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Abstract The pigeon-inspired optimization (PIO) algorithm is a newly presented swarm intelligence opti-

mization algorithm inspired by the homing behavior of pigeons. Although PIO has demonstrated effectiveness

and superiority in numerous fields, particularly in practical engineering optimization, there have been few

results concerning the theoretical foundations of PIO. This paper conducts convergence analysis of basic

PIO in a continuous search space in two aspects. First, we analyze the convergence of each pigeon’s ex-

pected position using a difference equation and prove that the average position of each pigeon in the swarm

will converge to the same value. To further study the stochastic global convergence property of the pigeon

swarm, we apply the martingale theory to investigate the basic PIO swarm sequence, and achieve a sufficient

condition to guarantee global convergence of the basic PIO. Our theoretical analysis shows that this conver-

gence depends upon the accumulation of the minimum probability with which the pigeon swarm jumps to

the global-optimal region at each iteration. The mathematical methods proposed in this study, particularly

the martingale technique, also provide a new effective approach for the theoretical analysis of bio-inspired

algorithms in continuous optimization.
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swarm intelligence
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1 Introduction

Over the last two decades, population-based swarm intelligence (SI) optimization algorithms, such as

particle swarm optimization (PSO) [1], ant colony optimization (ACO) [2], and brain storm optimization

(BSO) [3], have attracted great interest from researchers and have been successfully applied to many

complicated optimization problems. An increasing number of SI-optimization algorithms are appearing

as various swarms in nature are simulated. These algorithms offer practical and efficient solutions for

various optimization problems.

Recently, a new SI algorithm inspired by the homing behavior of pigeons, known as the pigeon-inspired

optimization (PIO) algorithm, was proposed by Duan and Qiao in 2014 [4]. Pigeons can easily find their
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homes using three homing tools: magnetic fields, the sun, and landmarks. The magnetic field is used to

shape the map and adjust the homing direction according to the altitude of the sun. Landmarks around

the pigeons guide them to their destination. To mimic this natural phenomenon, the PIO algorithm

utilizes two operators to describe the flocking behavior of homing pigeons: the map and compass operator

represents the effects of the magnetic field and the sun, and the landmark operator describes the effects

of landmarks [5, 6].

Since this SI-optimization algorithm was first proposed, many research results have proposed improve-

ments and applications for it. A series of comparative experiments using benchmarks and practical opti-

mization problems have shown that the PIO offers better performance than other bio-inspired algorithms

on efficiency and stability. Duan and Qiao [4] applied PIO to solve air-robot-path planning problems

and found that PIO outperformed the standard differential evolution (DE) algorithm in terms of con-

vergence speed and stability. To improve the performance of the power system of an unmanned aerial

vehicle (UAV), a modified PIO algorithm called the adjacent-disturbances and integrated-dispatching

PIO (ADID-PIO) algorithm was presented to optimize the design parameters of a dc brushless mo-

tor [6]; the comparative experimental results indicated that the convergence rate, efficiency, and stability

of ADID-PIO were better than those of PIO, BSO, or predator-prey BSO (PPBSO) [7] in the design

process of a DC brushless motor. A variant of PIO called predator-prey PIO (PPPIO) was proposed

to solve unmanned combat aerial vehicle three-dimensional (3D) path-planning problems in a dynamic

environment; the comparative simulation results showed that the PPPIO algorithm was more efficient

than basic PIO, PSO, and DE [5]. For more applications of PIO and a comparison of its performance

with other bio-inspired algorithms, please refer to [8–12].

Although PIO has demonstrated its effectiveness and superiority in numerous fields (particularly in

practical engineering optimization) and has received extensive attention from researchers, the theoret-

ical foundations of PIO—including convergence analysis and parameter-setting principles—still remain

weak [13]. Currently, theoretical studies of PIO are mainly based on empirical and intuitive statisti-

cal results, and rigorous mathematical arguments are lacking [13]. Among theoretical studies of PIO,

convergence analysis is a key problem of great significance that concerns the effect of essential factors

on pigeon-swarm dynamics and the conditions under which pigeon swarms converge to certain constant

positions [14–16]. Zhang and Duan [5] conducted preliminary convergence analysis of PIO by treating

the state of the PIO algorithm’s population sequence as a finite Markov chain. To the best of our knowl-

edge, this has been the only study concerning convergence analysis of PIO thus far. However, PIO is

mainly used to solve continuous optimization problems; i.e., PIO is a continuous bio-inspired algorithm.

