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Abstract Race condition remains one kind of the most common concurrency bugs in software-defined

networks (SDNs). The race conditions can be exploited to lead to security and reliability risks. However,

the race conditions are notoriously difficult to detect. The existing race detectors for SDNs have limited

detection capability. They can only detect the races in the original traces (observed traces) and cause false

negatives. In this study, we present a predictive analysis framework called SDN-predict for race detection

in SDNs. By encoding the order between the specified network events in SDNs as constraint, we formulate

race detection as a constraint solving problem. In addition to detecting the races in the original trace, our

framework can also detect the races in the feasible traces got from reordering the events in the original

trace while satisfying the consistency requirements of trace. Moreover, we formally prove that our predictive

analysis framework is sound and can achieve the maximal possible detection capability for any sound dynamic

race detector with respect to the same trace. We evaluate our framework on a set of traces collected from

three SDN controllers (POX, Floodlight, ONOS), running 5 representative applications including reactive

and proactive applications in large networks, on three different network topologies. These experiments show

that our framework has higher race detection capability than exisiting SDN race detector-SDNRacer, and

detects more 1173 races. These 1173 races were previously undetected and confirmed by checking the race

graphs.
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1 Introduction

Software-defined networks (SDNs) is a new network paradigm that facilitates network management and

enables programmatical network configuration. SDN consists of control panel and data panel. The control

panel of the network makes decision about how packets should flow through, and how the data panel

of the network forwards packets according to the decisions made by control panel. SDN separates the

control panel from the data panel. SDN controllers realize the control logic based on controllers’ south

bound interface, usually OpenFlow [1], to compute, maintain, populate the forwarding flow table of each

SDN switch in the network.

The SDN controller is the brain of the whole network, and developing reliable control softwares in

the asynchronous and distributed environment is vital. However, developing such highly asynchronous

softwares is difficult due to the asychronism that results in concurrency bugs [2,3] such as race conditions

(race and race condition will be alternately used in this paper). Owing to the packet forwarding and
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message sending are frequently in SDN, the data packets and OpenFlow messages will exhibit a large

number of race conditions.

In the context of SDN, the concurrency bugs can occur at two places: (i) within the control panel (the

control software is multithreaded or distributed); (ii) at the interface between the control panel and the

data panel (two events concurrently access to the same flow table of the switch, and one of the event is

a write produced by the controller). The flow table of the SDN switch is similar to the memory location

which is read and modified by several events and entities. The concurrency bugs in SDNs are difficult to

detect, since these are only manifested in specific sequences of the events. However, detecting these bugs

is important as they can cause packet loss, or increase packet forwarding delay and processing overhead

on switches and the controller. These problems greatly lower the performance of the SDN. The first kind

of concurrency bug has been researched by Xu et al. [4] using the happen-before (HB) causality model

of the SDN controller. The second kind of concurrency bug can be detected using the dynamic analyzer-

SDNRacer, which also uses the HB relations [5] between the events. The HB based approaches have

limited detection ability and result in false negatives [6], since the HB based approaches can only detect

the races in the observed traces by checking whether there is path between two concurrent events in the

HB graph, which is a graph to specify the HB relations between events. In the HB graph, nodes denote

events and directed edges represent the HB relations between the source nodes and the destination nodes.

Two concurrent events form a race if there is no path between them, namely there is no HB relation

between them. If we reorder the events in the observed trace under some contraints, two concurrent

events between which there is HB relation in the observed trace may form a race in the reordering traces.

The HB based approaches cannot find such races.

Predictive trace analysis [6–9] is a powerful technique to detect concurrency bugs, and has attracted

attention in recent years. Predictive trace analysis can generate other permutations of the events in the

trace under certain constraints and detect the bugs undetected in the original trace. Unlike dynamic

analysis, it is capable of exposing the bugs in unexecuted traces, so it has higher detection capability.

And it incurs fewer false positives than static analysis which uses whole program information.

Our work. In this paper, we present a predictive analysis framework called SDN-predict for race

detection in SDNs. First, We encode the order between the specified network events as first logic formula

while satisfying the consistency requirements of trace. Then, we use a SMT solver Z31) to solve these

formulas, and decide whether two concurrent access events exist race according to the satisfiabiltiy of

the formula. Finally, we use the commutativity and time filters in [10] to filter the harmless races. We

evaluate our framework by analyzing five applications on real world SDN controllers, and show that it

discovers several undetected race conditions and has higher detection ability than existing SDN race

dectection technique SDNRacer, which is a dynamic analysis approach based on HB model.

Contributions. The main contributions of this paper are summarized as follows.

(1) We present a predictive analysis framework SDN-predict for race detection in SDNs, and formulate

race detection as constraint solving [11] problem. We give the definition of the consistency of trace espe-

cially for SDN considering the asynchronous nondeterminism, and prove the soundness and maximality

of our predictive analysis framework.

(2) We briefly introduce an implementation of our framework to detect the races between the concurrent

accesses of the flow tables.

