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Abstract A novel hybrid quantum-based pigeon-inspired optimization (PIO) algorithm for global numer-

ical optimization is proposed to perceive deceptiveness and preserve diversity. In the proposed algorithm,

the current best solution is regarded as a linear superposition of two probabilistic states, namely positive

and deceptive. Through a quantum rotation gate, the positive probability is either enhanced or reset to bal-

ance exploration and exploitation. Simulation results reveal that the hybrid quantum-based PIO algorithm

demonstrates an outstanding performance in global optimization owing to preserving diversity in the early

evolution. As a result, the stability of the algorithm is enhanced so that the precision of optimization is

improved statistically. The proposed algorithm is demonstrated to be effective for solving multimodal and

non-convex problems in higher dimension with a smaller population size.
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1 Introduction

In recent years, population-based intelligence algorithms have been investigated to solve numerical opti-

mization problems. They are widely used for complicated optimization problem subjected to gradient-free

evolutionary strategies. The pigeon-inspired optimization (PIO) algorithm is a newly proposed swarm

intelligence method, which mimics the homing behavior of pigeons [1].

The PIO algorithm has been widely applied in many areas such as biomedical engineering [2], electrical

engineering [3,4], trajectory optimization [5], and optimal control design problems [6]. It has been proven

to be effective for solving parametric design problems. Dou and Duan [7] proposed an optimal design

approach for a model prediction controller using a PIO algorithm. Zhang et al. [8] and Wang et al. [9]

designed a controller for solving the formation reconfiguration problem of multiple unmanned aerial

vehicles. Hao et al. [10] analyzed the multiple unmanned aerial vehicle’s mission assignment problem

with PIO algorithm. Many applications have shown that the PIO algorithm is suitable for industrial

control problems with high convergence and has vast prospects for development. Nevertheless, the PIO

algorithm may become trapped into a local optimal solution owing to premature convergence [11].

Premature convergence is the most popular issue in population-based global optimization algorithms

for multimodal problems. It mostly originates from a loss of diversity, deceptiveness, and weak causality.

The lack of diversity indicates that all solution candidates are similar, which weakens the exploration
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and leads to premature convergence. To improve the diversity of the initial population, an orthogonal

pigeon-inspired optimization (OPIO) algorithm has been proposed [12]. Initial individuals are generated

through an orthogonal approach to enlarge the coverage of the design space. Although the initial diversity

is improved in the OPIO algorithm, it decreases rapidly in the evolution as in any other algorithm. To

preserve diversity, the prey-predator strategy has been proven to be a very effective method [13]. It has

been incorporated into PIO to extend the search capability [11]. In addition, a modified PIO algorithm

using a Gaussian strategy (GPIO) has been developed [14]. Moreover, hunting search is an alternative

approach [15]. All of these improvements have been demonstrated to be relatively effective at preserving

diversity.

The quantum evolutionary algorithm (QEA) is a probabilistic evolutionary algorithm that integrates

concepts from quantum computing for robust search [16]. QEA uses a qubit as the probabilistic rep-

resentation, which represents a linear superposition of binary solutions. QEA is widely used in genetic

algorithms (GAs) for encoding [17], and has been proven to be effective for optimization with binary

parameters [18]. Based on the probability amplitude ratio, the qubit representation has a better charac-

teristic of population diversity than other representations.

Deceptiveness is another factor that results in premature convergence. The evolutionary strategy

attempts to obtain the gradient information through the direction of convergence. The reliability of

gradient information determines the global convergence directly. A positive direction of convergence

accelerates the search process, whereas a deceptive direction of convergence forestalls the exploration.

Inspired by QEA, we proposed the hybrid quantum-based PIO (QPIO). The current best pigeon is

regarded as a linear superposition of two probabilistic states, namely positive and deceptive. Every other

pigeon makes its own judgment about the current best one after observation. The deceptive probability

amplitude decreases if the current best solution remains after iteration. Using the quantum representation

of the current global best solution, the proposed algorithm greatly improves the exploitation ability in

the early stages.