Therefore, the analysis in [5] can be regarded as a special case and must be generalized for a continuous

situation.

The contributions of the present study can be divided into two parts. First, we use a difference equation

to calculate the expected value of each pigeon’s position at each iteration. By computing the limits, we

obtain the statistically average convergent position of a pigeon swarm. However, a sequence of stochastic

variables may not converge even if the corresponding expectation sequence converges [17]. Second, to

further study the global convergence property of the pigeon swarm, we employ the martingale theory,

which investigates basic PIO’s evolutionary process and provides a sufficient condition to guarantee the

algorithm’s global convergence. The martingale technique adopted in the stochastic global convergence

analysis of basic PIO does not require additional assumptions such as the Markov property, and can thus

be extended to the theoretical analysis of bio-inspired algorithms in continuous optimization.

2 Basic PIO algorithm and its stochastic process model

2.1 Introduction to a basic PIO algorithm

According to [4], basic PIO employs two operators to mimic the behavior of homing pigeons: the map-

and-compass, and landmark operators.

(1) Map and compass operator. Pigeons are randomly initialized in a D-dimension search space,
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R
D. The total number of pigeons is Np, (D,Np ∈ Z

+). The position and velocity of the k-th pigeon at the

t-th iteration are denoted as xk(t) = (xk1(t), xk2(t), . . . , xkD(t)), and vk(t) = (vk1(t), vk2(t), . . . , vkD(t)),

respectively, where k = 1, . . . , Np, t = 0, 1, . . ..

The new velocity vk(t), and position xk(t), at the t-th iteration are updated as follows:

vk(t) = vk(t− 1) · e−Rt + r · (Pg(t− 1)− xk(t− 1)), (1)

xk(t) = xk(t− 1) + vk(t), (2)

where R ∈ (0, 1) is the map and compass factor; r ∼ U(0, 1) is a uniform random variable; and Pg(t− 1)

is the best position found up to the (t−1)-th iteration for the entire swarm (i.e., the global best position).

When the number of loops reaches the required number of iterations, the map-and-compass operator

stops executing, and the landmark operator proceeds to work.

(2) Landmark operator. We consider the maximization problem as an example. We sort all pigeons

in descending order of size according to their fitness values. Thus, the total number of pigeons in every

generation is halved, and the pigeons in the less-fit half are abandoned. Let XC(t) be the center of the

pigeons’ positions at the t-th generation; thus the position updating rule for each pigeon (k) at iteration

t can be given as follows:

Np(t) = ceil

(

Np(t− 1)

2

)

, (3)

XC(t) =

∑Np(t)
j=1 xj(t) · fitness (xj(t))

Np(t)
∑Np(t)

j=1 fitness (xj(t))
, (4)

xk(t) = xk(t− 1) + r · (XC(t)− xk(t− 1)) , k = 1, 2, . . . , Np. (5)

In the abovementioned equations, Np(t) represents the number of pigeons in the t-th generation,

Np(0) = Np. The function ceil(·) returns the smallest integer value that is greater than or equal to each

input value, after a certain number of iterations, Np(t) = ceil(Np
2t ), as

Np
2t ∈ (0, 1); thus, Np(t) will remain

1. Therefore, XC(t) will be the current best position (note: not the global best position) in the t-th

generation. r ∼ U(0, 1) is a uniform random variable independent of both xk(t) and XC(t).

The implementation procedure for basic PIO is described below [4], as shown in Algorithm 1.

The basic PIO algorithm can be regarded as a new version of the evolutionary algorithm (EA), with

the map-and-compass operator corresponding to the exploration phase and the landmark operator cor-

responding to the exploitation phase of classical EAs. As Np(t) will converge to 1 in finite time, PIO is

similar to an elitist (1 +Np) EA acting on a continuous real space.

