
SCIENCE CHINA
Information Sciences

July 2019, Vol. 62 070202:1–070202:18

https://doi.org/10.1007/s11432-018-9693-2

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Pigeon-Inspired Optimization

A multi-objective pigeon inspired optimization

algorithm for fuzzy production scheduling problem

considering mould maintenance

Xiaoyue FU1, Felix T.S. CHAN1, Ben NIU2*, Nick S.H. CHUNG1 & Ting QU3

1Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
2College of Management, Shenzhen University, Shenzhen 518060, China;

3School of Electrical and Information Engineering, Jinan University, Guangzhou 519070, China

Received 6 August 2018/Revised 21 October 2018/Accepted 30 November 2018/Published online 9 May 2019

Abstract The fuzzy production scheduling problem considering mould maintenance (FPSP-MM) is stud-

ied. The processing time and the maintenance time are represented by triangular fuzzy numbers. When tasks

are executed based on the sequence provided by the fuzzy schedule, the real duration of each task needs to be

known so the posteriori solution with deterministic processing times can be obtained. Therefore, the concept

of the schedule robustness needs to be considered for the fuzzy problem. The robustness is considered as

the optimization objective except for the fuzzy makespan in this research. To optimize these two objective

functions, a multi-objective pigeon inspired optimization (MOPIO) algorithm is developed. To extend the

pigeon inspired optimization (PIO) algorithm from the single-objective case to the multi-objective case, non-

dominated solutions are used as candidates for the leader pigeon designation and a special crowding distance

is used to ensure a good distribution of solutions in both the objective space and the corresponding decision

space. Furthermore, an index-based ring topology is used to manage the convergence speed. Numerical ex-

periments on a variety of simulated scenarios show the excellent efficiency and effectiveness of the proposed

MOPIO algorithm by comparing it with other algorithms.

Keywords fuzzy, production scheduling, mould maintenance, pigeon inspired optimization, multi-objective

Citation Fu X Y, Chan F T S, Niu B, et al. A multi-objective pigeon inspired optimization algorithm for fuzzy

production scheduling problem considering mould maintenance. Sci China Inf Sci, 2019, 62(7): 070202, https://

doi.org/10.1007/s11432-018-9693-2

1 Introduction

Production scheduling involves assigning certain tasks to limited resources so that all the constraints are

satisfied, and all the objectives are achieved. There are different types of production scheduling problems,

however, in most of these production scheduling problems, only the allocation of machines is considered.

In some industries, such as the plastic products industry and the die stamping industry, the mould is

an important resource that needs to be considered. Traditionally, resources are assumed to be always

available in the whole production planning stage. However, in real situations, some machines may be

unavailable because of stochastic failures [1]. So, the maintenance of resources needs to be considered when

production plans are made. The system productivity is improved when resource maintenance planning

and production scheduling are integrated [2]. To integrate production scheduling with multi-resource

maintenance, researchers have made great efforts. To minimize the overall makespan, a joint scheduling

*Corresponding author (email: drniuben@gmail.com)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9693-2&domain=pdf&date_stamp=2019-5-8
https://doi.org/10.1007/s11432-018-9693-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9693-2
https://doi.org/10.1007/s11432-018-9693-2
https://doi.org/10.1007/s11432-018-9693-2

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:2

strategy is proposed to solve the integrated production scheduling with mould maintenance problem [3].

Besides, a more complex integrated problem that contains multiple resources and maintenance tasks was

considered [4]. The results showed that the makespan was reduced significantly by the proposed jointly

scheduling method. In addition, another integrated problem that each job includes multiple operations

with multiple moulds was studied [5]. Moreover, to minimize the makespan and unavailability of the

machine and the mould, Wang and Liu [6] proposed a multi-objective integrated optimization method

with NSGA-II adaption to solve the multi-objective parallel machine scheduling problem with flexible

preventive maintenance on the machine and mould. Further, setup time and mould maintenance were

considered [7] to show the influence of the mould maintenance on production scheduling.

In the existing research on the integrated production scheduling problem with mould maintenance,

all the information such as the processing time and the maintenance time is determinate, however, this

information is undetermined because of some human-related factors in most real-world manufacturing

environments. Because of the uncertainty, the solutions built with the evaluated data may become

antiquated during the implementation. Many studies model the uncertainty processing time as triangular

fuzzy numbers and different algorithms were proposed to obtain good fuzzy schedules [8–10]. Moreover,

in most of the research on the fuzzy problems, only one objective is considered. However, in many

practical cases, only one criterion is not enough. Several objectives should be considered simultaneously

to improve the industrial advantages in the fierce market competition. In traditional research on the

optimization of the scheduling problem with single objective, the objectives, such as minimization of

the makespan (maximum completion time), minimization of the total completion time, minimization of

the total tardiness are considered. When the uncertainty is considered, the traditional objective is not

sufficient, and robustness need to be considered as a significant optimization objective. The exact starting

times for each task are not obtained through the fuzzy schedule and solutions to the fuzzy problem should

be treated as priori solutions. When tasks are executed according to the sequence provided by the fuzzy

schedule, the real duration of each task needs to be known and a real executed schedule (the posteriori

solution with deterministic data) is obtained. Therefore, except for the fuzzy makespan, which is an

important evaluation criterion of the industry competitiveness and the most often used objective in the

optimization problem [11, 12], the concept of schedule robustness needs to be considered for the fuzzy

problem.

The pigeon inspired optimization (PIO) algorithm was firstly proposed by Duan and Qiao [13], and is

a novel bio-inspired swarm intelligence optimizer mimicking the homing characteristics of pigeons. There

are two main operators of the PIO algorithm: the map and compass operator, and the landmark oper-

ator. Since the PIO algorithm was first proposed, it has been used in many real-world applications and

many new variants based on it have been put forward. To achieve the target detection task for unmanned

aerial vehicles (UAVs) at low altitude, a hybrid model of edge potential function (EPF) and the simulated

annealing pigeon inspired optimization (SAPIO) algorithm were proposed by Li and Duan [14]. The ro-

bustness and effectiveness of the SAPIO algorithm were shown by a number of comparative experiments

with other algorithms. Moreover, a novel predator-prey pigeon-inspired optimization (PPPIO) [15] was

proposed to solve the uninhabited combat aerial vehicle (UCAV) three-dimension path planning problem

in the dynamic environment. The comparative simulation results show that the proposed PPPIO algo-

rithm is more efficient than other algorithms for solving the problem. In addition, an orthogonal PIO

algorithm [16] was suggested and employed in the training process of the echo state network (ESN) to

obtain the desired parameters. The superiority of the orthogonal PIO algorithm is shown by comparing

with several existing bio-inspired optimization algorithms. Furthermore, an improved PIO algorithm [17]

was utilized by converting the parameter design problem for the automatic carrier landing system to an

optimization problem. A series of experiments were conducted to demonstrate the feasibility and effec-

tiveness of the proposed method. Comparative results indicated that the proposed method is much better

than other methods. In addition, the Gaussian pigeon inspired optimization (GPIO) algorithm [18] was

proposed for solving the optimal formation reconfiguration problems of multiple orbital spacecraft. The

feasibility and effectiveness of the proposed GPIO algorithm in solving orbital spacecraft formation re-

configuration problems were verified by the comparative experiments with the basic PIO and the particle

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:3

swarm optimization (PSO).

Furthermore, the PIO is also extended to solve multi-objective problems. Qiu and Duan [19] proposed

the multi-objective pigeon inspired optimization (MPIO) to solve the multi-objective optimization prob-

lems in designing the parameters of brushless direct current motors. Comparative experimental results

with the modified non-dominated sorting genetic algorithm are given to show the feasibility, validity,

and superiority of the proposed algorithm. Moreover, the MPIO was modified based on the hierarchi-

cal learning behavior in pigeon flocks and an UAV distributed flocking control algorithm based on the

modified MPIO was proposed to coordinate UAVs to fly in a stable formation under complex environ-

ments. Comparison experiments with the basic MPIO and the modified non-dominated sorting genetic

algorithm (NSGA-II) were carried out to show the feasibility, validity, and superiority of the proposed

algorithm [20].