The remainder of this paper is structured as follows. The elementary principles of PIO are briefly

introduced in Section 2, including basic operators and the procedure. To avoid premature convergence,

we propose the hybrid QPIO in Section 3, which comprises a real-coded quantum (RCQ) representation

and the quantum rotation gate (QRG). In Section 4, a series of comparative simulations is presented. Four

algorithms for three test functions are introduced to evaluate validity and global convergence. Further,

the sensitivity of the optimal result to the population size and dimension is investigated. The concluding

remarks are presented in the final section.

2 Preliminaries on PIO

The basic PIO algorithm takes its original inspiration from the pigeon’s natural homing behavior. The

process mainly consists of two stages. First, pigeons rely on the Earth’s magnetic field and the Sun for

navigation, which has strong autonomy and exploratory capability. As they fly close to the destination,

pigeons adjust their rout to follow familiar landmarks instead of the Earth’s magnetic field or the Sun,

which promotes convergence. By simulating the pigeon’s natural mechanisms, the PIO algorithm has

greater feasibility for complicated optimization problems.

2.1 Problem formulation

In general, a minimization problem of a complex function is formulated as follows:

min
x∈Rn

f(x) s.t. C(x) 6 0, (1)

where x ∈ R
n is the n-dimensional design variable, and f(x) is the objective to be minimized. Without

loss of generality, we assume that f(x) is positive definite over the feasible region, and the feasible region
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is restricted by the nonlinear inequality C(x) 6 0. In addition, the entries of the design variable are

bounded by box constraints:

xi,min 6 xi 6 xi,max, i = 1, 2, . . . , n. (2)

In PIO, a possible solution of the optimization problem is regarded as a virtual pigeon with its position

in space, and the optimal solution as the coordinates of home. The corresponding objective function value

is the fitness of a pigeon. The jth pigeon is associated with its position xj and velocity Vj :

x
T
j = [xj,1, xj,2, . . . , xj,n] , j = 1, 2, . . . , N, (3)

V
T
j = [Vj,1, Vj,2, . . . , Vj,n] , j = 1, 2, . . . , N, (4)

where N is the population size.

The evolutionary strategy comprises two individual operators, map/compass operator and landmark

operator, which function at different stages of iterations.

2.2 Map/compass operator

In the early stage, pigeons sense the geomagnetic field to shape the map for homing. The map/compass

operator adjusts the velocity of each pigeon as follows:

Vj(t+ 1) = Vj,s(t) + ruVj,c(t) = e−Rt
Vj(t) + ru [xgb(t)− xj(t)] , (5)

where t is the current iteration, R is a positive number that is regarded as the map/compass factor, ru
is a uniform random number between 0 and 1, and xgb(t) is the current global best solution.

The updated velocity (5) consists of two directions, the search direction Vj,s and direction of conver-

gence Vj,c. The first term in (5) reveals the search capability of the algorithm. Here, e−Rt is regarded

as the coefficient of inertia of the pigeon, which decreases following each iteration. We use R to denote

the declining rate of the coefficient of inertia. The second term reveals the convergence capability of the

algorithm for flying to the global best position after t iterations.

The position of each pigeon is updated with the new velocity given by (5) as follows:

xj(t+ 1) = xj(t) + Vj(t+ 1). (6)

The map/compass operator is functioning during the early stage to improve exploration in the PIO

algorithm, whereas the following landmark operator enhances the convergence in the latter iterations.

2.3 Landmark operator

When flying close to the destination, the pigeons rely less on the global information, such as Earth’s

geomagnetic field and the Sun, but more on local information, or landmarks. Some pigeons are familiar

with the landmarks, and fly straight toward them. Others may follow the elite pigeons, or be abandoned

by the population.

The landmark is selected as the weighted central position of elite pigeons in the current iteration:

xcen(t) =
1

N(t)

N(t)
∑

j=1

Wj
∑N(t)

k=1 Wk

xj(t), (7)

where N(t) is the current population size, and Wj is the weight of the jth pigeon, which is calculated by

Wj =
1

f [xj(t)] + ǫ
, (8)

where ǫ is a certain position real number in the case of infinite weight. The landmark operator adjusts

the position of each pigeon based on the weighted central position xcen(t) as follows:

xj(t+ 1) = xj(t) + ru [xcen(t)− xj(t)] , (9)
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Figure 1 Procedure of the PIO algorithm.

where ru is a uniform random number between 0 and 1.