(3) We evaluate our framework on five real world SDN applications, and compare it with SDNRacer.

The experimental results shown that it has higher race detection capability than SDNRacer and detects

1173 previous undetected race conditions, and it has better scalability in the most cases.

The rest of this paper is organized as follows. Section 2 introduces the background. Section 3 presents

our predictive race analysis framework SDN-predict. Section 4 briefly introduces the implementation of

our framework. Section 5 evaluates SDN-predict. Section 6 reviews related work and Section 7 draws a

conclusion of this paper.

1) SMT solver Z3. https://github.com/Z3Prover/z3.

https://github.com/Z3Prover/z3
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Figure 1 (Color online) An example of a LearningSwitch application in Floodlight and a sequence of events (represented

by numbers) which causes three race conditions.

2 Background

In this section, we start with some background notions on concurrency problems in SDN programming

firstly. Then, we give a motivating example to illustrate how concurrency bugs can occur in SDNs.

2.1 SDN programming and concurrency problems

A SDN controller is an event-driven programmable software application that acts as a stragetic control

point in the SDNs. It is used to compute, maintain and populate the forwarding flow table of each SDN

switch in the network. The forwarding flow table includes a list of flow table entries ordered by their

priorities. Furthermore, each flow table entry is composed of a boolean predicate and a forwarding action.

The flow table entry is used to match the packets transferred in the network. The predicate can identify

the packets to which the forwarding action is applied. The forwarding actions are actions which can be

taken when a packet matches the terms of a flow table entry. The supported forwarding actions include

sending the packet to the controller for processing, sending the packet out to a specified port, flooding

and forwarding using nonOpenFlow methods such as “normal” switch processing.

The messages emitted by asynchronous events, such as PACKET IN showing the packet arriving at a

switch and FLOW REMOVED informing the controller that flow has been removed, can be dispatched

to the controller nondeterministically. The order of these events may change in another execution. The

nondeterminism in general is root cause of concurrency problems. We say that a race occurs when two

events access to the same flow table at the same time, and at least one of the event is a write produced

by the controller.

2.2 Motivating example: Floodlight LearningSwitch

Here, we take a Floodlight program which runs a LearningSwitch application [12] as example (see Fig-

ure 1). In this application, the switch will examine each packet and learn the source-port mapping.

Thereafter, the source MAC address will be associated with the port. If the destination of the packet is

already associated with some ports, the packet will be sent to the given port, otherwise it will be flooded

on all ports of the switch.

Now, considering the following sequence of events: a host, Host#1, sends a packet to another host,

Host#2, in the network. The packet hits the switch S1 in the network. S1 receives the packet and

processes it 1©. The packet is matched against the flow table in S1 to determine the flow table entry that
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Figure 2 (Color online) A segment of event sequence in Figure 1 and two race conditions detected by SDN-predict.

should be applied. If there is a matched flow table entry, then S1 sends the packet out to other switches

or to another host. Otherwise, S1 sends a message PACKET IN to the controller and stores the packet

in its buffer 2©. When the controller receives the message, it (i) computes the shortest path between S1

and Host#2; (ii) sends the request back to S1 in a PACKET OUT message 3©; (iii) sends a Flow MOD

message containing delete operation 8© (deleting the flow entry in the specified flow table, this case may

occur before the packet matching against the flow table in S1 if the flow entry is time out) and another

Flow MOD message containing add operation 9© (adding a new flow entry to the specified flow table).

Then S1 reads a packet from its buffer and forwards the packet to specified switch S2 4©. S2 handles the

packet similar to S1. It receives the packet sent by S1 and handles it 5©. In term of whether the packet

can match the flow table entry in its flow table, it either forwards the packet to Host#2 7© or sends a

message to the controller 6©, and then, the controller sends the request back to S2 in a PACKETR OUT

message 10© and sends a FLOW MOD message 11©. In order to express the sequence of events conveniently,

we use the number without circle to express the serial number of the event in later.

Considering the sequence of events 1-2-3-4-8-9-5-6-10-11-7. SDNRacer can only detect the race condi-

tion (1, 8), because there is no HB relation between the two events. Figure 2 presents that when this race

condition occurs, the matched flow table entry in S1 has been deleted before the packet match the flow

table entry in the flow table, so the packet is dropped. The reason for this result is that the packet cannot

match any flow table entry in S1 before the flow table entry added into the required flow table. Except for

the race condition (1, 8), SDN-predict detected another two race conditions (1, 9) and (5, 11) which are

shown in Figures 2 and 3, respectively. The reason for the two races can be detected by SDN-predict is

that, events 2 and 6 are asynchronous events which can happen nondterministically (In fact, when events

9 and 11 arrived at the switches, the packet matching process of events 1 and 5 have not finished, so two

pairs of the concurrent events may access the flow table at the same time respectively), and predictive

analysis can reorder them in the event sequence. The sequence 1-2-3-4-8-9-5-6-10-11-7 can be reordered

into 2-3-8-9-1-4-5-6-10-11-7 and 1-2-3-4-8-9-6-10-11-5-7 as long as the reordered event sequences (traces)

are feasible. When the race condition (1, 9) occurs, S1 receives a packet and then reads the flow table to

match the packet with the flow table entry while the controller sends an OpenFlow message FLOW MOD

to S1 to modify the flow table. It leads to packet loss. Race (5, 11) causes the same result as (1, 9). Next

section we will describe our framework in detail.
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Figure 3 (Color online) Another segment of event sequence in Figure 1 and a race condition detected by SDN-predict.
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Figure 4 (Color online) The overview of SDN-predict.