Although there have been a few studies on the production scheduling problem considering mould

maintenance, none of them considered the indeterminate processing time and maintenance time, and

the uncertainty needs to be considered in practical application. Furthermore, when the fuzziness is

considered in the integrated problem, the robustness should also be considered because that some dif-

ferences may exist between the fuzzy schedule and the actually executed schedule. Moreover, since the

integrated production scheduling with the maintenance problem is NP-hard, meta-heuristics are usually

used to solve these problems. So far, most of these integrated problems are solved by the genetic al-

gorithm (GA) approach. However, because of the unguided mutation of the GA, the convergence rate

of the GA is slow. Furthermore, the performance of the GA depends on the diversity mechanism. If

the diversity mechanism does not work properly, it is easy for the GA to converge into local optima

prematurely. Except for GA, other algorithms such as PSO are also used for these integrated problems.

The main advantage of PSO is its rapid convergence rate but it is susceptible to premature conver-

gence, especially when the dimensions or decision variables are large. To handle the stagnation and

speed up the convergence, many strategies need to be proposed, such as improving the distribution of

initial solutions, changing the communication mechanism, and adjusting the parameters. Since these

algorithms have limitations, more innovative algorithms need to be proposed to solve the integrated

problems. As a new swarm intelligent algorithm, the PIO algorithm has not yet been applied in the

production scheduling problem, and more efficient variants of PIO need to be explored to solve real-world

problems.

Based on the research gap, this study proposes a multi-objective pigeon inspired optimization (MOPIO)

algorithm for fuzzy production scheduling problem considering mould maintenance (FPSP-MM). The

uncertainty is restricted to the fuzzy processing time and fuzzy maintenance time, which means that the

processing time and the maintenance time can be represented by triangular fuzzy numbers. There are

two objectives in this optimization problem, the fuzzy makespan, and the robustness. To extend the

PIO algorithm from the single-objective to the multi-objective case, non-dominated solutions are used as

candidates for the leader pigeon and a special crowding distance is used to ensure a good distribution of

solutions in the decision space and in the corresponding objective space. Furthermore, an index-based

ring topology is used to manage the convergence speed. To evaluate the results, the hypervolume (HV)

and the cover rate (CR) are used as two performance indicators. In the experiments, some instances are

generated by fuzzifying the benchmarks from the deterministic problem and some instances are generated

randomly. To show the advantages of the proposed MOPIO algorithm, multi-objective particle swarm

optimization (MOPSO) and NSGA-II which are the most popular algorithms to solve multi-objective

problems, are used as the comparison algorithms.

The reminder of this paper is organized as follows. Section 2 describes the FPSP-MM problem.

Section 3 proposes the MOPIO algorithm. Section 4 presents the experimental design. Section 5 shows

the computational results acquired and some discussion is made to show the superiority of the MOPIO

algorithm. Section 6 provides the conclusion and suggestions for further research.

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:4

2 Problem description

The FPSP-MM problem can be described as follows: P jobs are allocated on Q injection machines and

N injection moulds. Each problem is defined as P × Q × N . At time zero, all jobs are well prepared,

and all the machines and moulds are accessible. Each job must use the mould which is given in advance.

Each job can choose the machines it uses, but not all the machines are available for all jobs. Different

jobs may be performed by the same mould. Each job cannot be performed by more than one machine in

a given time slot, and each machine cannot deal with more than one job in a given time slot. Each mould

cannot carry out more than one job at a given time slot. The batch size and the unit fuzzy operation

time of each job are given. The total operation time of a job is the product of the unit fuzzy operation

time and the batch size. The batch size of each job cannot be split and there is no interruption during

the production process of a job. The unit fuzzy operation time of a job depends on the mould it uses.

The unit fuzzy operation time is represented by a triangular fuzzy number. The maintenance time of the

resources depends on the time that the maintenance begins. The maintenance time is shorter when the

maintenance is conducted earlier. The maintenance time of a resource depends on the longest accumulated

working time of a resource (the accumulated working time of a resource is a triangular fuzzy number,

the longest of which means the third number of the triangular fuzzy number). The maintenance time

may be fuzzy or crisp. Only perfect maintenance is considered, which means that after the maintenance,

the condition of the resource is as good as new. In this paper, the preventive maintenance is assumed to

be able to prevent all the random breakdowns. Moreover, the set-up time and the quality issue are not

considered in this research. The objective is to find good production scheduling and machine maintenance

planning aiming at minimizing the makespan and maximizing the robustness. To extend the determinate

single-objective problem to a fuzzy multi-objective problem, four issues need to be solved: the definition

of the arithmetic operations on triangular fuzzy numbers, the fuzzy maintenance time, the robustness

and the Pareto dominance relationship. These problems are given in Subsections 2.1–2.4.

2.1 Arithmetic operations on triangular fuzzy numbers

The unit fuzzy processing time is a triangular fuzzy number (TFN), denoted as A = (a1, a2, a3), where a1

is the best processing time, a3 is the worst processing time and a2 is the most possible processing time.

When the original deterministic model is extended to a model with uncertainty, two difficulties need to be

solved. First, the arithmetic operations of addition and maximum need to be given when deterministic

numbers are changed into TFNs. Second, the definition of minimal makespan also need to be given

when the makespan is a triangular fuzzy number. According to [21], for two TFNs, A = (a1, a2, a3) and

B = (b1, b2, b3). Their addition is defined as

A+B = ((a1 + b1), (a2 + b2), (a3 + b3)). (1)

The maximum operation is defined as

max(A,B) = (max(a1, b1),max(a2, b2),max(a3, b3)). (2)

To find the minimal makespan, three ranking criteria are given as follows:

C1(A) =
a1 + 2× a2 + a3

4
, (3)

C2(A) = a2, (4)

C3(A) = a3 − a1. (5)

To compare two TFNs, the values of C1 are compared. If the values of C1 are the same for two TFNs,

then the values of C2 are compared. If the values of C1 and C2 are the same for two TFNs, then the

values of C3 are compared.

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:5

Table 1 Maintenance time based on machine/mould age

Machine age Maintenance time Mould age Maintenance time

0 < a3 6 180 (150, 150, 150) 0 < b3 6 120 (150, 150, 150)

180 < a3 6 420 (94, 94, 94)+(a1, a2, a3)/3 120 < b3 6 280 (94, 94, 94)+(b1, b2, b3)/2

420 < a3 6 600 (160, 160, 160)+(a1, a2, a3)/3 280 < b3 6 400 (160, 160, 160)+(b1, b2, b3)/2

600 < a3 (720, 720, 720) 400 < b3 (720, 720, 720)

2.2 Uncertain maintenance time

In the determinate model proposed by Wong et al. [3], the accumulated working time of a resource is

defined as the resource age (the idle time is not included). A piecewise linear function is used to describe

the relationship between maintenance time and resource (machine or mould) age. In practice, a mould

has a higher possibility of breakdown than a machine. So, the maximum age of the machine (MA) is

longer than the maximum age of the mould (NA). Maintenance has to be conducted after completion of

the current job once a resource reaches its maximum age. In the uncertainty model, since the processing

time is a triangular fuzzy number, the resource age is also a triangular fuzzy number. The maintenance

time is decided by the worst value in the triangular fuzzy number of the resource age. The age of the

machine is represented by A = (a1, a2, a3). The age of the mould is represented by B = (b1, b2, b3). The

relationship between the maintenance time and the resource age is shown in Table 1.

2.3 Objective measure

There are two objectives in this problem. The first is the fuzzy makespan and the second is the robustness.

According to Palacios et al. [11], the objective related to the fuzzy makespan C is defined as the expected

value of the triangle fuzzy number

E(C) =
C1 + 2× C2 + C3

4
. (6)

The ranking method based on the expected value is shown to be convenient and it is proven that the

ranking result is similar to other ranking methods. It is obvious that the smaller the expected value, the

better the objective value. The robustness is defined as

Rob(C) = max{(C2 − C1), (C3 − C2)}, (7)

and it measures the maximum possible difference between the makespan of the real execution and the most

likely estimated makespan. It is a priori measure and the smaller the value, the better the robustness.