For those pigeons with little weight in the population, we deem that they are unfamiliar with landmarks

and should be left behind to accelerate convergence. Therefore, the reduction in the population size is

conducted in the landmark operator:

N(t+ 1) = N(t)/2.

2.4 Procedure of the basic PIO

The control parameters of PIO are the population size N , the maximum number of iterations T , the

maximum number of iterations of the map operator Tm, and the map factor R.

The basic PIO implementation procedure (see Figure 1) is described as follows.

(1) Set control parameters and initialize pigeons with positions xj (t = 0) and velocities Vj (t = 0),

where j = 1, 2, . . . , N .

(2) Evaluate the fitness of each pigeon fj(t) = f [xj(t)].

(3) Assign the global best solution to xgb(t).

(4) Calculate the direction of convergence of each pigeon by xgb(t)− xj(t).

(5) If t < Tm, then go to (a). Otherwise, go to (b).

(a) Conduct the map operator on xj according to (5) and (6).

(b) Conduct the landmark operator on xj according to (7) and (9), and reduce the population size.

(6) If the termination condition is satisfied, then go to Step (7). Otherwise, let t = t+1 and return to

Step (2).

(7) Output the optimal solution xopt = xgb(t) and the result is f(xopt).

3 The hybrid QPIO algorithm

The basic PIO utilizes the map/compass operator for exploration and the landmark operator for ex-

ploitation. The evolutionary strategy for exploration in PIO is similar to that in most population-based

algorithms. The premature convergence originates from deceptiveness, loss of diversity, and weak causal-

ity. Herein, we introduce an alternative approach for perceiving deceptiveness and preserving diversity

of the population.
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Figure 2 Modification of the evolutionary strategy of the QPIO algorithm.

3.1 Quantum representation of the optimal solution

Deceptiveness is one of the main factors that result in premature convergence. The evolutionary strategy

attempts to obtain the gradient information through the direction of convergence. The reliability of

gradient information determines the global convergence directly. A positive best solution accelerates the

search process, whereas a deceptive solution forestalls the exploration.

Inspired by QEA, we regard the current best solution as a linear superposition of two probabilistic

states, namely positive and deceptive. In the process of evolution, each pigeon makes its own judgment

as to whether it accepts the current best solution as the global optimum. If the jth pigeon deems that

the current best solution is positive, then it converges to the neighborhood. Otherwise, it declines and

randomly takes another target as the direction of convergence. The graphic expression of the process is

shown in Figure 2.

At the start, the probability of the current best solution being positive or deceptive is assumed to

be equal. After multiple iterations, the invariance of the current best solution enhances its positive

probability, whereas update of it resets the probability. The QPIO consists of two key steps, namely

RCQ representation and a quantum rotating gate, which are introduced in the following subsection.

3.2 RCQ representation

An RCQ representation of the individual has been developed through the study of binary-coded QEA [19].

A qubit is utilized to represent a linear superposition of “0” state and “1” state probabilistically. Similarly,

a real continuous number is assumed to be in the determinate state or in the stochastic state. Herein,

we use qubits for the global optimum and wave functions to calculate the specific values.

A qubit may be in the “1” state, denoted as |1〉, in the “0” state, denoted as |0〉, or in any superposition

of the two. The state of a qubit can be represented as

|ψ〉 = α |0〉+ β |1〉 , (10)

where α and β are probability amplitudes of the corresponding states and satisfy |α|2 + |β|2 = 1, |α|2 is

the probability of the qubit being observed in “0” state, and |β|2 is the probability of the qubit being

observed in “1” state.

