 1 / 4 0.01 1.0 1

f4 (2D) Himmelblau 4 / 0 0.01 200.0 4

f5 (2D) Six-Hump Camel Back 2 / 4 0.5 4.126513 2

f6 (2D)
Shubert D · 3D / many

0.5 186.73090 18

f6 (3D) 0.5 2709.09350 81

f7 (2D)
Vincent 6D / 0

0.2 1.0 36

f7 (3D) 0.2 1.0 216

f8 (2D)
Modified Rastrigin - All Global Optima

∏D
i=1 ki / 0

0.01 -2.0 12

f8 (8D) 0.01 -8.0 12
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Appendix B.4 Experimental results and analysis

Table B2 The result of the peak ratio on eight problems (ε = 1.0E − 01).

Function PIO Algorithm PIOr Algorithm PIOrs Algorithm

NKP ×NR NPF PR NPF PR NPF PR

f1 (1D) 100 47 0.47 96 0.96 98 0.98

f2 (1D) 250 50 0.2 250 1.0 248 0.992

f3 (1D) 50 50 1.0 50 1.0 50 1.0

f4 (2D) 200 50 0.25 113 0.565 123 0.615

f5 (2D) 100 50 0.5 79 0.79 87 0.87

f6 (2D) 900 96 0.1067 108 0.12 122 0.1356

f6 (3D) 4050 56 0.0138 4 0.0010 6 0.0015

f7 (2D) 1800 50 0.0278 124 0.0689 131 0.0728

f7 (3D) 10800 50 0.0046 133 0.0123 137 0.0127

f8 (2D) 600 50 0.0833 115 0.1917 106 0.1767

f8 (8D) 600 25 0.0417 6 0.01 11 0.0183

The experimental results, which include the number of global optima found (NKP) and the peak ratio (PR), by three PIO

algorithms on eight benchmark functions are listed in Table B2. The result comparisons on eight multimodal optimization

problems are listed in Table B3. In general, the PIOrs algorithm has obtained the best result in Table B2, but the original

Table B3 Search accuracy comparisons on eight multimodal optimization problems.

Function PIO Algorithm PIOr Algorithm PIOrs Algorithm

max Best Mean std. dev. Best Mean std. dev. Best Mean std. dev.

f1 (1D) 200.0 200 197.6 9.49947 200 198.4 7.83836 200 200 3.63E-14

f2 (1D) 1.0 1 1 0 1 1 0 1 1 0

f3 (1D) 1.0 0.99999 0.99486 0.01539 0.99999 0.96464 0.02333 0.99999 0.99993 0.00019

f4 (2D) 200.0 200 199.9998 0.00102 200 199.9994 0.001985 200 199.98760 0.06616

f5 (2D) 4.126513 4.126513 4.126513 2.13E-15 4.126513 4.126495 6.57E-05 4.126513 4.126439 0.00031

f6 (2D) 186.73090 186.73090 185.12934 9.10672 186.73090 186.66972 0.23153 186.73090 186.71945 0.02876

f6 (3D) 2709.09350 2709.09350 2292.49724 662.259 2709.08549 2648.6407 128.3939 2709.07613 2581.29956 256.23517

f7 (2D) 1.0 1 0.999999 1.81E-09 0.999999 0.999997 1.29E-05 0.999999 0.999988 7.29E-05

f7 (3D) 1.0 1 0.999767 0.001521 0.999999 0.999350 0.001283 0.999999 0.999140 0.0023559

f8 (2D) -2.0 -2 -2 2.51E-16 -2.000000 -2.000210 0.001215 -2.000000 -2.000042 0.0001644

f8 (8D) -8.0 -8.002924 -8.204213 0.24527 -8.016978 -8.281458 0.219197 -8.043111 -8.211523 0.131660

PIO algorithm has the best search accuracy in Table B3. The solutions found by the GPIO algorithm are close to the real

optima, but the solution accuracy still needs to be improved. Based on the experimental results, it could be concluded that:

the original PIO algorithm performs well on global search ability, but less well in solutions maintenance ability. Diversity

maintenance ability should be enhanced for both the original PIO algorithm and the GPIO variants. To enhance the

performance of the GPIO variants in solving multimodal optimization problems, combining the GPIO algorithm with some

fitness sharing or crowding strategies could be a good way of addressing this problem.

The eight basic multimodal optimization problems are used in the experimental study. More study should be conducted

on different PIO algorithms in solving complex multimodal optimization problems, such as multimodal multiobjective

optimization problems [14], dynamic multimodal optimization problems [2], and multimodal optimization problems in the

high-dimensional decision space.
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