So the objectives of this problem are shown as follows:

min E(C), (8)

min Rob(C). (9)

2.4 Pareto domination relationship

For the multi-objective optimization problems with two or more objectives to be optimized,

min f(x) = (f1(x), f2(x), . . . , fm(x)), (10)

where x = (x1, x2, . . . , xn) is an n-dimensional decision vector, f(x) is an m-dimensional objective vector.

The n-dimensional space, comprised of all the possible values of the decision vector x, is known as the

decision space, and the m-dimensional space consisting of all the possible values of the objective vector

f(x) is the objective space. There are many different solutions for multi-objective optimization problems

and these solutions can be compared based on the Pareto dominance relationship. Given two feasible

solutions x and y, solution x is said to dominate solution y if fi(x) 6 fi(y), i = 1, 2, . . . ,m and there

exists at least one j ∈ 1, 2, . . . ,m so that fi(x) < fi(y). A solution is said to be non-dominated if it is

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:6

not dominated by any other solutions. The set of all the non-dominated solutions in the decision space

is called the Pareto-optimal set (PS). The Pareto front (PF) is the set of all the vectors in the objective

space that corresponds to the PS.

3 Optimization methodology

3.1 Basic pigeon inspired optimization

PIO simulates the homing behavior of pigeons. There are two main operators in the algorithm.

(1) Map and compass operator. Through shaping the map in their brains by magnetoreception, pigeons

are able to sense the earth’s magnetic field. Moreover, pigeons adjust their directions based on the altitude

of the sun, which has the same function as a compass. When pigeons fly to their destination, they rely

less and less on the sun and magnetic particles. Each pigeon has a position Xi and a velocity Vi in

a D-dimension search space. Both the positions and the velocities of the pigeons are updated in each

iteration. The new position Xi and velocity Vi of pigeon i at the t-th iteration can be calculated by the

following equations:

Vi(t) = Vi(t− 1)× e−Rt + rand× (Xg −Xi(t− 1)), (11)

Xi(t) = Xi(t− 1) + Vi(t), (12)

where Vi(t − 1) and Vi(t) are the velocities of the pigeon i at (t − 1)-th and t-th iteration. Xi(t − 1)

and Xi(t) are the positions of the pigeon i at (t − 1)-th and t-th iteration. R is the map and compass

factor, rand is a random number and Xg is the current global best position, which can be obtained by

comparing all the positions among all the pigeons.

(2) Landmark operator. The pigeons depend on landmarks that they are near when the pigeons are

close to their destination. They will fly directly to the destination if they are familiar with the landmarks.

They will follow pigeons who are familiar with the landmarks if they are far from the destination and

unfamiliar with the landmarks. In the landmark operator, half the number of pigeons is decreased in every

generation, which means pigeons that are far from the destination and unfamiliar with the landmarks

will follow the pigeons that are familiar with the landmarks. Then, the pigeons close to their destination

will fly to their destination quickly, which is represented by XC(t) (the center of some pigeons positions

at the t-th iteration). The position updating rule for pigeon i at the t-th iteration can be given by

Np(t) =
Np(t− 1)

2
, (13)

XC(t) =

∑

Xi(t)× fitness(Xi(t))

Np ×
∑

fitness(Xi(t))
, (14)

Xi(t) = Xi(t− 1) + rand× (XC(t)−Xi(t− 1)), (15)

where fitness(Xi(t)) is the quality of the pigeon i at the t-th iteration, and for minimum optimization

problems, it is usually chosen as fitness(Xi(t)) =
1

fmin(Xi(t))+ξ . For maximum optimization problems, it

is usually chosen as fitness(Xi(t)) = fmax(Xi(t)). For each individual pigeon, the optimal position of the

Nc-th iteration can be denoted by Xp, and Xp = min(Xi(1), Xi(2), . . . , Xi(Nc)).

3.2 Encoding and decoding of the pigeon

In MOPIO, each pigeon has information on the job sequence (J), the corresponding machine sequence

(M), machine maintenance (AM) and information on the mould maintenance (OM). In the evolution

process of MOPIO, the positions values of these pigeons always fluctuate in the space of a real number.

Random key representation [22] and the smallest position value (SPV) rule [23] are applied to decode

the positions of these pigeons into a suitable scheduling solution for this problem. After decoding, the

values of the J parameters are integers between 1 and P (P is the number of jobs); the values of the

M parameters are integers between 1 and Q (Q is the number of machines); the AM parameter is the

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:7

Original position of the pigeon:

0.5 0.4 0.1 0.7 0.2 0.3 0.6 0.8 0.4 0.8 0.1 0.7 0.9 0.2 0.3 0.8 0.2 0.1 0.6 0.8 0.3 0.4 0.1 0.2 0.3 0.4 0.2 0.8 0.1 0.9 0.4 0.3

 J J J J J J J J M M M M M M M M AM AM AM AM AM AM AM AM OM OM OM OM OM OM OM OM

Scheduling solution after decoding:

3 5 6 2 1 7 4 8 1 2 1 2 2 1 1 2 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0

J J J J J J J J M M M M M M M M AM AM AM AM AM AM AM AM OM OM OM OM OM OM OM OM

Figure 1 Encoding and decoding of the example pigeon.

maintenance decision on the machine, with value 0 or 1; the OM parameter is the maintenance decision

on the mould, with value 0 or 1; if the relevant AM or OM is 1, the corresponding resource is maintained

after finishing the job, otherwise they are not maintained. An example pigeon before and after decoding

is shown in Figure 1. In this example, there are 8 jobs, 2 machines, and 2 moulds. Jobs 1, 2, 3, 4 can

only be produced by mould 1 and jobs 5, 6, 7, 8 can only be produced by mould 2. From Figure 1, it can

be seen that the value of J in the original position of the pigeon is (0.5 0.4 0.1 0.7 0.2 0.3 0.6 0.8), and

it is transferred into (3 5 6 2 1 7 4 8). The sequence (0.5 0.4 0.1 0.7 0.2 0.3 0.6 0.8) is ranked according

to the ascending order and given (0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8). Since the number 0.1 is in the third

position of the original sequence, it is decoded into 3. Since the number 0.2 is in the fifth position of the

original sequence, it is decoded into 5. Using this method, the original positions can be decoded into a

suitable scheduling solution (3 5 6 2 1 7 4 8). The value of the corresponding M in the original position

of the pigeon is (0.4 0.8 0.1 0.7 0.9 0.2 0.3 0.8). The interval [0.1 0.9] (0.1 is the minimum and 0.9 is the

maximum among all the numbers) is divided into 2 intervals, [0.1 0.5) and [0.5 0.9] (there are 2 machines

in this example). Since 0.4, 0.1, 0.2, and 0.3 are in the first interval, after decoding, the value in the

relevant position is 1. Since 0.8, 0.7, and 0.9 are in the second interval after decoding, the value in the

relevant position is 2. So, the corresponding M can be transferred into (1 2 1 2 2 1 1 2). The value of the

corresponding machine AM in the original position of the pigeon is (0.2 0.1 0.6 0.8 0.3 0.4 0.1 0.2) and

the interval [0.1 0.8] (0.1 is the minimum and 0.8 is the maximum among all the numbers) is divided into

2 intervals, [0.1 0.45) and [0.45 0.8]. Since 0.1, 0.2, 0.3 and 0.4 are in the interval [0.1 0.45), the value in

the relevant position is decoded into 0. Since 0.6 and 0.8 are in the interval [0.45 0.8], the value in the

relevant position is decoded into 1. So, the corresponding machine AM is decoded into (0 0 1 1 0 0 0 0).

A similar decoding method can be applied to OM. After decoding, it is known that job 3 is distributed on

machine 1 and machine 1 will not be maintained after job 3, and the injection mould on machine 1 will

not be maintained either. Job 2 is allocated to machine 2, but machine 2 will be maintained after job 2

since the corresponding AM parameter is 1 and the injection mould on machine 2 will also be maintained

because the corresponding OM parameter is 1.