In quantum mechanics, the quantum state can be completely described by the complex function of

coordinates and time, which is called a wave function w(x, t), and |w(x, t)|2 is called the probability

density, which implies the probability of the quantum state appearing at the corresponding position and

time. Hence, we introduce a normal wave function to calculate the observation of RCQ:

|w(xi)|2 =
1√
2πσi

exp

[

− (xi − µi)
2

2σ2
i

]

, i = 1, 2, . . . , n, (11)

where µi is the expectation and σi is standard deviation.

Considering the normalized constraints on these two probability amplitudes, the RCQ representation

of a candidate optimal solution can be represented as

x
T
gb ,

[

xgb,1 xgb,2 · · · xgb,n
α1 α2 · · · αn

]

. (12)
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The direction of convergence for each individual is now reformulated as

Vj,c = x̂gb − xj . (13)

x̂gb is the observation of the current global best solution, whose entry is calculated by

x̂gb,i = rn
[

xgb,i, σ
2
i (|ψi〉)

]

(xi,max − xi,min), (14)

where rn[xgb,i, σ
2
i (|ψi〉)] denotes a random number generated from the wave function (Eq. (11)), whose

expectation is xgb,i, and variance σ2
i (|ψi〉) is defined as

σ2
i (|ψi〉) =

{

1− |αi|2, if |ψi〉 = |0〉 ,
|αi|2, if |ψi〉 = |1〉 ,

(15)

where αi is the probability amplitude of the entry being positive. Observation of |ψi〉 is performed using

a stochastic process:

|ψi〉 =
{

|0〉 , if ru 6 α2
i ,

|1〉 , if ru > α2
i ,

(16)

where ru is a uniform random number.

3.3 QRG

The evolutionary strategy of qubit in QEA is the QRG [20], which is adopted as a variation operator to

update the pairs of probability amplitudes toward the one with the best fitness. The updated probability

amplitude from the QRG is calculated by

αi(t+ 1) =
[

cos(∆θ) − sin(∆θ)
]





αi(t)
√

1− [αi(t)]
2



 , (17)

where ∆θ is the rotation angle, which is equivalent to the step size defining the convergence rate toward

the current best solution.

Unlike the evolutionary strategy of the qubit in QEA, QRG used here is a variation operator to

enhance the positive probability. Given xgb(t), probability amplitudes are initialized as αi = βi =
√
2/2,

i = 1, 2, . . . , n. If the current best solution remains after iteration, then QRG is conducted to increase α,

which implies that xgb(t) is more likely to be the global optimum. Otherwise, the probability amplitude

is reset to initial values to maintain vigilance against the deceptiveness.

To prevent the quantum bit from being trapped at either 1 or 0, a constraint ǫ is applied. The operation

that restricts the updated αi(t+ 1) in (17) is

αi(t+ 1) =















√
ǫ, if αi(t+ 1) <

√
ǫ,

αi(t+ 1), if
√
ǫ < αi(t+ 1) <

√
1− ǫ,

√
1− ǫ, if αi(t+ 1) >

√
1− ǫ.

3.4 Procedure of QPIO

The main procedure of QPIO is shown in Figure 3. The vital steps that differ from PIO are identified in

gray shading. First, we introduce the RCQ representation of the current best solution, and the direction

of convergence of each pigeon in the map/compass operator is obtained based on the observation. Second,

the positive probability of the current best solution is either enhanced or reset after each iteration.

The QPIO implementation procedure is summarized as follows.

(1) Set control parameters and initialize pigeons with positions xj (t = 0) and velocities Vj (t = 0),

where j = 1, 2, . . . , N .

(2) Evaluate the fitness of each pigeon fj(t) = f [xj(t)].
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Figure 3 Procedure of the QPIO algorithm.

(3) Assign the current global best solution to xgb(t) and initialize it with the quantum state according

to (12).

(4) Calculate the direction of convergence of each pigeon after observation according to (13).

(5) If t < Tm, then go to (a). Otherwise, go to (b).

(a) Conduct the map operator on xj according to (5) and (6).

(b) Conduct the landmark operator on xj according to (7) and (9), and reduce the population size.

(6) If the termination condition is satisfied, then go to Step (9). Otherwise, go to Step (7).

