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Appendix A  Overview of multi-objective pigeon-inspired optimization (MPIO) 

Pigeon-inspired optimization (PIO) is a novel swarm intelligence optimizer inspired by the 

homing behavior of natural pigeons, in which two different operators are designed to simulate the 

behavior. At the beginning of journey, a map and compass operator is used for pigeons, while in 

the middle, the navigation of pigeons is switched to a landmark operator. However, the basic PIO 

is designed for single-objective optimization problem (SOP). For solving multi-objective 

optimization problem (MOP), Qiu and Duan [1] proposed MPIO based on Pareto sorting scheme 

and a consolidation operator. 

Appendix A.1  Pareto sorting scheme 

For MOP, the rank of the pigeons cannot be identified by their fitness values as SOP, and that 

should be obtained by the classic non-dominated sorting operator. After that, the 

crowded-comparison operator is used for sorting the pigeons in each rank.  

(a) Non-dominated sorting operator 

For a minimization MOP, a pigeon x1 dominates x2 (written as 1 2x x ) if and only if both of the 

following conditions are satisfied: 
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where fi denotes the ith function of the k objective functions. Using the fast non-dominated sorting 

approach [2], the pigeons are sorted into different non-domination levels based on eq. (A1), and 

the pigeons set in the first rank is known as the Pareto optimal front (POF).  

(b) Crowded-comparison operator 

In PIO the pigeons unfamiliar with the landmarks (i.e. the inferiorly pigeons) will be eliminated, 
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so the pigeons in different sets need to be sorted further to realize the elimination in MPIO. And 

the crowded-comparison operator is employed to sort the pigeons in each set by comparing their  

crowing-distance that can be expressed as: 
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where pn  represents the number of the pigeons in the pth set, and max

jf and max

jf are the 

maximum and minimum of the jth objective function values, respectively. Both 1Dis( )x  and 

Dis( )
pn

x  are assigned an infinite value. Obviously, for the diversity preservation the pigeon with 

larger crowing-distance is superior to the pigeon with smaller one. 

After working of the two operators, the pigeons with different non-domination ranks are divided 

into different sets correspondingly, while in each set the pigeons are arranged in descending order 

based on their crowding distances. 

Appendix A.2  Consolidation operator 

In MPIO, the map and compass operator and the landmark operator are merged into one 

consolidation operator to update the velocity and position of the pigeon: 
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where MC and LM represents the original map and compass operator and the landmark operator, 

respectively. Np denotes the number of the population after t iteration loops, gm is the maximum 

number of iterations and Ndec denotes the number of eliminated pigeons at each iteration; Vi is the 

velocity of pigeon xi, R is the map and compass factor, and tr is the transition factor which makes 

the fusion of the two operators smoothly. xgbest represents the global best position of the population, 

which is extracted from an external archive of the nondominated solutions, and xcenter denotes the 

center position of the pigeons of the POF obtained in last iteration. The detailed procedure for 

solving xcenter and xgbest can be seen in [1]. 

Appendix B  Update Approach for xpbest  

In multi-objective optimization, xpbest needs to be redefined based on the Pareto dominance 

relation between the old and new individual. The method we used to update xpbest_i in each 

iteration can be described as follows.  

Step1. Initialize xpbest_i with the initial value of xi. 

Step2. Update xi using eq. (8) of the letter. 

Step3. if pbest _i ix x , update xpbest_i using the current value of xi; on the contrary, xpbest_i 

remains unchanged; otherwise, if xi and xpbest_i do not dominate each other, xi will be selected as 

the new xpbest_i with the probability of 0.5 for keeping the function of xpbest_i in the later phase of 

the algorithm.  

Appendix C  Implementation details of IMPIO-DD to solve DEED  
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Appendix C.1  Population Initialization  

For multi-objective DEED, the output power of each generator at each time period is included in 

the individual as the decision variable. Therefore, in IMPIO-DD the population consists of Np 

pigeons and each pigeon is comprised of NT decision variables, which can be defined as: 
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where N is the number of generating units and T is the number of dispatching periods. Pij is 

generated randomly between its upper and lower operating limits. 

Appendix C.2  Procedures of IMPIO-DD 

The implementation of our proposed IMPIO-DD for solving DEED is as follows: 

Step1. Initialize the positions X, velocities V, xgbest and xpbest_i of the Np pigeons of the 

population, and an empty external archive A. Set the iteration counter g by 0.  

Step2. Update V and X according to eq. (8) of the letter. 