Furthermore, we give the fuzzy scheduling charts of the example pigeon (3 5 6 2 1 7 4 8 1 2 1 2 2 1 1 2 0

0 1 1 0 0 0 0 0 0 0 1 0 1 0 0). The machine scheduling chart is shown in Figure 2 and the mould scheduling

chart is shown in Figure 3. In this example, the unit fuzzy processing time of mould 1 is (8 10 11). The

corresponding batch sizes of jobs 1, 2, 3, 4 are 2, 3, 1, 2. The unit fuzzy processing time of mould 2 is (9

11 13). The corresponding batch sizes of jobs 5, 6, 7, 8 are 3, 2, 2, 1. The fuzzy maintenance times on

machine 1 and machine 2 are (2 5 7) and (3 4 6) respectively, and the fuzzy maintenance times on mould

1 and mould 2 are (2 3 6) and (4 6 8) respectively. In Figures 2 and 3, different jobs are represented by

different colours. The fuzzy number under the line is the start time of each job and the fuzzy number

above the line is the end time of each job. The maintenance on the machine and the mould is represented

in black. From Figures 2 and 3, the fuzzy makespan is (86, 107, 122).

Moreover, to illustrate the influence of the fuzziness on the problem, we give the normal scheduling

without fuzziness. For fair comparison, the example pigeon (3 5 6 2 1 7 4 8 1 2 1 2 2 1 1 2 0 0 1 1 0

0 0 0 0 0 0 1 0 1 0 0) is used. The batch sizes of the jobs are not changed. We only modify the fuzzy

properties of the processing time and maintenance time into the normal properties. The unit processing

time of mould 1 is 10, which is the most possible value in the triangular fuzzy number (8 10 11). The

unit processing time of mould 2 is 11, which represents the most possible value in the triangular fuzzy

number (9 11 13). The maintenance times on machine 1 and machine 2 are 5 and 4, respectively. The

maintenance times on mould 1 and mould 2 are 3 and 6, respectively. The Gantt charts of the example

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:8

Machine 1

Machine 2

 Processing time (unit of time)

Fuzzy makespan= (86 107 122)

(8 10 11)

Job 3

Job 3

(27 33 39)

Job 5

Job 5

Job 6

Job 2

Job 2 Maintenance

Maintenance

Job 1

Job 1

Job 7 Job 4

Job 8

(27 33 39)

(45 55 65)

Job 6

(27 33 39)

(51 63 72)

Job 7
Job 4

Job 8

(47 60 72)

(54 67 78)

(65 82 98)

(70 87 100)

(70 87 100)

(86 107 122)

(70 88 106)

(79 99 119)
(54 67 78)

(51 63 72)

(45 55 65)

(47 60 72)

Maintenance

Maintenance

Figure 2 (Color online) Fuzzy machine scheduling of the example pigeon.

Mould 1

Mould 2

 Processing time (unit of time)

Fuzzy makespan= (86 107 122)

(8 10 11)

Job 3

Job 5

Job 5 Job 6

(45 55 65)

Job 1

Job 6

(27 33 39)

Job 8

Job 8

(27 33 39)

(51 63 72)

Job 2

Job 2

Job 7

Job 4Job 1

Job 7

Job 4

Maintenance

Job 3

(27 33 39)

Maintenance

(47 60 72)

(53 66 78)

(65 82 98)

(70 87 100)

(70 87 100)

(86 107 122)

(79 99 119)

(54 67 78)

(69 88 106)

(65 82 98)

(51 63 72)

Maintenance

(70 88 106)

Maintenance

Figure 3 (Color online) Fuzzy mould scheduling of the example pigeon.

3 Machine 1

Machine 2
5 2

(33)

8

7 4MT

(30) (11)

(10) (22) (20)
6

(22)

1

(20)

MT

(4)

(5)

Processing time (unit of time)

 Makespan= 107

Figure 4 (Color online) Machine scheduling of the example pigeon without fuzziness.

Mould 1

Mould 2

3 2 1 4MT

5 6 7 8MT

(22)(33)

(10) (30) (3)

(6)

(20)

(22)

(20)

(11)

 Processing time (unit of time)

 Makespan= 107

Figure 5 (Color online) Mould scheduling of the example pigeon without the fuzziness.

are shown in Figures 4 and 5, and the makespan is 107. It represents the most possible value in the

triangular fuzzy makespan (86, 107, 122). From the comparative results, the solution is still applicable

when the fuzzy problem is modified into a normal case, and can illustrate that the rules to calculate

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:9

the makespan for the fuzzy problem are appropriate. The solutions obtained by the proposed MOPIO

algorithm can also be used for normal cases. However, when the fuzziness is considered in this model,

more factors and objectives need to be considered to make it closer to reality.

3.3 Multi-objective pigeon inspired optimization

Inspired by the multi-objective particle swarm optimizer using ring topology proposed by Yue et al. [24],

an MOPIO algorithm is proposed using ring topology and a special non-dominated sorting method.

In the map and compass operation of MOPIO, we use the best pigeon in the neighborhood of each

pigeon instead of the global best pigeon in order to avoid the population convergencing to a single point.

So Eq. (11) is modified into

Vi(t) = Vi(t− 1)e−Rt + rand(Xnbesti −Xi(t− 1)), (16)

where Xnbesti is the best pigeon in the neighborhood of the i-th pigeon. Other symbols have the same

meanings as the symbols in (11). Two archives are established: the personal best archive (PBA) and

neighborhood best archive (NBA). The personal best pigeon and the neighborhood best for each pigeon

are chosen from the corresponding PBA and NBA. For the NBA, NBA{i} denotes the best position

within the i-th particle neighborhood. Each neighborhood includes three particles, the i-th particle and

its immediate neighbors on its right and left. Moreover, an index-based ring topology is used to build the

neighborhood, and pigeons in different neighborhoods cannot interact with each other directly. The use of

the NBA promotes the formation of multiple niches by restricting the information transmission through

the population. Furthermore, a special sorting scheme, named the non-dominated-scd-sort algorithm, is

used to rank the pigeons.

In the landmark operator, the number of the pigeons is chosen as the numbers of pigeons in PBA, and

the fitness is defined as fitness(Xi(t))=
1

obj1
min

(Xi(t))+obj2
min

(Xi(t))+ξ , where obj1min(Xi(t))+obj2min(Xi(t))

is the sum of two objective values. The positions of all pigeons are updated according to (13)–(15), and

pigeons are ranked based on the non-dominated-scd-sort algorithm. When all the iterations end, the best

pigeons from the PBA represent the final optimization solutions.

The non-dominated-scd-sort algorithm was proposed by Yue et al. [24], and involves two steps. In

the first step, the pigeons are sorted according to the non-dominated sorting scheme [25]. In the second

step, the special crowding distances of the non-dominated pigeons are calculated, which also involves

two steps. In the first step, the crowding distance (CD), for each pigeon in the decision space and the

corresponding image in the objective space are calculated. In the second step, the CDs from the first

step are used to assign a special crowding distance (SCD) for each pigeon. The SCD concept involves a

max or min selection step that involves crowding metrics from the decision and objective spaces. The

diversity in the solution and objective spaces are promoted simultaneously by this methodology. Finally,

the non-dominated solutions are ranked in descending order according to their special crowding distances.

After sorting, the first particle is the non-dominated solution with the largest SCD.

The flowchart of the proposed MOPIO is shown in Figure 6 and the details of each step are given as

follows.

Step 1. Input the parameters of the fuzzy production problem with mould maintenance, including the

numbers of jobs, machines, and moulds, the batch size of each job, the corresponding mould of each job,

the available machines for each job, the unit fuzzy operation time of each job.

Step 2. Initialize the parameters of MOPIO, including the dimensions of the solution space, the size

of the population, NUM, map and compass factor R, the number of iteration Nc1max and the number

of iteration Nc2max for two operators.