(7) Evaluate the fitness of updated pigeons fj(t + 1) = f [xj(t + 1)], and obtain the updated best

solution xgb(t+ 1).

(8) If xgb(t+ 1) = xgb(t), then go to (a). Otherwise, go to (b).

(a) Conduct QGA by (17).

(b) Initialize the updated best solution with the quantum state according to (12).

Let t = t+ 1 and return to Step (4).

(9) Output the optimal solution xopt = xgb(t) and the result is f(xopt).

The effectiveness of the proposed QPIO will be demonstrated in the following section.

4 Numerical results

By calculating the difference between individuals, population-based algorithms approximate the gradient

for evolution. Hence, they are applicable to complex optimization problems, where it is difficult to obtain

the gradient information. The approximated gradient is more reliable with the increase of population

size. However, computation for a large population is usually time-consuming. Therefore, our interest lies

in the effectiveness of the proposed algorithm with small population size and limited iterations.
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Table 1 Control parameters of GA, PSO, PIO, and QPIO

Control parameter Symbol GA PSO PIO QPIO

Propulsion size N 6 6 6 6

Maximum number of iterations T 40 40 40 40

Inertia factor/map factor w/R – exp(−0.2t) 0.2 0.2

Learning factor [c1, c2] – [2, 2] [0, 2] [0, 2]

Constraint factor fC – 0.618 0.618 0.618

Number of iterations for the map operator Tm – – 20 20

Rotating angle (◦) ∆θ – – – −11
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Figure 4 (Color online) Illustration of the test functions in two-dimensional variables. (a) Ackley; (b) Rastrigin;

(c) Rosenbrock.

To validate the proposed algorithm, we provide four algorithms as candidates, namely particle swarm

optimization (PSO) [21], GA [22], PIO, and QPIO. Considering box constraints on design variables,

the updated position of an individual may exceed the boundary after evolution. Herein, we take the

constraint factor on velocity to restrict the magnitude of velocity. In addition, a periodic operator is

conducted when the updated position xj of the jth pigeon is beyond the box constraints:

xj,i =

{

xj,i + (xi,max − xi,min), if xj,i < xi,min,

xj,i − (xi,max − xi,min), if xj,i > xi,max,
i = 1, 2, . . . , n. (18)

4.1 Algorithm settings

The control parameters of these algorithms include the population size N , the maximum number of

iterations T , the map factor R for PIO (the inertia factor w for PSO), the learning factor c1, c2 for PSO,

the number of iterations of the map operation Tm for PIO, and the rotating angle ∆θ for QPIO. The

parameters for GA are set to be default in MATLAB.

To avoid the difference in optimized results originating from the selection of control parameters, all

equivalent control parameters are set to be the same. For example, an exponential law is adopted for the

inertia factor in PSO. The control parameters for these algorithms used in numerical simulation are listed

in Table 1. Moreover, to eliminate the effects of initial swarms on the optimal solution, the initial position

and velocity for each individual are generated as the same for these algorithms in every experiment.

4.2 Optimal results

Three multidimensional functions are adopted in the numerical experimental studies to evaluate the

feasibility and benefits of the proposed hybrid QPIO. There are the Ackley function [23], the Rastrigin

function [24], and the Rosenbrock function [25]. The first two functions are complicated owing to multiple

peaks, and the last function is non-convex and has strong robustness. Figure 4 shows illustrations of these

functions in two dimensions, and Table 2 provides the basic properties of the test functions.

The optimized results for test functions of these algorithms are listed in Table 3, where n denotes the

dimension of the design variable and E is the total number of experiments. The average of the optimal

values is denoted as ȳopt, and the minimum, maximum, and variance of optimal values are selected as
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Table 2 Properties of the test functions

Function
Optimal value, Optimal solution, Suboptimal value, Number of suboptimal solutions,

yopt xopt ysubopt Nsubopt

Ackley 0 1 2.6375 4

Rastrigin 0 1 2/4 4/4

Rosenbrock 0 1 – –

Table 3 Optimal results of GA, PSO, PIO, and QPIO for different functions (n = 2, N = 6, T = 40, E = 100)

