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I. Introduction

B Energy and environmental problems brought by automobiles
are becoming more and more prominent

» The number of vehicles registered in China reached an all-time high of
over 300 million, according to the traffic bureau of the Ministry of
Public Security.

» In 2017, transport sector of China consumed 380 million tons of
standard coal, accounting for 8.64% of the country's total energy
consumption.

B Combining longitudinal driving with intelligent transportation
information can significantly improve energy efficiency.
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I. Control system

Goal: by making full use of upcoming road/traffic information, develop an
energy-efficient longitudinal driving strategy with the stop-and-go function
to achieve full-speed range driving

Method:

O under the framework of model predictive control (MPC), design a
predictive cruise controller for car-following/speed-cruise scenarios

O by using a feedforward-feedback approach, design a hierarchical
controller for stop-and-go scenarios
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. Control system
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Control architecture of the proposed longitudinal driving strategy



I. Controller design --- system model

» Simplified schematic representation of the driveline
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» System model
longitudinal dynamics for host vehicle
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I. Controller design --- predictive cruise controller

» Optimization problem formulation for the predictive cruise controller

fuel consumption
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I. Controller design --- stop-and-go controller

» Hierarchical controller for stop-and-go scenarios
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I. Implementation issues

» Shift map for different operating modes
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I. Implementation issues

> fast solver
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give a initial value of a costate A(0), along the necessary conditions and optimal control law, the
corresponding terminal value of a costate A(N) can be obtained. transfer the optimal problem into

solving equation problem by finding the optimal initial costate A(0) that satisfying the terminal
necessary condition.

mapping from the initial costates A(1) to the terminal necessary condition
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. . . . solve the equation to find the optimal A(0) by
the analytical solution during iteration : : :
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I. Implementation issues

» Use of the high-definition (HD) map
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The data of HD map is location depended and stored in the incar user interface media system
Hardware system only stores a piece of map data by using the dynamic map

As the vehicle moves forward, the old data of the dynamic map are replaced by the new data
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I. Implementation issues

» Switching logic between traction control and brake control
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O By performing coasting experiments under different speeds, the mapping from the
vehicle speed to the drag acceleration is obtained as a shifting line

O A hold region is introduced to avoid frequent mode switching



. Simulation results
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I. Simulation results

> Simulation results
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Compared with that of the traditional ACC, the fuel economy of the vehicle with the proposed strategy
has increased by more than 8%




I. Simulation results

> Evaluation of the fast solver

* computational time increases linearly with the prediction horizon while in traditional numerical
iteration algorithm  SQP (sequential quadratic programming), computational time increases
exponentially;

* computational efficiency is much better than SQP
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I. Experimental results
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I. Experimental results

> Test results in Wuhan

Comparison of fuel consumption in different time periods of weekday
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. Experimental results

» Evaluation of the influence from road-slope signal

Performance with roa-slope signal
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O Red boxes indicate that the vehicle using the proposed strategy will accelerate before the hill

is reached

O On the selected road section of Wuhan, the contribution of slope to fuel economy is 2.69%




I. Experimental results

Proposed strategy 805km
ACC 766km

9.1%

O compared with a factory-installed ACC: road test over 1500km shows
8~9% fuel saving

Human drivers Fuel consumption in Fuel consumption in
their daily driving style | their eco-driving style
Professional driver 1 10.08L/100km 7.81L/100km
Professional driver 2 9.27L/100km 7.72L./100km

O compared with human divers:
their daily driving style. proposed strategy can reduce fuel by 15%
their eco-driving style: proposed strategy can reduce fuel by 2%



I. conclusion

* Acceleration and braking of the proposed driving strategy are more smoothly

than that of a factory-installed ACC

* Compared with the factory-installed ACC, road tests over 1500km show that

the average fuel economy of the proposed strategy is 8-9%

Yk On the selected road section of Wuhan, the contribution of slope to fuel

economy is 2.69%
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