Step 3. Each pigeon is randomly allocated a position and a velocity. Calculate the objective values of

all the pigeons. POPi(t) represents the pigeon i at the t-th iteration. Initialize the number of elements in

the PBA and the NBA. PBA{i} saves the best position for pigeon i and NBA{i} saves the best position

in the neighborhood of the pigeon i. PBA{i} = POPi(0), NBA{i} = PBA{i}.

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:10

Update PBA and NBA
based on index_based ring topology and

non-dominated-scd-sort algorithm

Update PBA
based on non-dominated-scd-sort algorithm

 Stopping condition?

 Output the pigeons in PBA

Y

 Begin the map and compass operator

Input all the parameters

Initialize the population, PBA and NBA

 Stopping condition?

 Begin the landmark operator

Y

N

N

Figure 6 Flowchart of the MOPIO.

Step 4. Begin the map and compass operator. Set t1 = 1. When the iteration t1 is smaller than

Nc1max, for all the NUM pigeons, sort the pigeons in PBA{i} and NBA{i} based on the non-dominated-

scd-sort algorithm. Select the first pigeon of the sorted NBA{i} as the nbesti. Update the POPi(t1)

according to (16) and (12). Calculate the objective values and the SCD of POPi(t1 + 1).

Step 5. Update PBA. For all the NUM pigeons, put POPi(t1 + 1) into PBA{i} and remove all the

pigeons dominated by POPi(t1 + 1).

Step 6. Update NBA. Use the index-based ring topology to decide the neighborhood of pigeon i,

which includes three pigeon groups, the PBA{i}, PBA{i − 1} and PBA{i + 1}. Particularly, if i = 1,

the neighborhood of the pigeon i is defined as PBA{NUM}, PBA{1} and PBA{2}; if i = NUM, the

neighborhood is defined as PBA{NUM− 1}, PBA{NUM} and PBA{1}. Then obtain the non-dominated

pigeons based on the non-dominated-scd-sort algorithm in the neighborhood and put them into the

NBA{i}.

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:11

Step 7. Set t1 = t1 + 1. If the iteration t1 is smaller than Nc1max, return to step 4. If the iteration t1

is bigger than Nc1max, go to step 8.

Step 8. Begin with the landmark operator. Set t2 = 1. When the iteration t2 is smaller than the

Nc2max, the landmark operator is activated. The size Np(1) is chosen as the number of pigeons in the

archive PBA at the last iteration of the map and compass operation. The size Np(t2) is chosen as the

number of pigeons in the archive PBA at iteration t2. Then the size Np is decreased by half in every

iteration according to (13), which means that half of the pigeons will follow the other half of the pigeons

that are familiar with the landmark. The fitness is set as fitness(Xi(t)) =
1

obj1
min

(Xi(t))+obj2
min

(Xi(t))+ξ ,

where obj1min(Xi(t)) + obj2min(Xi(t)) is the sum of two objective values. The center of the pigeons

XC(t) will be calculated according to (14), and the positions of the pigeons will be updated according

to (15).

Step 9. Update PBA. Calculate the objective values and the SCD of all the pigeons POPi(t2+1). Put

the new pigeons POPi(t2 + 1) in the PBA and delete the pigeons dominated by POPi(t2 + 1) based on

the non-dominated-scd-sort algorithm.

Step 10. Set t2 = t2 + 1. If the iteration t2 is smaller than Nc2max, return to step 8. If the iteration

t2 is bigger than Nc2max, these pigeons in PBA are taken as the final optimization results.

4 Experimental design

The main objective of the numerical experiments is to test the optimization performance of the proposed

MOPIO algorithm. Since the problem is an extension of the problem proposed by Wong et al. [3],

the benchmark datasets used in this paper are generated by randomly fuzzifying the crisp benchmarks

from Wong et al. [3]. To fuzzy a crisp benchmark dataset and generate a triangular fuzzy processing time

Pij = (P 1
ij , P

2
ij , P

3
ij), according to Lei [26], the most plausible value P 2

ij of the fuzzy processing time is equal

to the value of the crisp processing time Pij in the crisp datasets. The values of P 1
ij and P 2

ij are randomly

generated from [0.85Pij, 0.95Pij] and [1.1Pij , 1.19Pij]. The sizes of these three problems are (30× 3× 5),

(40× 6× 10) and (60× 9× 15). The quality of the solutions produced by the proposed MOPIO algorithm

are verified by comparing the results obtained by adapted NSGA-II [25] and MOPSO [27]. Furthermore,

three more randomly generated datasets of sizes (20× 2× 4), (35× 4× 6) and (65× 8× 10) are used as

benchmarks to further illustrate the performance of the proposed MOPIO algorithm.

Numerical experiments are implemented in the Matlab environment on a personal computer with Intel

(R) Core (TM) i7-6700 CPU 3.40 GHz CPU.

4.1 Performance indicator

To evaluate an algorithm, quantitative analysis is as important as qualitative analysis. Except listing the

non-dominated solutions found over a certain number of runs by different algorithms, this study uses two

performance metrics to measure the performance of different algorithms: the HV [28] and the CR which

is a modification from the cover rate in [24].

The HV metric is used to measure the volume of hypercube enclosed by PF A and a reference vector

rref = (r1, r2, . . . , rn) with a larger value representing better performance is calculated as follows:

HV(A) =
⋃

a∈A

vol(a), (17)

where vol(a) is the hypercube volume enclosed by the solution a in the PF A and the reference vector

rref = (r1, r2, . . . , rn). The bigger the value, the better the algorithm.

The CR represents the overlap ratio between different PFs obtained by different algorithms. The

definition of the CR(A,B) is as follows:

CR(A,B) =

(

n
∏

l=1

δl

)1/2n

, (18)

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:12

Table 2 Levels of different parameters

Level Swarm size Max iteration of each operation R

1 20 100 0.01

2 50 200 0.2

3 80 400 0.4

Table 3 Different parameters combinations and its influence on results

No. Swarm size Max iteration of each operation R Avg(HV) Sd(HV)

1 1 1 1 184570 25677

2 1 2 2 183710 52467

3 1 3 3 224810 95112

4 2 1 2 244600 34749

5 2 2 3 240460 54875

6 2 3 1 304520 34394

7 3 1 3 237050 42451

8 3 2 1 264770 24049

9 3 3 2 262280 15366

δl =























1, Fmax
l = Fmin

l ,

0, fmin
l > Fmin

l ‖ fmax
l 6 Fmin

l ,
(

min(fmax
l , Fmax

l)−max(fmin
l , Fmin

l)

Fmax
l − Fmin

l

)2

, otherwise,

(19)

where n is the dimensionality of the objective space; fmax
l and fmin

l are respectively the maximum and

minimum of the l-th objective value obtained by algorithm A. Fmax
l and Fmin

l are the maximum and

minimum of the l-th objective value obtained by algorithm B. If CR(A,B) is bigger than CR(B,A), it

means that the scope of the PF obtained by algorithm A is larger than the scope of the PF obtained by

algorithm B, which means that algorithm A is better than algorithm B in terms of the CR.

4.2 Parameter tunings

Since the parameters of the algorithm have a considerable influence on the results of the solution, we

test different combinations of parameters on a medium size dataset (40 × 6 × 10) to decide the final

parameters for this algorithm. There are three main parameters in the proposed MOPIO: swarm size,

the max iteration (the iteration of each operation is half of the overall iteration) and the map and compass

factor R. For each parameter, three levels are selected to find an appropriate parameter combination.