Function Algorithm ȳopt min(yopt) max(yopt) Var(yopt) Time (s)

Ackley

GA 1.69× 100 1.24× 10−4 5.82 2.0567 0.045

PSO 3.69× 10−1 2.27× 10−5 2.59 0.6371 0.011

PIO 3.62× 10−1 6.14× 10−5 2.58 0.6560 0.012

QPIO 3.12× 10−2 2.40× 10−7 0.50 0.0051 0.009

Rastrigin

GA 5.68 1.82× 10−5 25.09 32.6172 0.044

PSO 2.75 8.77× 10−7 9.95 5.9639 0.012

PIO 2.84 1.05× 10−8 9.90 5.8967 0.013

QPIO 1.06 3.78× 10−7 4.09 1.1147 0.009

Rosenbrock

GA 3.37× 100 8.91× 10−4 58.63 74.7925 0.046

PSO 5.81× 10−1 9.05× 10−11 6.03 1.0709 0.011

PIO 4.76× 10−1 2.09× 10−12 7.04 0.8972 0.012

QPIO 0.90× 10−1 2.45× 10−9 0.94 0.0287 0.009

Table 4 Global convergence of GA, PSO, PIO, and QPIO (n = 2, N = 6, T = 40, E = 100)

Algorithm
Global convergence percent, pg (%)

Ackley Rastrigin Rosenbrock

GA 37 20 1

PSO 86 22 9

PIO 85 26 10

QPIO 100 57 21

the metrics. Here ȳopt indicates the accuracy of algorithms, and the variance of optimal results reveals

the stability.

Based on the statistical comparison of these algorithms, QPIO shows great potential for solving multi-

modal optimization problem in terms of accuracy and stability. The average and the variance of optimal

values calculated by QPIO are much smaller than those of the other algorithms. Obviously, the algorithm

stability is closely related to the global convergence. We will demonstrate the global searching capability

of QPIO further in the following subsection.

4.3 Global convergence study

To evaluate the global convergence, we take the global convergence percentage as the metric, denoted

as pg. The number of times the result converged to the global optimal solution are counted to find the

percentage. Numerical results are listed in Table 4.

Compared with other algorithms, QPIO has better global convergence for multimodal and robust non-

convex problems. Diversity is a key factor that affects the global convergence. Three different diversity

scales were introduced by Pehlivanoglu [26], namely the diversity of design variables, the diversity of

individual, and the diversity of the population. Herein, we introduce the diversity of the population as

the metric:

DP(t) =
1

N(t)

N(t)
∑

j=1

‖xj(t)− x̄(t)‖2, (19)

where x̄(t) is the mean value of individuals in the current generation. Although there are other definitions

of population diversity, for example, x̄(t) can be replaced by xgb(t), they are identical in essence.
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Figure 5 Evolution of the population diversity in two-dimensional problem with N = 8. (a) Dimensionless diversity;

(b) diversity in logarithmic unit.

Figure 5 shows the evolutionary variation of the population diversity of different algorithms. We

illustrate the result through different units to distinguish between the capability of exploration and

exploitation. The diversity of PSO is rapidly decreasing after only a few iterations, which explains the

reason for premature convergence. PIO employs two different operators for exploration and exploitation,

respectively. Given the quantum representation of the optimum in the map/compass operator, DP of

QPIO is preserved in the exploration, and then decreases effectively as the iteration goes into the landmark

operation (t > 20).

Simulation results reveal that preserving diversity in the early stage is an effective approach to avoid

premature convergence. The RCQ representation of the current best solution in QPIO effectively main-

tains the diversity of the population and improves the global convergence. Next, we discuss the effects

of population size on the optimal results for different dimensional problems.

4.4 Sensitivity of the optimized result to dimension and population size

The trade-off between precision and efficiency is a tough decision for population-based intelligence algo-

rithms. An optimization with a larger population and more iterations inherently leads to a more precise

solution, but requires more computational time. Therefore, an efficient population-based algorithm should

be less sensitive to the problem dimension and the population size.