3 Predictive analysis framework SDN-predict for SDNs

Firstly, the overview of the predictive analysis framework proposed in this paper is introduced briefly.

Then, the events occurring in the network and the trace consisted of these events are presented. Next,

the flow table in the OpenFlow switch [1] accessed by the events in the trace is given. In the last of this

section, we describe our predictive analysis framework in detail.

3.1 The overview of SDN-predict

As shown in Figure 4, The STS (SDN troubleshooting simulator) simulates a complete network and

the controller, and it should be instrumented firstly to log the packets, messages and operations in the
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Table 1 The events in each SDN device and their related messages and operations

Device Event Messages Operations

Switch

SwPktHandle PACKET IN Read

SwMsgHandle PACKET OUT, FLOW MOD Read, add, modify, delete

SwPktSend ⊥ ∅

SwMsgSend PACKET IN, FLOW REMOVED ∅

SwFlowRemoved FLOW REMOVED Delete

Controller
CtrlMsgHandle ⊥ ∅

CtrlMsgSend PACKET OUT, FLOW MOD ∅

Host
HostPktHandle ⊥ ∅

HostPktSend ⊥ ∅

switches and hosts. The logged information is written into trace files. Then we read each trace file and

construct four kind of constraints for the events in the trace using the constraint encoding rules presented

in this section. After that, the constraint solver reads the constraint file and checks its satisfiability. If the

constraint file is satisfiable then a race condition occurs. The detected race conditions may be harmless

and cause false positives. Thence SDN-predict uses the filtering policies in [10] to filter the harmless race

conditions. At last, each of the remaining race condition is separately stored in a dot file, in which a race

graph gives an event sequence causing the race condition. Otherwise the constraint file is unsatisfiable,

SDN-predict uses the constraint solver to check whether there are feasible traces of the observed trace.

If there are feasible traces, SDN-predict reorders the observed trace, and repeats above procedure until

no feasible trace exists. If all the feasible traces are unsatisfiable, SDN-predict reports no race.

3.2 Events and trace

3.2.1 Events

Each event has a set of attributes which describes the event. The set of attributes is usually a subset

of (sw, pid, mid, out pids, out mids, msg type, ops) depending on the event type. The meaning of each

attribute is as follows. sw is a switch identifier which receives or sends the event. pid is the identifier

of the packet processed by the event. mid specifies the identifier of the OpenFlow message processed

by the event. If there is no packet or message processed by the event, these attributes of the event

can be set to the undefined value ⊥. out pids represents the identifiers of the packets sent out by the

event. The packet sent out by the event is treated as different from the packet before being processed

by the event, so the packet has a new unique pid in out pids. An event may send out multiple packets,

thus out pids is a set. out mids is the identifiers of the OpenFlow messages forwarded by the event.

out mids is also a set. If there is no such packets or messages, out pids or out mids sets to ∅. The type

msg type of OpenFlow messages processed by the SDN events in our framework includes: PACKET IN,

PACKET OUT, BARRIER, FLOW REMOVED, FLOW MOD, PORT MOD. ops is the set of flow table

operations the event performed.

The events involved in this paper and their related messages and operations are listed in Table 1. Next,

we will explain them in detail.

The events related to switch comprise:

SwPktHandle(sw, pid, out pids, mid,out mids, ops). On receipt of a data plane packet pid, the

packet is matched against the flow entries of the flow table to select one. There are two cases during the

matching process: (1) if a flow entry is founded, the instruction set in the flow entry is executed, the

packet may be directed to another flow table or forwarded to another switch/host; (2) if the packet does

not match a flow entry in the flow table, this is a table miss, and the unmatched packet may be dropped

or passed to another table or sent to the controller via a PACKET IN message.

SwMsgHandle(sw, pid, out pids, mid,out mids, msg type, ops). On receipt of a message mid with

message type msg type, the switch may read a packet pid from its buffer and process the flow entries

matched with the packet using the operation ops in the event sent by controller. After then, OpenFlow
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messages can be sent to the controller (in which case out mids contains the messages to be sent), and a

packet can be forwarded (in which case out pids contains the packet to be forwarded).

SwPktSend(sw, pid, out pids). The switch sw sends the packet pid with a new identifier in out pids

out to another switch or host as a result of a SwPktHandle or SwMsgHandle event.