The details of the parameter sets are shown in Table 2. The Taguchi method is used to reduce the number

of experiments. Each parameter combination run ten times. The orthogonal arrays based on Taguchi

methods, the average values and the standard deviation of the HV for each parameter combination are

shown in Table 3. Based on [29], the impact trend of the different parameters with different levels is

shown in Figure 7, where the performance of the proposed algorithm is better when the swarm size is at

level 2, the max iteration is at level 3, and the R is at level 1. The larger the max iteration, the better

the result, however, a larger swarm size does not mean better results. The smaller the R, the better

the result. The swarm size is related to the search ability but it does not mean that a larger size is the

better. If the swarm size is too large, there may be a higher repetitive rate of the swarm which decreases

the search efficiency. The max iteration can improve the performance under some given conditions and

it may increase the search time. The increment of the max iteration, is not useful when the solution

reaches its extremum. The map and compass factor R decides the influence of the previous velocity on

the present velocity. The smaller the R, the bigger the influence of the previous velocity on the present

velocity. Based on the above analysis, the parameter combination {swarm size = 50, iteration = 400 and

R = 0.01} is chosen as the parameter used for the following tests.

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:13

0 1 2 3 4
1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Level of the parameter

M
ea

n

Swarm size
Max iteration
R

×105

3000 3500 4000 4500 5000 5500
150

200

250

300

350

400

The expected value of makespan

T
h
e

ro
b
u
st

n
es

s

Results of different algorithms

MOPSO
NSGA2
MOPIO

Figure 7 (Color online) Factor level trend. Figure 8 (Color online) Pareto fronts of the fuzzed bench-

mark (30× 3× 5).

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
150

200

250

300

350

400

450

500

The expected value of makespan

T
h
e

ro
b
u
st

n
es

s

Results of different algorithms

MOPSO
NSGA2
MOPIO

3000 3500 4000 4500 5000 5500
150

200

250

300

350

400

450

500

The expected value of makespan

T
h
e

ro
b
u
st

n
es

s

Results of different algorithms

MOPSO
NSGA2
MOPIO

Figure 9 (Color online) Pareto fronts of the fuzzed bench-

mark (40 × 6× 10).

Figure 10 (Color online) Pareto fronts of the fuzzed

benchmark (60 × 9× 15).

4.3 Comparison with other multi-objective algorithms

To test the performance of the proposed MOPIO, this research compares it with other two well-known

multi-objective algorithms: adapted NSGA-II [25] and MOPSO [27]. For unbiased comparison, the swarm

size is set as 50, and the max iteration is set as 400 for these three algorithms. The parameters related to

the MOPSO and NSGA-II are the same as the parameters in the original literature. The R is set as 0.01

for MOPIO. The reference vector for the calculation of HV is set as (5200, 400), and each algorithm is

run ten times. For the fuzzed benchmark datasets, the PFs of three algorithms are shown in Figures 8–

10. The comparison results of the performance indicators (the HV and the CR) are shown in Tables 4

and 5. Avg(HV) is the average value of the HV for the 10 runs, SD(HV) is the standard deviation of the

HV for the 10 runs and Avg(CR) is the average value of the CR for the 10 runs. SD(CR) is the standard

deviation of the CR for the 10 runs.

Furthermore, three more instances are produced randomly to better illustrate the performance of the

proposed MOPIO algorithm. The size of these three problems are (20×2×4), (35×4×6) and (65×8×10).

The most plausible value P 2
ij of the fuzzy processing time is produced randomly between 30 and 55 units

of time. The values of P 1
ij and P 3

ij are randomly generated from [0.85P 2
ij, 0.95P

2
ij] and [1.1P 2

ij , 1.19P
2
ij],

and the batch size of the jobs is produced randomly between 2 and 6 units. The comparison results of

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:14

Table 4 HV comparison results of the fuzzed benchmarks

MOPIO NSGA-II MOPSO

30 × 3× 5 Avg(HV) 410140 369320 394800

Sd(HV) 35771 38432 34513

40× 6× 10 Avg(HV) 296680 227000 340670

Sd(HV) 33643 36029 42257

60× 9× 15 Avg(HV) 260000 198240 225760

Sd(HV) 66773 60707 45271

Table 5 CR comparison results of the fuzzed benchmarks

MOPIO vs. NSGA-II NSGA-II vs. MOPIO MOPIO vs. MOPSO MOPSO vs. MOPIO

30× 3× 5 Avg(CR) 0.7019 0.3904 0.7762 0.6362

Sd(CR) 0.3260 0.2850 0.3016 0.2784

40× 6× 10 Avg(CR) 0.5584 0.4338 0.5456 0.5219

Sd(CR) 0.2912 0.2627 0.2530 0.3083

60× 9× 15 Avg(CR) 0.5519 0.4986 0.71 0.5342

Sd(CR) 0.334 0.3163 0.2967 0.34

Table 6 HV comparison results of the random benchmarks

MOPIO NSGA-II MOPSO

20 × 2× 4 Avg(HV) 370120 259960 420310

Sd(HV) 42687 52709 44402

35 × 4× 6 Avg(HV) 257290 115370 117340

Sd(HV) 15086 26714 23554

65× 8× 10 Avg(HV) 357070 210300 337900

Sd(HV) 24190 38107 36947

Table 7 CR comparison results of the random benchmarks

MOPIO vs. NSGA-II NSGA-II vs. MOPIO MOPIO vs. MOPSO MOPSO vs. MOPIO

20× 2× 4 Avg(CR) 0.6842 0.4734 0.7957 0.7018

Sd(CR) 0.3189 0.2486 0.1846 0.2225

35× 4× 6 Avg(CR) 0.8664 0.2704 0.5145 0.5269

Sd(CR) 0.1158 0.2374 0.4783 0.4566

65× 8× 10 Avg(CR) 0.7290 0.3524 0.5578 0.5319

Sd(CR) 0.3821 0.3453 0.3433 0.3339

the performance indicators are shown in Tables 6 and 7.

In the proposed MOPIO algorithm, the neighborhood best is used instead of the global best in the

original PIO algorithm when the velocity is updated. To explain the influence of this modification, we

compare the proposed MOPIO algorithm which uses the neighbourhood best with another version of

MOPIO named MOPIO-GBA which uses the global best. In the MOPIO-GBA, the global best archive

(GBA) is built. In each iteration of the map and compass operation, we add the first pigeon in every

PBA{i} based on the ranking by the non-dominated-scd-sort algorithm into the GBA. Then, all the

pigeons in the GBA are ranked based on the non-dominated-scd-sort algorithm and the global best

is selected as the first pigeon in the GBA. Except for the velocity updating formula, other steps in

the MOPIO-GBA are the same as the proposed MOPIO. The above six instances are used to test the

performance of MOPIO-GBA and MOPIO. The comparison results of the performance indicators are

shown in Tables 8 and 9.

Moreover, a solution of the instance 20×2×4 is shown in Figures 11 and 12. For the instance 20×2×4,

the batch sizes of these 20 jobs are (5 3 4 6 2 5 6 6 5 4 3 4 3 6 5 4 3 4 5 4) and the moulds used by these

jobs are (2 3 4 2 3 4 1 4 4 2 4 1 3 2 4 3 2 4 3 1). The unit fuzzy processing times by different moulds

are shown in Table 10. The maintenance time is based on the relationship in Table 1. The numbers in

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:15

Table 8 HV comparison results of MOPIO and MOPIO-GBA

MOPIO MOPIO-GBA

20× 2× 4 Avg(HV) 370120 174130

Sd(HV) 42687 11377

30× 3× 5 Avg(HV) 410140 160680

Sd(HV) 35771 11802

35× 4× 6 Avg(HV) 257290 126860

Sd(HV) 42687 59960

40× 6× 10 Avg(HV) 296680 157030

Sd(HV) 33643 48312

60× 9× 15 Avg(HV) 260000 103150

Sd(HV) 66773 51170

65× 8× 10 Avg(HV) 357070 276271

Sd(HV) 24190 25374

Table 9 CR comparison results of MOPIO and MOPIO-GBA

MOPIO vs. MOPIO-GBA MOPIO-GBA vs. MOPIO

20 × 2× 4 Avg(CR) 0.6571 0.3122

Sd(CR) 0.4645 0.1836

30 × 3× 5 Avg(CR) 0.3667 0.0989

Sd(CR) 0.5507 0.1713

35 × 4× 6 Avg(CR) 0.3490 0.1724

Sd(CR) 0.5643 0.2529

40× 6× 10 Avg(CR) 0.4713 0.4111

Sd(CR) 0.4417 0.4070

60× 9× 15 Avg(CR) 0.5360 0.4029

Sd(CR) 0.3725 0.3071

65× 8× 10 Avg(CR) 0.8996 0.3242

Sd(CR) 0.1273 0.0963

Machine 1

Machine 2

11

11

4

18 9 20

 7

3 6 12

17 16 14 10 54 2 13MT

15 8

19 1MT MT

MT MT MT MT

MT

(174 198 222)