Our objective is to examine the sensitivity of the optimized result to population size and dimension.

Simulation outcomes are shown in Figures 6 and 7, respectively. It is difficult for population-based

algorithms to converge to the global optimum of multimodal problems with a small population size.

Nonetheless, QPIO is superior to the other algorithms in terms of precision, and it is less sensitive to

the population size for robust optimization problems (Rosenbrock function). Compared with a smaller

population size, a higher dimension of optimization problem has a more significant impact on the precision

of optimization. To obtain reasonable optimization results, the population size should be increased

dramatically with the increase in the dimension of design variables. The numerical simulation shows that

the proposed QPIO is more efficient than the others in higher-dimensional optimization problems with

smaller population size.

5 Conclusion

This paper has proposed a novel quantum-based pigeons-inspired optimization (QPIO) algorithm. A

quantum-based approach has been incorporated into PIO to perceive deceptiveness and preserve diversity

of the population. Four population-based intellgence algorithms were adopted as candidates to validate

the effectiveness of the approach. Simulation results reveal that preserving diversity in the early stage is
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Figure 6 Statistical sensitivity of population size on the optimized value in two-dimensional problems. (a) Rastrigin

function; (b) Rosenbrock function.
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Figure 7 Statistical sensitivity of dimension on the optimized value with N = 8. (a) Rastrigin function; (b) Rosenbrock

function.

an effective approach to avoid premature convergence. The quantum representation of the current best

solution can effectively maintain the diversity in exploration. In addition, optimization precision can also

be improved statistically owing to the stability of the algorithm. As a result, the proposed algorithm is

superior to the other approaches in terms of global convergence. Numerical outcomes indicate that the

proposed algorithm is effective for solving multimodal and robust non-convex optimization problem, even

with smaller population size.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 61403191,

11572149), Funding of Jiangsu Innovation Program for Graduate Education (Grant Nos. KYLX 0281, KYLX15 0318,

NZ2015205), and Fundamental Research Funds for the Central Universities, Aerospace Science and Technology Innovation

Fund (CASC).

References

1 Duan H B, Qiao P X. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning.

Int J Intell Comput Cyber, 2014, 7: 24–37

2 Lei X, Ding Y, Wu F X. Detecting protein complexes from DPINs by density based clustering with Pigeon-inspired

optimization algorithm. Sci China Inf Sci, 2016, 59: 070103

3 Qiu H X, Duan H B. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design.

Sci China Tech Sci, 2015, 58: 1915–1923

4 Deng YM, Zhu W R, Duan H B. Hybrid membrane computing and pigeon-inspired optimization algorithm for brushless

direct current motor parameter design. Sci China Tech Sci, 2016, 59: 1435–1441

5 Zhao J, Zhou R. Pigeon-inspired optimization applied to constrained gliding trajectories. Nonlin Dyn, 2015, 82:

1781–1795

6 Sun Y, Xian N, Duan H. Linear-quadratic regulator controller design for quadrotor based on pigeon-inspired optimiza-

tion. Aircraft Eng Aerospace Tech, 2016, 88: 761–770

7 Dou R, Duan H B. Pigeon inspired optimization approach to model prediction control for unmanned air vehicles.

https://doi.org/10.1108/IJICC-02-2014-0005
https://doi.org/10.1007/s11432-016-5578-9
https://doi.org/10.1007/s11431-015-5860-x
https://doi.org/10.1007/s11431-016-6048-8
https://doi.org/10.1007/s11071-015-2277-9
https://doi.org/10.1108/AEAT-03-2015-0088


Chen B Y, et al. Sci China Inf Sci July 2019 Vol. 62 070203:12

Aircraft Eng Aerosp Tech, 2016, 88: 108–116

8 Zhang X M, Duan H B, Yang C. Pigeon-inspired optimization approach to multiple UAVs formation reconfiguration

controller design. In: Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC),

Yantai, 2014. 2707–2712

9 Wang Y, Wang D. Variable thrust directional control technique for plateau unmanned aerial vehicles. Sci China Inf

Sci, 2016, 59: 033201

10 Hao R, Luo D L, Duan H B. Multiple UAVs mission assignment based on modified pigeon-inspired optimization

algorithm. In: Proceeding of 2014 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Yantai,