SwMsgSend(sw, mid, out mids). The switch sends an OpenFlow message mid to the controller with

the identifier in out mids. For example, when a packet is received at the switch, and the packet cannot

be matched against any flow entry of the flow tables in the switch, it sends a PACKET IN message to

the controller. As well as when a flow entry is removed by the expiry mechanism or the controller, an

OpenFlow message FLOW REMOVED is sent to the controller.

SwFlowRemoved(sw, mid, out mids, ops). A flow entry in the switch is timed out or was explicitly

deleted. As a result of this event, the switch generates a FLOW REMOVED message to inform the

controller (in which case the out mids contains the message to be sent) that the flow entry is removed.

ops is the operation delete in the FLOW MOD message sent by the controller.

The events related to controller include:

CtrlMsgHandle(mid, out mids). The controller receives and processes the OpenFlow message mid

from the switch, and generates OpenFlow messages in out mids as a response.

CtrlMsgSend(mid, out mids). The controller sends the OpenFlow message mid such as a PACKET

OUT message out with the identifier in out mids.

The events related to host involve:

HostPktHandle(pid, out pids). The host receives and processes the packet pid, and generates packets

in out pids.

HostPktSend(pid, out pids). The host sends the packet pid with identifier in out pids out to another

host or to a switch.

3.2.2 Trace and consistent trace

An execution trace τ is abstracted as a sequence of events. Given a trace τ and a concurrent object o

(in this paper is flow table), τ↾o is the restriction of τ to events involving o. τ↾read is the projection of τ

to the events containing read operation. If e is an event in trace τ , then let τe denote the prefix of τ up

to and including e. For example, there is a trace τ = τ1eτ2, the prefix τe of τ is τ1e. Let lastop(τ) be the

last event of τ containing operation op, such as, lastadd(τ) is the last event of τ which contains an add

operation.

A trace τ is consistent which means that it satisfies the following conditions.

• Read consistency. An event containing a read operation (called read event) matches the packet

against the flow entries of the flow table written by the most recent event containing a write operation

(called write event). Formally, if e is a read event of τ , then ft(e) = ft(lastwrite(τe↾ft)), ft is the flow table

e operated on.

• Must happen-before. Must happen-before (MHB) relation ≺⊆ Event×Event represents the order

between the events in a given trace τ . If event e1 must happen-before event e2, we can write as e1 ≺ e2.

For a finite trace consisting of a sequence of events τ = e1 · e2 · · · en, we use ei ≺τ ej to denote that event

ei must happen-before event ej in τ . The MHB relations in the SDN are constructed by making use of

the information provided by the attributes pid, out pids, mid and out mids of the events. For example,

e1 is a SwPktHandle or SwMsgHandle event, e2 is a SwPktSend event, and e2.pid ∈ e1.out pids, then e1
must happen-before e2. All MHB relations in the SDN and their detailed explanations can reference to

the MHB constraints in Subsection 3.4.2. In our example, 1 ≺ 2, 2 ≺ 3, 3 ≺ 4, 2 ≺ 9, 4 ≺ 5, 5 ≺ 6, 6 ≺

10, 6 ≺ 11, 10 ≺ 7.

• Asynchronous nondeterminism. Asynchronous nondeterminism indicates that the asynchronous

event (such as the event emitting a PACKET IN message) is able to change its order with the read event

on the same switch in another execution meanwhile keeping the MHB relations between the events

except for the asynchronous event and the read event in the original trace. Formally, if there is a trace

τ = · · · ei · ej · · · , where ei is a read event and ej is an asynchronous event, and ei ≺ ej in the original
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trace, then it is able to ej ≺ ei in another execution while keeping the remaining MHB relations in the

original trace. In our example, the MHB relation 1 ≺ 2 in the original trace can be 2 ≺ 1 in another

trace due to asynchronous nondeterminism.

The above three conditions state the consistency of a trace. Consistency is just used to describe

the property of a single trace. Any trace produced by the SDN applications is expected to consistent.

However, various traces generated by the SDN applications are related. This means that some traces can

be generated from a trace by reordering the events in this trace.

Let feasible(τ) be the set of all traces generated from the original trace τ , which we call feasible traces.