Step3. Mutate X according to eq. (9) of the letter. 

Step3. Evaluate the pigeons by Pareto sorting scheme to obtain the POF of the current 

generation, Xbest. Calculate xcenter using Xbest and then add Xbest into A. 

Step4. Store the pigeons in A into a temporary archive and clear A. Find the Pareto optimal 

solutions of the temporary archive, and then store them into A.  

Step5. Update xpbest_i and randomly select a pigeon in A as the new xgbest. 

Step6. Increase the generation by 1g g  . If g gm , return to step2, otherwise go to step7. 

Step7. Stop the procedure and output the current Xbest or the best compromise solution as the 

final result. 

It should be noted that the fuzzy-based decision making method [3] are employed to extract the 

best compromise solution from the final POF. Moreover, the constraints handling method used in 

this paper are based on the dynamic heuristic constraint handling approach [4]. Due to the limited 

size, the details of the constraints handling and decision making methods are not presented, 

however, it can be seen in our previous work [5]. 

Appendix D  Simulation results and discussions 

Appendix D.1  Case description and parameter settings 

Detailed description of the three testing cases are shown in Table D1, where the unit data, power 

load demand and transmission loss coefficients can be found in the listed references. For all the 

three testing cases, the parameters of IMPIO-DD are set as follows. The number of eliminated 

pigeons at each iteration Ndec is set to 2 as [1]. The map and compass factor R and the transition 

factor tr are set to 0.05 and 3, respectively. The disturbance probability mp and radius r of SPM are 

set to 0.4 and 0.3, respectively. Due to the elimination of the inferior pigeons in every generation, 
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the population size Np and the maximum iterations gm of IMPIO-DD are selected as 298 and 100, 

respectively. Note that the parameters (R, tr, mp , r, Np and gm) can be adjusted according to the 

performance of IMPIO-DD, and the above parameter settings are found to be the best one after 

various trials. To ensure the fairness of the comparison, parameters of the original MPIO are set to 

the same values as that of IMPIO-DD. Both of the algorithms are run 20 times independently for 

all the three cases. The simulation is executed in Matlab R2014b on a PC with i7-6700K CPU 

@4.00 GHz, 16GB RAM and Windows 7 operation system. 

Table D1 Description of testing cases 

Case 
Number of 

generators 

Number 

of buses 

Number of 

decision 

variables 

Number of 

equality 

constraints 

Date sources 

Unit data 
Load 

demand 

Loss 

coefficients 

1 6 30 6×24=144 24 Ref.[6] Ref.[8] Ref.[6] 

2 14 118 14×24=336 24 Ref.[6] Ref.[8] without loss 

3 14 118 14×24=336 24 Ref.[6] Ref.[8] Ref.[7] 

Appendix D.2  Simulation results 

1)  Case 1 

In this case, the IEEE 30-bus, 6-unit test system with nonlinear transmission loss is solved by the 

proposed IMPIO-DD and the basic MPIO separately. Based on the above parameter settings, the 

Pareto optimal fronts obtained in case 1 are shown in Figure D1. The best objective values and the 

compromise solutions obtained by IMPIO-DD and MPIO are listed in Table D2. Moreover, the 

results of IMPIO-DD are also compared with other four methods, MAMODE [4], GSOMP [8], 

MOPSO [8], and NSGA-II [8]. And their corresponding minimal objective values and the best 

compromise solutions are shown in Table D3 and Table D4, respectively. The detailed information 

of the best compromise solution obtained by IMPIO-DD in case 1 are listed in Table D5. 

 

Figure D1 Comparison of POF and compromise solutions in case 1 

As shown in Figure D1 and Table D2, it is obvious that the proposed IMPIO-DD obtains a 

better POF, which has a wider spread and smaller objective values than that of MPIO. The 

population of MPIO has been trapped into a small search space resulting a very narrow distributed 
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POF, which can be seen in figure D1. However, the Pareto optimal solutions of IMPIO-DD are 

uniformly and widely distributed in the objective space demonstrating the feasibility and 

effectiveness of the ADs and SPM operators in enhancing the global search ability of the 

population. 