2014. 2692–2697

11 Sun H, Duan H B. PID controller design based on prey-predator pigeon-inspired optimization algorithm. In: Proceed-

ings of 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, 2014

12 Duan H B, Wang X. Echo state networks with orthogonal pigeon-inspired optimization for image restoration. IEEE

Trans Neural Netw Learn Syst, 2016, 27: 2413–2425

13 Tilahum S L. Prey predator algorithm: a new metaheuristic optimization approach. Dissertation for Ph.D. Degree.

Penang: University Sains Malaysia, 2013

14 Zhang S, Duan H B. Gaussian pigeon-inspired optimization approach to orbital spacecraft formation reconfiguration.

Chin J Aeronaut, 2015, 28: 200–205

15 Oftadeh R, Mahjoob M J, Shariatpanahi M. A novel meta-heuristic optimization algorithm inspired by group hunting

of animals: hunting search. Comput Math Appl, 2010, 60: 2087–2098

16 Lu T C, Juang J C. A region-based quantum evolutionary algorithm (RQEA) for global numerical optimization. J

Comput Appl Math, 2013, 239: 1–11

17 Deng G, Wei M, Su Q, et al. An effective co-evolutionary quantum genetic algorithm for the no-wait flow shop

scheduling problem. Adv Mech Eng, 2015, 7: 1–10

18 Deutsch D. Quantum theory, the Church-turing principle and the universal quantum computer. Proc R Soc A-Math

Phys Eng Sci, 1985, 400: 97–117

19 Zhang G, Jin W. Quantum evolutionary algorithm for multi-objective optimization problems. In: Proceedings of the

2003 IEEE International Symposium on Intelligent Control, Houston, 2003

20 Zhang R, Gao H. Improved quantum evolutionary algorithm for combinatorial optimization problem. In: Proceedings

of the 6th International Conference on Machine Learning and Cybernetics, HongKong, 2007. 19–22

21 Tsoulos I G, Stavrakoudis A. Enhancing PSO methods for global optimization. Appl Math Comput, 2010, 216:

2988–3001

22 Sivanandam S N. Genetic algorithm implementation using matlab. In: Introduction to Genetic Algorithms. Berlin:

Springer, 2008. 211–262

23 Motiian H, Soltanian-Zadeh H. Improved particle swarm optimization and applications to hidden Markov model and

Ackley function. In: Proceedings of IEEE International Conference on Computational Intelligence for Measurement

Systems and Applications (CIMSA), 2011

24 Lee J, Song S, Yang Y, et al. Multimodal function optimization based on the survival of the fitness kind of the evolution

strategy. In: Proceeding of the 29th Annual International Conference of the IEEE EMBS, Lyon, 2007

25 Bouvry P, Arbab F, Seredynski F. Distributed evolutionary optimization, in manifold: Rosenbrock’s function case

study. Inf Sci, 2000, 122: 141–159

26 Pehlivanoglu Y V. Hybrid intelligent optimization methods for engineering problems. Dissertation for Ph.D. Degree.

Norfolk: Old Dominion University, 2010

https://doi.org/10.1108/AEAT-05-2014-0073
https://doi.org/10.1007/s11432-015-5505-5
https://doi.org/10.1109/TNNLS.2015.2479117
https://doi.org/10.1016/j.cja.2014.12.008
https://doi.org/10.1016/j.camwa.2010.07.049
https://doi.org/10.1016/j.cam.2012.09.015
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1016/S0020-0255(99)00116-4

	Introduction
	Preliminaries on PIO
	Problem formulation
	Map/compass operator
	Landmark operator
	Procedure of the basic PIO

	The hybrid QPIO algorithm
	Quantum representation of the optimal solution
	RCQ representation
	QRG
	Procedure of QPIO

	Numerical results
	Algorithm settings
	Optimal results
	Global convergence study
	Sensitivity of the optimized result to dimension and population size

	Conclusion