The most common character of feasible(τ) is to require feasible(τ) to closed under consistency. However,

this requirement is too strong. We use the weaker requirement: prefix closed [6], strict consistent [8] to give

predictive analysis technique the largest coverage. Prefix closed says that prefixes of a feasible trace also

is feasible. That is, if τ1τ2 ∈ feasible(τ) then τ1 ∈ feasible(τ). Strict consistent means that the flow table

read by the event in feasible(τ) can be different from the one read by the same event in τ , but it should

be consistent with the flow table written by the lastest write event. Formally, if τ1e1, τ2 ∈ feasible(τ)

and τ1 = τ2, then (1) if τ2e1 is consistent then τ2e1 ∈ feasible(τ), and (2) if e1 is a read event, then

there exists some event e2 with e2[ft(e1)/ft] = e1 and τ2e2 is consistent, then τ2e2 ∈ feasible(τ). A trace

in feasible(τ) is called τ -feasible. In our example, the original trace τ : 1-2-3-4-8-9-5-6-10-11-7 is feasible

according to the definition of the consistency. Event 1 read the flow table last written by most recent

write event (initial write event), event 5 read the flow table last written by most recent write event (initial

write event). And the events in trace τ all satisfy the MHB relations in SDN. Let’s consider the trace τ1:

2-3-8-9-1-4-6-10-11-5-7 generated from τ by reordering the asynchronous events 2 and 6. In τ1, event 1

read the flow table written by the most recent event 9, and event 5 read the flow table written by the

most recent event 11 (strict consistent), and all the events satisfy the MHB relation in SDN except for the

asynchronous events, so according to the consistency of the trace, τ1 is feasible, that is, τ1 ∈ feasible(τ).

The prefix 2-3-8-9-1-4 of τ1 is consistent, so it is feasible. And, the flow table read by events 1 and 5 in

τ1 is respectively different from the one read by the same event in τ . Thus it can be seen that τ1 meets

the prefix closed, strict consistent.

3.3 Flow table

3.3.1 The definition of flow table

A switch is required to have at least one flow table, and can optionally have more flow tables. When the

switch receives a packet, the packet is matched against the flow entries of the flow table to select one.

A flow table consists of flow entries, which further contains following components: match fields, priority,

counters, instructions, timeouts, cookie, and flags. Match fields are used to match against packets. They

consist of ingress port, packet headers and other fields. The match between a packet and a flow entry

or between two flow entries can be either an exact match or a wildcard match. Priority is the matching

precedence of the flow entry. If the packet matches to multiple flow entry, the flow entry with highest

priority is selected. Counters represents the number of times the flow entry is matched. Instructions is

used to modify the action set associated with the packet. Timeouts is the maximum amount of time

or idle time before the flow entry is expired by the switch. Cookie is the opaque date chosen by the

controller. Flags alter the way flow entries are managed.

A flow table entry fe is identified by its match fields (fe.m) and priority (fe.p): the match fields and

the priority are used together to identify a unique flow entry in the flow table.

3.3.2 Operations on flow table

There are four types of operations that can be performed on the flow table: read, add, modify, and

delete. The read operation is encapsulated by the SwPktHandle event and performed for each received

packet. The add, modify, delete operations (we call them write operations) are encapsulated by the

SwMsgHandle event with the msg type of FLOW MOD and performed when the OpenFlow message is

processed. The race condition occurs when two events containing these operations access the same flow
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table at the same time, and at least one of the event contains a write operation. We define the semantics

of all above operations using the OpenFlow specification in the following:

read(pkt, feread/femiss). A read operation denotes that the switch receives a packet pkt, then the

packet pkt is matched against the flow entry of the flow table. If there are such entries, the highest

priority flow entry feread is selected, otherwise the table-miss flow entry femiss is selected.

add(feadd,OFPFF CHECK OVERLAP). Each add operation has an OFPFF CHECK OVERLAP

flag which requires that the switch must first check for any overlapping flow entries in the requested

table. Two flow entries fe1 and fe2 overlap if a single packet pkt may match both of them and the two

entries have the same priority (fe1.p = fe2.p). If an overlap conflict exists between an existing flow entry

fe and the flow entry feadd to be added by the add operation, the switch must refuse the addition. For

non-overlapping add or those with non overlapping check, the switch must insert the flow entry feadd in

the requested table. If there is a flow entry fe with the same match fields (fe.m = feadd.m) and priority

(fe.p = feadd.p) in the flow table, then that entry fe must be cleared from the table and the new flow

entry feadd will be added.

For the modify and delete operations, they have non-strict versions and strict versions. In the strict

versions, all match fields and the priority are strictly matched against the flow entry, and only identical

flow entry is modified and removed. In the non-strict versions, missing match fields are wildcarded and

the priority is ignored.

We use fe1
strict
≡ fe2 and fe1

non-strict
≡ fe2 to respectively denote the strict and non-strict semantics of

flow entry matching:

fe1
strict
≡ fe2 := fe1.m = fe2.m ∧ fe1.p = fe2.p ∧ strict = True,

fe1
non-strict

≡ fe2 := fe1.m ⊆ fe2.m ∧ strict = False.

The boolean value of strict affects how the matching is performed.

modify(femod, strict). For the modify operation, if a matching entry fe that matches the flow entry

femod existing in the table, the instructions field of this entry is replaced with the value from the operation.

If no flow entry in the requestd flow table matches the operation, no table modifications occur.

delete(fedel, strict). For the delete operation, if a matching entry fe that matches the flow entry fedel
existing in the table, it must be deleted, and if the entry has the OFPF SEND FLOW REM flag, it

should generate a FLOW REMOVED message. If no flow entry in the requested flow table matches the

operation, no flow table modifications occur.