2.2 Description of the optimization problem

Without loss of generality, we assume that the PIO algorithm analyzed herein is used to tackle maxi-

mization problems in a continuous search space.

Definition 1 (Maximization problem). Let S =
∏D

i=1 [−ai, ai] ⊂ R
D, ai > 0 be a D-dimensional

continuous search space, and let f : S → R be a D-dimensional function. For maximization problems,

we find a global optimum x∗ ∈ S, such that f∗ ∆
= f (x∗) = maxx∈S f (x).

The function f : S → R is called the objective function of the maximization problem. We do not

require f to be continuous; however, it must be bounded. Furthermore, in this study, we only consider

unconstrained optimization.

In addition, the following properties are assumed.

(1) The subset containing the global optimal solutions in S is non-empty.

(2) Let S∗ (ε) = {x ∈ S|f (x) > f∗ − ε} be the global optimum ε-neighborhood. Each element of S∗ (ε)

may be considered as a maximum.

(3) For any ε > 0, the Lebesgue measure of S∗ (ε), denoted as m (S∗ (ε)) > 0.

The first assumption describes the existence of global optima for the problem. The second assumption

presents a rigorous definition of the global optimum for continuous maximization problems. The third



Zhang Y S, et al. Sci China Inf Sci July 2019 Vol. 62 070207:4

Algorithm 1 Basic pigeon-inspired optimization (PIO) algorithm

Input: Np: number of individuals in a pigeon swarm.

D: dimension of the search space.

R: the map and compass factor.

Nc1max: maximum number of generations for which the map-and-compass operation is performed.

Nc2max: maximum number of generations for which the landmark operation is performed.

Output: Pg : the global best position.

1. Initialization

Set initial values for Nc1max, Nc2max, Np, D, and R.

Set initial position xk and velocity vk for each pigeon, k = 1, . . . , Np.

2. Map and compass operations

for t = 1 to Nc1max do

for k = 1 to Np do

Calculate vk(t) and xk(t) according to Eqs. (1) and (2);

end for

Evaluate xk(t), k = 1, . . . , Np and update Pg(t);

end for

3. Landmark operations

for t = Nc1max + 1 to Nc2max do

Rank all pigeon individuals according to their fitness values;

Np(t) = ceil(
Np(t−1)

2
);

Keep Np(t) individuals with better fitness values and abandon the others;

Calculate XC(t) and update xk(t), k = 1, . . . , Np according to Eqs. (4) and (5);

Evaluate xk(t), k = 1, . . . , Np and update Pg(t);

end for

4. Output

Pg(Nc2max) is output as the global optimum.

assumption shows that there always exist solutions whose objective values are continuously distributed

and are arbitrarily close to the global optimum, thus making the maximization problem solvable.

2.3 Stochastic process model of the basic PIO algorithm

Our convergence analyses represent the basic PIO algorithm as a stochastic process. In this subsection,

we will explain the notations and terminologies used in this study.

Definition 2 (State of the pigeon swarm). The state of the pigeon swarm at iteration t (t = 0, 1, . . .)

is defined as η (t) = (x1(t), . . . ,xNp
(t),Pg (t)), where x1(t), . . . ,xNp

(t),Pg (t) ∈ S.

Definition 3 (State space of the pigeon swarm). The set of all possible pigeon swarm states is called the

state space of the pigeon swarm, denoted as Ω = SNp+1 = {η = (x1, . . . ,xNp
, ξ)|xk ∈ S, k = 1, . . . , Np;

ξ ∈ S}.

Definition 4 (ε-global optimum state space of the pigeon swarm). The ε-global-optimum state space

of the pigeon swarm is defined as Ω∗ (ε) = {η = (x1, . . . ,xNp
, ξ)|∃xk ∈ S∗ (ε) , k = 1, . . . , Np; ξ ∈ S}.

In Subsection 3.3, we will discuss the stochastic convergence of the pigeon swarm sequence to Ω∗ (ε).