17 14 10

18 9

7

20 3 6

5

12

13 19

8

1

Processing time (unit of time) Fuzzy makespan = (2829 3036 3430)

16 2

15

MT

MT

MT
MT MT

MT MT MT MT

MT

(326 358 390)

(442 490 538) (592 640 688) (772 832 916)

(926 990 1086)

(99 114 138)

(1100 1188 1308)

(1252 1348 1476)

(1368 1480 1624)

(231 266 322) (396 456 552)
(688 768 896)

(1458 1576 1738)

(860 948 1108)

(1011 1102 1272)

(1269 1372 1590)

(1449 1556 1790)

(1581 1708 1974) (1746 1898 2204)

(1939 2106 2436)

(1743 1870 2059)
(2017 2154 2363)

(2152 2298 2534)

(2111 2286 2648) (2631 2808 3154) (2829 3036 3430)

(2684 2869 3184) (2539 2704 2999)

Figure 11 (Color online) The machine scheduling for the instance 20× 2× 4.

the triangles are the job numbers, and the triangles under the line represent the starting time of each

job. The triangles above the line represent the ending time of each job. MT means maintenance on the

machine or the mould. After decoding, the solution is (4 17 16 11 14 10 18 9 5 20 7 3 6 2 13 12 15 19 8

1 2 2 2 1 2 2 1 1 2 1 1 1 1 2 2 1 1 2 1 2 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 1

1 0 1 1 1). To make the figures clearer, only the ending time of each job is shown.

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:16

Mould 1

Mould 2

 Processing time (unit of time) Fuzzy makespan = (2829 3036 3430)

20

 20

 4

 7 12

17 14

 10 1

 4

16
Mould 3

 5 2

 13

19

Mould 4

11 18 9

3

6

6

8

MT

MT

MT

MT

MT MT

(174 198 222)

17

(99 114 138)

 14

 10

 18

5

 7

9

3

13

 12

19

8

1

 11

 16 2

 15

15

MT

MT

MT

MT

MT

MT

MT MT

MT

MT

(355 391 427) (442 490 538)

(772 832 916)

(956 1022 1124)

(1100 1188 1308) (1368 1480 1624) (2088 2200 2344)

(231 266 322) (396 456 552) (1116 1176 1272)

(1458 1576 1738)

(1269 1372 1590) (860 948 1108)

(1581 1708 1974) (1746 1898 2204)

(1608 1726 1888)

(1743 1870 2059)

(1905 2036 2239)

(2152 2298 2534)

(2111 2286 2648)

(2466 2618 2924) (2631 2808 3154)

(2314 2464 2714)

(2539 2704 2999)

(2829 3036 3430)

(2684 2869 3184)

Figure 12 (Color online) The mould scheduling for the instance 20 × 2× 4.

Table 10 The unit fuzzy processing time of different moulds for instance 20× 2× 4

Machine 1 Machine 2

Mould 1 (43 45 53) (43 45 53)

Mould 2 (0 0 0) (29 33 37)

Mould 3 (0 0 0) (45 48 57)

Mould 4 (33 38 46) (33 38 46)

5 Results and discussion

From Figure 8, the PF of the dataset (30×3×5) by MOPIO is in the left bottom of the coordinate system

compared with the PFs by MOPSO and NSGA-II. From the Table 4, the dataset (30×3×5), the value of

Avg(HV) by MOPIO, is bigger than the values of Avg(HV) by MOPSO and NSGA-II. Furthermore, the

boundary of the PF by MOPIO is larger than the PFs by MOPSO and NSGA-II. From Table 5, the value

of the Avg(CR(MOPIO, NSGA-II)) is bigger than the value of the Avg(CR(NSGA-II, MOPIO)) and the

value of the Avg(CR(MOPIO, MOPSO)) is bigger than the value of the Avg(CR(MOPSO, MOPIO)). It

can be concluded that for the dataset (30 × 3 × 5), the quality of the PF by MOPIO is better than the

PFs by MOPSO and NSGA-II. For the dataset (60 × 9 × 15), by comparing the location of PFs in the

Figure 10 and the values for dataset (60 × 9 × 15) in Tables 4 and 5, it can be concluded that for the

dataset (60× 9× 15), the quality of the PF by MOPIO is better than the PFs by MOPSO and NSGA-II

based on the two performance indicators.

From Figure 9, although the PF by MOPSO is in the left bottom of the coordinate system compared

with the PFs by MOPIO and NSGA-II, the boundary of the PF by MOPIO is larger than the PFs by

MOPSO and NSGA-II. Turning back to the values in Tables 4 and 5, it can be seen that for the dataset

(40×6×10), the value of Avg(HV) of the PF by MOPSO is bigger than the values of the PFs by MOPIO

and NSGA-II. However, the value of the Avg(CR(MOPIO, MOPSO)) is bigger than the value of the

Avg(CR(MOPSO, MOPIO)) and the value of the Avg(CR(MOPIO, NSGA-II)) is bigger than the value

of the Avg(CR(NSGA-II, MOPIO)).

From Tables 6 and 7, it can be known that the value of the Avg(HV) for MOPIO is better than the

values of Avg(HV) for MOPSO and NSGA-II for the bigger datasets which are randomly generated. How-

ever, for the small dataset, the value of the Avg(HV) for MOPSO is better than the value of the Avg(HV)

for MOPIO and NSGA-II. For these three datasets, the value of the Avg(CR(MOPIO, MOPSO)) is bigger

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:17

than the value of the Avg(CR(MOPSO, MOPIO)) and the value of the Avg(CR(MOPIO, NSGA-II)) is

bigger than the value of the Avg(CR(NSGA-II, MOPIO)).

Furthermore, from the Tables 8 and 9, it can be seen that for all these six instances, the proposed

MOPIO using the neighbourhood best best for each pigeon always has a better performance than the

MOPIO using the global best pigeon in the map and compass operation, in terms of the CR and the HV.

After analyzing the PFs of the different algorithms in different aspects, we can conclude that the

PFs obtained by MOPIO always have a better CR compared with MOPSO and NSGA-II. For most

of the datasets, the HV of the solutions obtained by MOPIO is better than MOPSO and NSGA-II.

Moreover, it can be seen that the modification of the velocity updating equation in the map and compass

operation is effective after comparing the proposed MOPIO with neighbourhood best with MOPIO with

the global best. Because of the mechanism of the index-based ring topology used in the MOPIO, more

Pareto-optimal solutions are located compared with using the global best pigeon for all the pigeons.

Furthermore, since stable niches are induced by the ring topology in decision space, each pigeon is able

to advance in its own niche. In each niche, a pioneer is selected and if these pioneers have a good

distribution, there is a high possibility that more Pareto-optimal solutions can be located. Moreover,

the non-dominated-scd-sort algorithm applied in the MOPIO for sorting the pigeons helps in choosing

the pigeons with better performance and distribution in every iteration. The solutions which are less

crowded have more opportunities to survive. At the same time, if solutions are near each other in the

objective space but not crowded in the decision space, they also have opportunities to be reserved, based

on the ranking algorithm. The diversity of the population is improved by the ring topology and the

non-dominated-scd-sort algorithm used in the proposed algorithm [24], which makes it have a better

performance when dealing with the multi-objective problem.