3.4 Predictive analysis framework for SDN race detection

In this subsection, the formal definition of race condition is given firstly, then the basic idea of the

predictive race detection is introduced simply and the core of our predictive analysis framework-how to

encode the constraints used in the predictive analysis framework to detect the race conditions in SDNs

is presented in the last.

3.4.1 Predictive race detection

Before introducing predictive race detection, we first give the formal definition of race condition.

Definition 1. Events a and b form a conflicting pair written CP(a, b), iff op(a) = write, op(b) ∈

{write, read}, ft(a) = ft(b), where op(a) is the operation event a contains.

Definition 2. Consistent trace τ has a race condition iff there is a consistent trace τ1ab ∈ feasible(τ)

such that CP(a, b).

In our example, we consider the origianl trace τ : 1-2-3-4-8-9-5-6-10-11-7 again. There are four con-

flicting pairs: CP(1, 8), CP(1, 9), CP(8, 9), and CP(5, 11). Three of them are remaining race conditions.

For conflicting pair CP(1, 8), there is a consistent trace τ1: 2-3-9-8-1-4-5-6-10-11-7, τ1 ∈ feasible(τ). For

CP(1, 9), there is a consistent trace τ2: 2-3-8-9-1-4-5-6-10-11-7, τ2 ∈ feasible(τ). And for CP(5, 11), there
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is a consistent trace τ3: 1-2-3-4-8-9-6-10-11-5-7, τ3 ∈ feasible(τ). There is a consistent trace for CP(8, 9),

but it is filtered. Because the two events in this conflicting pair are for non-overlapping flow entries of

the flow table, this race condition is harmless and is filtered using the commutativity filter in [10].

In generally, given an input trace τ , the goal of our predictive race detection is to find a τ -feasible trace

τ ′ and a CP(a, b) such that events a and b are next to each other in τ ′. During the race detection, the

particular flow table written or read by events are not relevant, in order to simplify the trace representation

we make no distinction between the event that appears in original trace τ and its variants satisfying the

strict consistent in τ -feasible traces.

We formulate the race detection problem for SDN as a constraint solving problem. In order to represent

the contraints between the events, we introduce an order variable Xe.eid for each event e in τ , which

represents the order of event e in τ ′, where eid is the identifier of e. Then we generate a formula Φ

over these order variables to represent the race detection problem for τ and CP(a, b). Φ is satisfiable iff

Xb.eid −Xa.eid = 1 for a certain trace τ ′ ∈ feasible(τ). We can solve Φ using any constraint solver. If Φ

is satisfiable, which means that there is a model (trace) for the formula, then (a, b) is a race condition

in τ ′.

3.4.2 Constraint encoding

In SDN, the formula Φ consists of four types of constraints: (1) MHB constraints, (2) read consistency

(RC) constraints, (3) asynchronous nondeterminsim (AN) constraints, and (4) conflicting pair (CP)

constraints. Thus, Φ is constructed by a conjunction of four sub-formulae:

Φ = Φmhb ∧ Φrc ∧Φan ∧ Φcp.

MHB constraints (Φmhb). MHB yields an obvious partial order ≺ on the events of τ which must

be respected by any τ -feasible trace. MHB can be easily denoted as constraints over the order variables.

Initially, Φmhb ≡ true, then we conjunct it with a constraint Xe1.eid < Xe2.eid whenever e1 occurs

before e2. The order constraints between the events except four rules (BARRIERPRE, BARRIERPOST,

TIME1, TIME2) can be constructed by making use of the information provided by the attributes pid,

out pids, mid and out mids of the events. BARRIERPRE, BARRIERPOST describe the effect of the

BARRIER request messages on the switch. TIME1 and TIME2 are used to represent the order constraints

between the events which cannot be reordered because the time distance between these events exceeds

the time window δ. The encoding rules for MHB constraints are listed in Table 2. The rules are described

in the following.

Rules1–4 (pid out → pid in). These rules order the related packet processing events e1 and e2 using

the informatin provided by their attributes pid and out pids. If the pid of e2 is contained in the out pids

of e1, that is, two events process the same packet, then e1 must occur before e2. Such as Rule1, if e1 is

a SwPktHandle or SwMsgHandle event and e2 is a SwPktSend event, and e2.pid ∈ e1.out pids, then the

constraint Xe1.eid < Xe2.eid is get. Rules2–4 are similar with Rule1.

Rules5–8 (mid out → mid in). These rules order the related message processing events e1 and e2
using the information provided by their attributes mid and out mids. If the mid of e2 is contained in the

out mids of e1, that is, two events process the same message, then e1 must occur before e2. In Rule5, if e1
is SwPktHandle or SwMsgHandle or SwFlowRemoved and e2 is SwMsgSend, and e2.mid ∈ e1.out mids,

the constraint Xe1.eid < Xe2.eid is get. Rules6–8 are similar with Rule5.