Definition 5 (Discrete time stochastic process of PIO). The discrete time stochastic process associated

with the PIO algorithm is denoted as {η (t) = (x1(t), . . . ,xNp
(t),Pg (t))}

+∞
t=0 , whose state space is Ω.

3 Convergence analysis of basic PIO: from individual to swarm

Intuitively, the convergence analysis of PIO investigates the algorithm’s characteristics when the number

of iterations approaches infinity. According to the description of Algorithm 1, we can see that the basic

PIO procedure can be divided into two main stages: map-and-compass operations and landmark opera-

tions; the maximum numbers of iterations of both stages are predefined. Therefore, during convergence

analysis, the first stage can be ignored because previous finite iterations do not affect the convergence

property. In the following study, our convergence analysis begins from the second stage: landmark

operations, reconsidering t = 0, 1, . . . instead of t = Nc1max+1 to Nc2max.
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3.1 Convergence analysis of the expectation value of a pigeon’s position

Let xki (t) , XCi (t) be the i-th components of random vectors xk (t) ,XC (t), respectively; i = 1, 2, . . . , D,

k = 1, 2, . . . , Np, t = 0, 1, . . .. According to (5), we obtain the following difference equation with regard

to the expectation sequence {E (xki (t))}
+∞
t=1 :

E (xki (t)) =
1

2
E (xki (t− 1)) +

1

2
E (XCi (t)) . (6)

Eq. (6) can be considered as a linear non-homogeneous first-order difference equation, whose general

solution is provided in [18]:

E (xki (t)) =
1
2E (XCi (t))

1− 1
2

+A ·

(

1

2

)t

= E (XCi (t)) +A ·

(

1

2

)t

, (7)

where A is a real constant.

Considering the limit of (7) as t approaches infinity, we obtain

lim
t→+∞

E (xki (t)) = lim
t→+∞

E (XCi (t)) . (8)

Furthermore, we derive the convergence result of each pigeon’s statistically average position amidst

the entire swarm:

lim
t→+∞

E (xk (t)) = lim
t→+∞

(E (xk1 (t)) , E (xk2 (t)) , . . . , E (xkD (t)))

=

(

lim
t→+∞

E (xk1 (t)) , lim
t→+∞

E (xk2 (t)) , . . . , lim
t→+∞

E (xkD (t))

)

=

(

lim
t→+∞

E (XC1 (t)) , lim
t→+∞

E (XC2 (t)) , . . . , lim
t→+∞

E (XCD (t))

)

= lim
t→+∞

E (XC (t)) , k ∈ {1, 2, . . . , Np} . (9)

Notably, Np (t) in (3) is equal to 1 post finite t iterations; then, based on the procedure of Algorithm 1

and (4), we obtain

XC (t) = argmax
{

f (x1 (t)) , f (x2 (t)) , . . . , f
(

xNp
(t)

)}

. (10)

Thus, XC (t) is the current best position at the t-th generation of the entire pigeon swarm.

Based on (9) and (10), we finally conclude that the average position of each pigeon in the swarm will

converge to the same value, i.e., limt→+∞ E(XC (t)), provided that this limit exists.

3.2 A brief introduction to martingale theory

In Subsection 3.1, we only indicate that the statistically average position of each pigeon E (xk (t)) has

the same limit as that of the current best solution (i.e., pigeon) E(XC (t)) when t approaches infinity.

This does not mean that the convergent position is a global or even a local optimum. In Subsection 3.4,

we will employ martingale theory to investigate the global convergence of the stochastic PIO process, as

defined in Definition 5.

In probability theory, a martingale is a stochastic process in which the conditional expectation of the

next value, given the current and preceding ones, is equal to the current value. The submartingale is

a special case of the martingale, where the conditional expectation of the next value, given the current

and preceding values, is not less than the current value. The formal definition of the submartingale is as

follows.

Definition 6 (Submartingale [17]). For two stochastic processes {Yj}
+∞
j=0 and {Zj}

+∞
j=0 , {Yj}

+∞
j=0 is called

a submartingale with respect to {Zj}
+∞
j=0 if the following conditions hold for ∀j > 0:

(a) E (|Yj |) < +∞;

(b) E (Yj+1|Z0, Z1, . . . , Zj) > Yj ;

(c) Yj is a function of Z0, Z1, . . . , Zj .