6 Conclusion

In this research, the FPSP-MM is studied. The processing time and the maintenance time are represented

by triangular fuzzy numbers. Two objectives are optimized, the fuzzy makespan and the robustness. An

MOPIO algorithm is proposed to solve this multi-objective fuzzy problem. To extend the basic PIO algo-

rithm from the single-objective case to the multi-objective case, a special non-dominated sorting method

is used to obtain solutions that are used as candidates for the leader pigeon, and a good distribution

of solutions in the objective space and in the corresponding decision space is guaranteed. Moreover,

we make each pigeon exchange information with its closed neighbors, instead of the global best pigeon,

with the help of index-based ring topology. The diversity of the population is improved by forming

more niches. Furthermore, a series of experiments on the fuzzified benchmarks from existing literature

and some randomly generated instances show the efficiency and effectiveness of the proposed MOPIO

algorithm by comparing it with other algorithms.

In this research, all the jobs were well prepared at the beginning time, however, in real cases, some

new jobs may arrive during the production process. When the new tasks are considered, the original

schedule needs to be adjusted to obtain better solutions. In the future, a new algorithm based on PIO

should be proposed to solve this problem. Furthermore, more mechanisms should be found to improve

the effectiveness of the proposed MOPIO algorithm.

Acknowledgements This work was supported by Research Grants Council of the Hong Kong Special Administrative

Region, China (Grant No. PolyU 15201414), National Natural Science Foundation of China (Grant Nos. 71471158,

71571120, 71271140), Research Committee of the Hong Kong Polytechnic University under Student Account Code RUKH,

Project Supported by Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme

2016, and Project of Innovation and Entrepreneurship Education Research Center for University Student of Guangdong

Province (Grant No. 2018A073825).

Fu X Y, et al. Sci China Inf Sci July 2019 Vol. 62 070202:18

References

1 Rajkumar M, Asokan P, Vamsikrishna V. A GRASP algorithm for flexible job-shop scheduling with maintenance

constraints. Int J Prod Res, 2010, 48: 6821–6836

2 Berrichi A, Yalaoui F, Amodeo L, et al. Bi-objective ant colony optimization approach to optimize production and

maintenance scheduling. Comput Oper Res, 2010, 37: 1584–1596

3 Wong C S, Chan F T S, Chung S H. A genetic algorithm approach for production scheduling with mould maintenance

consideration. Int J Prod Res, 2012, 50: 5683–5697

4 Wong C S, Chan F T S, Chung S H. A joint production scheduling approach considering multiple resources and

preventive maintenance tasks. Int J Prod Res, 2013, 51: 883–896

5 Wong C S, Chan F T S, Chung S H. Decision-making on multi-mould maintenance in production scheduling. Int J

Prod Res, 2014, 52: 5640–5655

6 Wang S J, Liu M. Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive

maintenance planning. J Manuf Syst, 2015, 37: 182–192

7 Shen L, Yang H B, Gao S, et al. Production scheduling with mould maintenance in flow shop. In: Proceedings of the

4th International Conference on Sensors, Mechatronics and Automation, Zhuhai, 2016. 730–733

8 Sakawa M, Mori T. An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and

fuzzy duedate. Comput Ind Eng, 1999, 36: 325–341

9 Arik O A, Toksari M D. Multi-objective fuzzy parallel machine scheduling problems under fuzzy job deterioration and

learning effects. Int J Prod Res, 2018, 56: 2488–2505

10 Jamrus T, Chien C F, Gen M, et al. Hybrid particle swarm optimization combined with genetic operators for flexible

job-shop scheduling under uncertain processing time for semiconductor manufacturing. IEEE Trans Semicond Manuf,

2018, 31: 32–41

11 Palacios J J, González-Rodŕıguez I, Vela C R, et al. Robust multiobjective optimisation for fuzzy job shop problems.

Appl Soft Comput, 2017, 56: 604–616

12 Xiong J, Xing L N, Chen Y W. Robust scheduling for multi-objective flexible job-shop problems with random machine

breakdowns. Int J Prod Econ, 2013, 141: 112–126

13 Duan H B, Qiao P X. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning.

Int J Intel Comput Cyber, 2014, 7: 24–37

14 Li C, Duan H B. Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential

function. Aerosp Sci Tech, 2014, 39: 352–360

15 Zhang B, Duan H B. Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey

pigeon-inspired optimization in dynamic environment. IEEE/ACM Trans Comput Biol Bioinf, 2017, 14: 97–107

16 Duan H B, Wang X H. Echo state networks with orthogonal pigeon-inspired optimization for image restoration. IEEE

Trans Neural Netw Learn Syst, 2016, 27: 2413–2425

17 Deng Y M, Duan H B. Control parameter design for automatic carrier landing system via pigeon-inspired optimization.

Nonlinear Dyn, 2016, 85: 97–106

18 Zhang S J, Duan H B. Gaussian pigeon-inspired optimization approach to orbital spacecraft formation reconfiguration.

Chinese J Aeronaut, 2015, 28: 200–205

19 Qiu H X, Duan H B. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design.

Sci China Technol Sci, 2015, 58: 1915–1923

20 Qiu H X, Duan H B. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among

obstacles. Inf Sci, 2018, doi: 10.1016/j.ins.2018.06.061

21 Fortemps P. Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE Trans Fuzzy Syst, 1997, 5: 557–569

22 Bean J C. Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput, 1994, 6: 154–160

23 Tasgetiren M F, Liang Y C, Sevkli M, et al. A particle swarm optimization algorithm for makespan and total flowtime

minimization in the permutation flowshop sequencing problem. Eur J Oper Res, 2007, 177: 1930–1947

24 Yue C T, Qu B Y, Liang J. A multi-objective particle swarm optimizer using ring topology for solving multimodal

multi-objective problems. IEEE Trans Evol Comput, 2018, 22: 805–817

25 Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol

Comput, 2002, 6: 182–197

26 Lei D M. Scheduling fuzzy job shop with preventive maintenance through swarm-based neighborhood search. Int J

Adv Manuf Technol, 2011, 54: 1121–1128

27 Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans

Evol Comput, 2004, 8: 256–279

28 Zitzler E, Thiele L, Laumanns M, et al. Performance assessment of multiobjective optimizers: an analysis and review.

IEEE Trans Evol Comput, 2003, 7: 117–132

29 Li J Q, Pan Q K, Mao K, et al. Solving the steelmaking casting problem using an effective fruit fly optimisation

algorithm. Knowledge-Based Syst, 2014, 72: 28–36

https://doi.org/10.1080/00207540903308969
https://doi.org/10.1016/j.cor.2009.11.017
https://doi.org/10.1080/00207543.2011.613868
https://doi.org/10.1080/00207543.2012.677070
https://doi.org/10.1080/00207543.2014.900200
https://doi.org/10.1016/j.jmsy.2015.07.002
https://doi.org/10.1016/S0360-8352(99)00135-7
https://doi.org/10.1080/00207543.2017.1388932
https://doi.org/10.1109/TSM.2017.2758380
https://doi.org/10.1016/j.asoc.2016.07.004
https://doi.org/10.1016/j.ijpe.2012.04.015
https://doi.org/10.1108/IJICC-02-2014-0005
https://doi.org/10.1016/j.ast.2014.10.007
https://doi.org/10.1109/TCBB.2015.2443789
https://doi.org/10.1109/TNNLS.2015.2479117
https://doi.org/10.1007/s11071-016-2670-z
https://doi.org/10.1016/j.cja.2014.12.008
https://doi.org/10.1007/s11431-015-5860-x
https://doi.org/10.1109/91.649907
https://doi.org/10.1287/ijoc.6.2.154
https://doi.org/10.1016/j.ejor.2005.12.024
https://doi.org/10.1109/TEVC.2017.2754271
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/s00170-010-2989-4
https://doi.org/10.1109/TEVC.2004.826067
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1016/j.knosys.2014.08.022

	Introduction
	Problem description
	Arithmetic operations on triangular fuzzy numbers
	Uncertain maintenance time
	Objective measure
	Pareto domination relationship

	Optimization methodology
	Basic pigeon inspired optimization
	Encoding and decoding of the pigeon
	Multi-objective pigeon inspired optimization

	Experimental design
	Performance indicator
	Parameter tunings
	Comparison with other multi-objective algorithms

	Results and discussion
	Conclusion