Rules9, 10 (BARRIER). The switch can handle messages received from the controller in a different

order from the one they were sent. To enforce the order between the events, the controller sends a

BARRIER request message. Rule9 describes that all events before BARRIER must be processed before

the BARRIER message. For example, if the msg type of e2 is BARRIER and e1 occurs before e2 in the

trace τ , the constraint Xe1.eid < Xe2.eid is held. Rule10 describes that all events after BARRIER must be

processed after the BARRIER message. The constraint can be encoded as in Rule9. If the msg type of e1
is BARRIER and e1 occurs before e2 in the trace τ , the constraint should be satisfied is Xe1.eid < Xe2.eid.

Rules11, 12 (ALT BARRIER). These are the alternative form of Rules9 and 10. They order the event

SwMsgHandle and the event triggering it (CtrlMsgHandle). Rule11 describes that if e2 is a SwMsgHandle
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Table 2 The encoding rules for MHB constraints (X
e1.eid < X

e2.eid)

Category Rule Event 1 Event 2

pid out → pid in

(e2.pid ∈ e1.out pids)

1 e1 ∈ SwPktHandle ∪ SwMsgHandle e2 ∈ SwPktSend

2 e1 ∈ SwPktHandle ∪ SwMsgHandle e2 ∈ SwMsgHandle

3 e1 ∈ HostPktHandle e2 ∈ HostPktSend

4 e1 ∈ SwPktSend ∪ HostPktSend e2 ∈ SwPktHandle ∪ HostPktHandle

mid out → mid in

(e2.mid ∈ e1.out mids)

5
e1 ∈ SwPktHandle ∪ SwMsgHandle

∪ SwFlowRemoved
e2 ∈ SwMsgSend

6 e1 ∈ CtrlMsgHandle e2 ∈ CtrlMsgSend

7 e1 ∈ SwMsgSend e2 ∈ CtrlMsgHandle

8 e1 ∈ CtrlMsgSend e2 ∈ SwMsgHandle

BARRIERPRE

(e2.msg type = BARRIER

e1.sw = e2.sw e1 ≺τ e2)

9 e1 ∈ SwMsgHandle e2 ∈ SwMsgHandle

BARRIERPOST

(e1.msg type =BARRIER

e1.sw = e2.sw e1 ≺τ e2)

10 e1 ∈ SwMsgHandle e2 ∈ SwMsgHandle

ALT BARRIERPRE

(e2.msg type = BARRIER

e1.sw = e2.sw e1 ≺τ e2)

11 e1 ∈ CtrlMsgHandle e2 ∈ SwMsgHandle

ALT BARRIERPOST

(e1.msg type = BARRIER

e1.sw = e2.sw e1 ≺τ e2)

12 e1 ∈ CtrlMsgHandle e2 ∈ SwMsgHandle

TIME1 (e2.t− e1.t > δ) 13
e1 ∈ SwPktHandle

∪ SwMsgHandle
e2 ∈ SwMsgHandle

TIME2 (e2.t− e1.t > δ) 14 e1 ∈ SwMsgHandle e2 ∈ SwPktHandle ∪ SwMsgHandle

FlOW REMOVED

(e2.t− e1.t > δ)
15 e1 ∈ SwMsgHandle e2 ∈ AsyncFlowExpiry

event and its msg type is BARRIER, and event e1 is CtrlMsgHandle, then e1 must happen-before e2,

the constraint Xe1.eid < Xe2.eid is held. And Rule12 says that if e1 is CtrlMsgHandle and its msg type

is BARRIER, e2 is SwMsgHandle, then e1 must happen-before e2. So the contraint Xe1.eid < Xe2.eid is

constructed.

Rules13, 14 (TIME). These rules add constraints between events that are unlikely be reordered

because the time distance δ between these events exceeds the time window, the value of δ can be inferred

from related work. Rules13 and 14 describe the situations that if the time distance between the event

that stores the packet in the switch buffer and the event retrieving the packet from the buffer is larger

than δ, then the event with small time value occurs before the other one. In Rule13, e1 is SwPktHandle

or SwMsgHandle, e2 is SwMsgHandle, and e2 happens after e1 and the time distance between them is

larger than δ, the constraint Xe1.eid < Xe2.eid is constructed. Rule14 can be encoded similarly.

Rule15 (FLOW REMOVED). This rule orders the event SwMsgHandle and the event AsyncFlowEx-

piry if the time distance between them is larger than δ. SwMsgHandle denotes that the switch reads

or writes the flow entry when receives a PACKET OUT or FLOW MOD message from the controller.

AsyncFlowExpiry denotes that the flow entry in the switch is timed out. In this rule, if e1 is SwMsgHan-

dle, e2 is AsyncFlowExpiry, e1 occurs before e2 and the time distance between them is larger than δ, the

constraint Xe1.eid < Xe2.eid is held.