Zhang Y S, et al. Sci China Inf Sci July 2019 Vol. 62 070207:6

The submartingale convergence theorem is now presented as follows.

Theorem 1 (Submartingale convergence theorem [17]). Suppose {Yj}
+∞
j=0 is a submartingale with re-

spect to {Zj}
+∞
j=0 and supj>0 E (|Yj |) < +∞. Then, there exists a random variable Y∞, such that {Yj}

+∞
j=0

converges to Y∞ with probability 1; i.e., P (limj→+∞ Yj = Y∞) = 1 and E (|Y∞|) < +∞.

3.3 Some related convergence analyses on continuous EAs

As mentioned in Subsection 2.1, PIO is similar to an elitist (1+Np)EA acting on a continuous real space;

therefore, related theoretical results for the convergence analyses of continuous EAs are helpful for the

convergence analysis of PIO.

Rudolph [19,20] introduced the formalization of stochastic process models of EAs and presented some

of the most frequently used stochastic convergence concepts regarding EAs. He also brought to attention

that modeling the transition probability function [21] is the primary task when establishing a link between

an EA and a stochastic process. Using the martingale theory and a transition probability function,

Rudolph presented two sufficient conditions for the convergence of an EA acting on a continuous space:

(i) elitism, i.e., the best state found thus far cannot be lost from one iteration to another, and (ii) a

positively bounded probability for reaching the target zone in one step from any point of the space.

Agapie et al. [21, 22] deeply analyzed the transition probability function of the stochastic process

associated with continuous EAs, indicating that the associated one-step kernel can be described as a sum

of two measures, one singular (Dirac) and one continuous. This result shows us how to accurately calculate

the conditional mathematical expectation in Theorem 2 of this study. By modeling the continuous EA

as a renewal process, Agapie et al. [22, 23] analyzed the computation time of continuous EAs, such as

(1 + λ) ES and (µ+ λ) ES [24].

3.4 Stochastic convergence analysis of a basic PIO based on the martingale theory

For any pigeon swarm η (t) = (x1(t), . . . ,xNp
(t),Pg (t)), t = 0, 1, . . ., the fitness function is denoted as

F (η (t)). Assuming f (·) to be the objective function of the considered maximization problem, similar

to [20], we define

F (η (t))
∆
= max

{

f (x1 (t)) , . . . , f
(

xNp
(t)

)

, f (Pg (t))
}

.

As Pg (t) is the best position found until the t-th iteration by the entire swarm (i.e., the global

best position), we can let F (η (t)) = f(Pg (t)); therefore, {F (η (t))}+∞
t=0 is a monotonic non-decreasing

sequence.

Lemma 1. The stochastic process {F (η (t))}
+∞
t=0 is a submartingale with respect to {η (t)}

+∞
t=0 .

Proof. We verify the three conditions in Definition 6.

(a) As mentioned in Subsection 2.2, f (·) is a bounded function on the search space S, hence for

∀t = 0, 1, . . ., E (|F (η (t)) |) = E(|f(Pg (t))|) < +∞.

(b) As {F (η (t))}
+∞
t=0 is a monotonic non-decreasing sequence, we obtain

F (η (t+ 1)) > F (η (t))

⇒ E (F (η (t+ 1)) |η (0) ,η (1) , . . . ,η (t)) > E (F (η (t)) |η (0) ,η (1) , . . . ,η (t)) = F (η (t)) .

(c) Furthermore, F (η (t)) is a function of η (0) ,η (1) , . . . ,η (t).

In conclusion, this completed the proof.

Therefore, according to Theorem 1, there exists a random variable F (η (∞)) to which the stochas-

tic process {F (η (t))}
+∞
t=0 converges with probability 1 as t → +∞. Similarly, the stochastic process

{η (t)}
+∞
t=0 converges to η (∞) with probability 1, i.e., P (limt→+∞ η (t) = η (∞)) = 1.