Table D2 Results obtained by IMPIO-DD and MPIO in case 1 

Method Objectives Fuel cost ($) Emission (lb) 

IMPIO-DD 

Best cost 25549.0 6.9328 

Best emission 26839.0 5.6976 

Best compromise 25880.0 5.9720 

MPIO 

Best cost 26027.0 6.2208 

Best emission 26036.0 6.2108 
Best compromise 26030.0 6.2170 

Table D3 Comparison of the minimum objective values in case 1 

 IMPIO-DD MAMODE [4] GSOMP [8] MOPSO [8] NSGA-II [8] 

Fuel cost ($) 25549.0 25732.0 25493.0 25633.2 25507.4 

Emission (lb) 5.6976 5.7283 5.6847 5.6863 5.6881 

Table D4 Comparison of the compromise solutions in case 1 

 IMPIO-DD MAMODE [4] GSOMP [8] 

Fuel cost ($) 25880.0 25912.89419 25924.45557 

Emission (lb) 5.9720 5.979548 6.004152 

Table D5 The best compromise solution of case 1 obtained by IMPIO-DD (MW) 

Hour P1 P2 P3 P4 P5 P6 ΣPi PL PD 

1 0.3518 0.4640 0.5592 0.8391 0.7142 0.3595 3.2878 0.0378 3.25 

2 0.4750 0.5554 0.7511 0.9143 0.7581 0.5014 3.9553 0.0553 3.90 

3 0.3711 0.3963 0.7130 0.8571 0.6969 0.5057 3.5402 0.0402 3.50 

4 0.2983 0.3395 0.6433 0.7899 0.5047 0.4534 3.0290 0.0290 3.00 

5 0.3408 0.4613 0.6843 0.8625 0.5037 0.5359 3.3886 0.0386 3.35 

6 0.4499 0.5159 0.8107 0.9418 0.6820 0.6557 4.0560 0.0560 4.00 

7 0.4949 0.6086 1.0292 1.0512 0.9122 0.7264 4.8225 0.0725 4.75 

8 0.5319 0.6000 1.1010 1.1043 1.0235 0.7705 5.1312 0.0812 5.05 

9 0.6389 0.7224 1.1483 1.1419 1.1371 0.7630 5.5516 0.1016 5.45 

10 0.5831 0.7104 1.0988 1.1520 1.0277 0.7186 5.2907 0.0907 5.20 

11 0.6452 0.7185 1.1421 1.2069 1.1061 0.7856 5.6044 0.1044 5.50 

12 0.6461 0.7864 1.1967 1.2063 1.1566 0.8703 5.8624 0.1124 5.75 

13 0.5315 0.6685 1.1203 1.1704 1.0850 0.7612 5.3369 0.0869 5.25 

14 0.5704 0.6176 1.0782 1.1447 1.0704 0.7563 5.2376 0.0876 5.15 

15 0.5116 0.5333 1.0406 1.1248 0.9891 0.6221 4.8215 0.0715 4.75 

16 0.5951 0.7394 1.1081 1.1531 1.0500 0.7493 5.3950 0.0950 5.30 

17 0.5747 0.6997 1.0645 1.0990 1.0724 0.7287 5.2391 0.0891 5.15 

18 0.7061 0.7959 1.1766 1.1663 1.1766 0.8474 5.8689 0.1189 5.75 

19 0.5209 0.6778 1.1492 1.1132 1.1304 0.7435 5.3349 0.0849 5.25 

20 0.5570 0.6506 1.1189 1.0650 1.1013 0.8466 5.3394 0.0894 5.25 

21 0.4188 0.5788 0.9569 0.9857 1.0253 0.6472 4.6128 0.0628 4.55 

22 0.3908 0.4997 0.9695 0.9763 0.8964 0.5699 4.3026 0.0526 4.25 

23 0.3979 0.4572 0.9207 0.9895 0.9279 0.6107 4.3039 0.0539 4.25 

24 0.3749 0.4361 0.8300 1.0113 0.8656 0.5309 4.0488 0.0488 4.00 

In Table D3, both of the minimal objective values obtained by IMPIO-DD are better than those 

of MAMODE, and not as good as NSGA-II and GSOMP that has the best results of all the five 
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methods. However the differences between the three methods are very small and the values are 

very close. Moreover, the minimum emission obtained by IMPIO-DD is a little more than that of 

MOPSO, but its value of minimum fuel cost is less than MOPSO. In addition, the best 

compromise solution obtained by IMPIO-DD is better than both MAMODE and GSOMP as 

shown in Figure D1 and Table D4. 

For checking whether the twenty-four power balance constraints are satisfied simultaneously, 

the detailed best compromise solution obtained by IMPIO-DD are listed in Table D5. And it is 

obvious that in each hour the sum of the generators’ outputs can cover the load demand and the 

power loss precisely.  