Definition 7 (Global convergence of basic PIO). Suppose the discrete time stochastic process associated

with PIO is {η (t)}+∞
t=0 . If limt→+∞ P (η (t) ∈ Ω∗ (ε)) = 1 holds for any 0 < ε ∈ R, we call this the global

convergence of basic PIO.

In the following analysis, before a sufficient condition for the guaranteed global convergence of basic

PIO is provided, the following lemma is presented.
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Lemma 2. When
∑∞

k=0 akbk < +∞ (0 6 ak, bk 6 1, k = 0, 1, . . .), the following two cases hold:

(a) If
∑∞

k=0 ak = +∞, then limk→∞ bk = 0.

(b) If
∑∞

k=0 ak < +∞, then limk→∞ bk = δ ∈ [0, 1] or it does not exist.

Proof. (a) Assume limk→∞ bk = β > 0; then, for β
2 , ∃K ∈ N

+, such that ∀k > K, we have β
2 <

bk. Therefore,
∑∞

k=0 akbk =
∑K

k=0 akbk +
∑∞

k=K+1 akbk >
∑K

k=0 akbk + β
2

∑∞
k=K+1 ak = +∞, which

contradicts
∑∞

k=0 akbk < +∞, i.e., limk→∞ bk = 0 holds.

(b) Note that akbk 6 ak, k = 0, 1, . . .; hence,
∑∞

k=0 ak < +∞ implies
∑∞

k=0 akbk < +∞, which means

that bk can take any value in [0,1]. Specifically, let bk = δ ∈ [0, 1], and then, limk→∞ bk = δ ∈ [0, 1]; let

bk = | sin k|, and then, limk→∞ bk does not exist.

Theorem 2. Let q∗t = miny∈Ω\Ω∗(ε) P (η (t+ 1) ∈ Ω∗ (ε) |η (t) = y), t = 0, 1, . . .; consequently, we

obtain the following inferences:

(a) If
∑∞

t=0 q
∗
t = +∞, then the global convergence of basic PIO can be guaranteed.

(b) If
∑∞

t=0 q
∗
t < +∞, then the global convergence of basic PIO cannot be guaranteed.

Proof. According to the properties of conditional expectation, for t = 0, 1, . . ., we have

E (F (η (t+ 1)))− E (F (η (t))) = E [E (F (η (t+ 1)) |η (t))]− E (F (η (t))) . (11)

Suppose the probability distribution function of η (t) to be Pt (y) and the conditional-probability-

distribution function of η (t+ 1) given η (t) = y to be Pt (z|y). Therefore, based on (11), we obtain

E [E (F (η (t+ 1)) |η (t))]− E (F (η (t)))

=

∫

Ω

E [F (η (t+ 1)) |η (t) = y] dPt (y)−

∫

Ω

F (y)dPt (y)

=

∫

Ω

[
∫

Ω

F (z)dPt (z|y)

]

dPt (y)−

∫

Ω

F (y) dPt (y)

=

∫

Ω

[
∫

Ω

F (z)dPt (z|y)− F (y)

]

dPt (y)

=

∫

Ω

[
∫

Ω

(F (z)− F (y))dPt (z|y)

]

dPt (y) .

Noting that
∫

Ω F (y)dPt (z|y) = F (y)
∫

Ω dPt (z|y) = F (y), the above last equation holds, so we get

∫

Ω

[
∫

Ω

(F (z)− F (y))dPt (z|y)

]

dPt (y) >

∫

Ω\Ω∗(ε)

[

∫

Ω∗(ε)

(F (z) − F (y))dPt (z|y)

]

dPt (y) .

Let α = min {F (z)− F (y) |z ∈ Ω∗ (ε) ,y ∈ Ω\Ω∗ (ε)}, as F (z) > f∗ − ε, F (y) 6 f∗ − ε; thus, we

obtain α > 0 provided that α exists, it holds that

∫

Ω\Ω∗(ε)

[

∫

Ω∗(ε)

(F (z)− F (y))dPt (z|y)

]

dPt (y) > α

∫

Ω\Ω∗(ε)

[

∫

Ω∗(ε)

dPt (z|y)

]

dPt (y)

= α

∫

Ω\Ω∗(ε)

P (η (t+ 1) ∈ Ω∗ (ε) |η (t) = y) dPt (y) .

Let q∗t = miny∈Ω\Ω∗(ε) P (η (t+ 1) ∈ Ω∗ (ε) |η (t) = y); this results in

α

∫

Ω\Ω∗(ε)

P (η (t+ 1) ∈ Ω∗ (ε) |η (t) = y) dPt (y) > αq∗t

∫

Ω\Ω∗(ε)

dPt (y) = αq∗tP (η (t) /∈ Ω∗ (ε)) . (12)

Combining (11) and (12), we get

M
∑

t=0

[E (F (η (t+ 1)))− E (F (η (t)))] = E (F (η (M + 1)))− E (F (η (0)))
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> α

M
∑

t=0

[q∗tP (η (t) /∈ Ω∗ (ε))]. (13)

As {F (η (t))}
+∞
t=0 is a bounded submartingale, let M → +∞ in (13); thus, we obtain

∞
∑

t=0

[q∗tP (η (t) /∈ Ω∗ (ε))] < +∞. (14)

Now, we discuss two situations related to the global convergence of basic PIO using Lemma 2:

(a) If
∑∞

t=0 q
∗
t = +∞, it holds that limt→+∞ P (η (t) /∈ Ω∗ (ε)) = 0, i.e., limt→+∞ P (η (t) ∈ Ω∗ (ε))

= 1.

As mentioned above, the stochastic process {η (t)}+∞
t=0 converges to η (∞) with probability 1, i.e.,

P (limt→+∞ η (t) = η (∞)) = 1; this means that η (∞) almost surely takes values in Ω∗ (ε); as a result,

the global convergence of basic PIO is guaranteed.

(b) If
∑∞

t=0 q
∗
t < +∞, it holds that limt→+∞ P (η (t) /∈ Ω∗ (ε)) = δ ∈ [0, 1] or limt→+∞ P (η (t) /∈ Ω∗ (ε))

does not exist.

Similar to situation (a), basic PIO possesses global convergence if limt→+∞ P (η (t) /∈ Ω∗ (ε)) = 0.

If limt→+∞ P (η (t) /∈ Ω∗ (ε)) = δ ∈ (0, 1], η (∞) has a positive probability of adopting values outside

Ω∗ (ε), it implies that the basic PIO is not globally convergent.

If limt→+∞ P (η (t) /∈ Ω∗ (ε)) does not exist, then the basic PIO is obviously not globally convergent.

In summary, under situation (b), the global convergence of the basic PIO cannot be guaranteed.

Intuitively, q∗t represents the minimum probability with which the pigeon swarm escapes to the ε-

global optimum region from the outside at time t = 0, 1, . . .. It reflects the ability with which the pigeon

swarm approaches the global optimum: with the growth of q∗t , the pigeon swarm can approach the global

optimum more easily. Although each q∗t may be small, basic PIO still can attain a global optimum

provided that the accumulation of q∗t becomes sufficiently large.

4 Conclusion

We studied the convergence property of basic PIO from two perspectives. First, we analyzed the conver-

gence of the pigeon’s expected position using a difference equation and proved that the average position

of each pigeon in the swarm will converge to the same value; however, this does not mean that the

convergent position is a global or even a local optimum. Next, to further study the global convergence

property of the pigeon swarm, we introduced the martingale theory and investigated the PIO’s swarm se-

quence; we proved that the global convergence of basic PIO depends on
∑∞

t=0 q
∗
t . When

∑∞
t=0 q

∗
t = +∞,

the basic PIO is guaranteed to globally converge. When
∑∞

t=0 q
∗
t < +∞, global convergence cannot be

guaranteed. Based on the theoretical analysis provided in Subsection 3.4, we can see that the adopted

martingale technique does not require additional assumptions such as a Markov property, and is suitable

for the theoretical analysis of bio-inspired algorithms in continuous optimization. In future work, we will

attempt to improve PIO using the theoretical results of the PIO’s convergence analysis, and perform

PIO-runtime analysis.
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