2)  Case 2 

In this case, the IEEE 118-bus, 14-unit testing system without considering the power loss is 

employed to verify the performance of the proposed IMPIO-DD in solving high dimensional 

DEED problem as done in [8].  

The Pareto optimal fronts obtained by IMPIO-DD and MPIO in case 2 are shown in Figure D2. 

And the Table D6 lists the best objective values and the compromise solutions obtained by 

IMPIO-DD and MPIO. It is clear to see in Figure D2 that the distribution of the Pareto optimal 

solutions obtained by IMPIO-DD are more broader and more uniform than that of MPIO, which is 

similar to case 1. Meanwhile, the best values of both objectives obtained by IMPIO-DD are much 

smaller than that of MPIO. Due to the premature convergence, the POF of MPIO is limited into a 

small region. Therefore, the ADs and SPM operations in IMPIO-DD expand the searching space 

of the population and increase the diversity of the population even in the high dimensional 

decision space. 

 

Figure D2 Comparison of POF in case 2 

Table D6 Results obtained by IMPIO-DD and MPIO in case 2 

Method Objectives Fuel cost ($) Emission (lb) 

IMPIO-DD 

Best cost 110550 114.0744 

Best emission 123720 68.4313 

Best compromise 116710 82.1513 

MPIO 

Best cost 116220 88.1546 

Best emission 117440 83.4975 

Best compromise 116600 86.5584 
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In Table D7, the minimum objective values of the proposed IMPIO-DD are listed to compare 

with other four existing methods [4, 8]. And it is shown that the proposed IMPIO-DD gets the 

minimum fuel cost and emission, which are much better than that of MAMODE, GSOMP, 

MOPSO and NSGA-II. In Figure D3, the power balance constraints is checked using the best 

compromise solution obtained by IMPIO-DD. We can see that the power balance constraints of all 

the twenty-four dispatch periods are satisfied. 

Table D7 Comparison of the minimum objective values in case 2 

 IMPIO-DD MAMODE [4] GSOMP[8] MOPSO [8] NSGA-II [8] 

Fuel cost ($) 110550 114709.2 142547.2 143218.3 145790.5 

Emission (lb) 68.4313 70.21 331.23 359.07 348.58 

 

Figure D3 Constraints checking for the best compromise solution of case 2 

3)  Case 3 

In this case, the IEEE 118-bus, 14-unit testing system with the power loss is studied to verify the 

global search ability of the proposed IMPIO-DD in solving DEED problem with highly nonlinear 

equality constraints. The Pareto optimal fronts obtained by IMPIO-DD and MPIO are shown in 

Figure D4. The best objective values and the best compromise solutions obtained by IMPIO-DD 

and MPIO are listed in Table D8. Meanwhile, the results of MAMODE reported in [4] are also 

listed for comparison. Figure D5 shows the power balance constraints checking of the proposed 

IMPIO-DD. 

As shown in Figure D4, the Pareto optimal solutions obtained by IMPIO-DD spreads widely 

and uniformly in the objective space, but the POF obtained by MPIO are trapped into a limited 

region and a local POF may have been obtained. Similar to the previous two cases, the double 

disturbance mechanism enhances the global search ability of the algorithm indeed making the 

proposed IMPIO-DD also show a superior performance in solving DEED problem with highly 

nonlinear equality constraints.  

From Table D8, we can clearly see that the proposed IMPIO-DD obtains a much smaller 

objective values than MPIO. Although the two fuel cost values obtained by IMPIO-DD in the best 

cost solution and the best compromise solution are more than that of MAMODE, both the  

corresponding emission values of IMPIO-DD are less than that of MAMODE, which may be 

preferred to decision makers who care more about the emission release. Moreover, as shown in 
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Figure D5, the power balance constraint at each dispatch period can be satisfied by IMPIO-DD 

even when the nonlinear power loss is considered. 

 

Figure D4 Comparison of POF in case 3 

Table D8 Comparison of the simulation results in case 3 

Method Objectives Fuel cost ($) Emission (lb) 

IMPIO-DD 

Best cost 119780 140.4679 

Best emission 137240 92.2827 

Best compromise 128580 101.3510 

MPIO 

Best cost 127300 113.2912 

Best emission 127850 111.0852 

Best compromise 127550 112.1846 

MAMODE[4] 

Best cost 118094.70 156.481978 

Best emission 134258.849082 93.597782 

Best compromise 125648.735817 107.850296 

 

Figure D5 Constraints checking for the best compromise solution of case 3 
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