Read consistency constraints (Φrc). Recall the strict consistent [8] that the flow table read by the

event in τ -feasible traces can be different from the one read by the same event in τ , but the flow table

read by the event should be consistent with the one written by the latest write event in order to satisfy

the read consistency requirement of τ -feasible traces. The last write event w must happen-before the

corresponding read event r, and there is no other write events between w and r. In a trace τ , let read(ft)
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1. MHB(Φmhb):

X2 < X3 ∧ X2 < X9 ∧ X3 < X4 ∧ X4 < X5

∧ X6 < X10 ∧ X6 < X11 ∧ X10 < X7;

2. Read consistency(Φrc):

(X9 < X1 ∨Xw0
< X1) ∧ (X11 < X5 ∨X

w
′

0

< X5);

3. Asynchronous nondeterminism(Φan):

(X1 < X2 ∨X2 < X1) ∧ (X5 < X6 ∨X6 < X5);

4. CP(Φcp):

CP(1, 9): X9 −X1 = 1,

CP(8, 9): X9 −X8 = 1,

CP(5, 11): X11 −X5 = 1,

CP(1, 8): X8 −X1 = 1.

Figure 5 The constraint encoding for the trace in our example.

be the read event r reading the flow table ft in the switch, and Write(ft) be the set of write events W

writing the flow table ft, and Write(-\-) be the set of write events W ′ writing the flow table different

from ft. For a read r, the read consistency constraints can be encoded as follows:

Φrc(r) =
∨

w∈W



Xw.eid < Xr.eid

∧

w 6=w′∈W ′

(Xw′.eid < Xw.eid ∨Xr.eid < Xw′.eid)



.

Asynchronous nondeterminism constraints (Φan). For an asynchronous event ej, it is able to

change its order with a read event ei on the same switch in another execution, so the asynchronous

nondeterminism constraints can be written as Φan = Xei.eid < Xej .eid ∨Xej .eid < Xei.eid.

Conflicting pair constraints (Φcp). For each conflicting pair CP(a, b), a constraintXb.eid−Xa.eid = 1

is encoded for specified the race condition.

The constraint encoding of the trace τ : 1-2-3-4-8-9-5-6-10-11-7 in our example is shown in Figure 5

(here we use the serial number of the event instead of its eid), where w0 and w′
0 are the initial write events

writing the flow table before the packets arrive at the switches. Based on the MHB relations between

the events except for the asynchronous events in the example trace and the encoding rules for MHB

constraints, the formula Φmhb is constructed. In following, events 9 and 11 are write events, and events 1

and 5 are read events, so the formula Φrc is in accord with the read consistency constraint. Events 2 and

6 are asynchronous events, they can change order with the read event on the same switch, thus Φan is

obtained. Finally, there are four conflicting pairs, thus four CP formulas are get. Putting the first three

constraints and each conflict pair constraint together, we invoke SMT solver Z3 to compute a solution

for these order variables. For the four conflicting pairs, SMT sovler returns a solution for each, so they

are all races, but (8, 9) is filtered by the commutativity filter.

3.5 Soundness and maximality

Our predictive analysis technique above is sound and maximal. Soundness means every detected race is

not false positive. Maximality means that our technique does not miss any race that can be detected by

any sound race detected based on the same trace. In order to illustrate the soundness and maximality of

our technique, we give Theorem 1.

Theorem 1. If Φ is the constraint encoding associated to a given trace τ , then Φ is satifiable iff (a, b)

is a race in τ in Definition 2.

Proof. Suppose that τ = e1 · e2 · · · en, and v is an valuation of order variables. Note that v � Φ for

some v : {Xe1 , Xe2 , . . . , Xen} → N iff there is a valuation v : {Xe1 , Xe2 , . . . , Xen} → {1, 2, . . . , n} satisfies

the constraints in Φ. Because the particular values assigned to the X variables are irrelevant, except for

the CP constraint Xb − Xa = 1, so we can find an ordering of v(e1), v(e2), . . . , v(en) such that v(a) is

followed by v(b). Any v generates the permutation ev(X1) · ev(X2) · · · e(Xn) of τ , which we write [v].

It is easy to see that v � Φmhb iff [v] satisfies the MHB consistency requirements, and that v � Φan iff

[v] satisfies the asynchronous nondeterminism requirements. We can perform induction on i that for any
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asynhronous event ei of τ , it is the case that v � Φrc(r) iff [v]ei↾read = τei↾read and any read event r in

these trace projections satisfies the read consistency requirement in [v]ei .

Let us first prove the soundness, that is, that if Φ is satisfiable then (a, b) is a race in τ . If v � Φ, that

is, there is a valuation satifies the constraints, then by the properties above, we can get the following: [v]

satisfies the MHB and asynchronous nondeterminism consistency requirements; [v]b = [v]ab, and for all

asynchronous events ei, [v]ei↾read = τei↾read. Then we can inductively construct a trace τ1 over the set

{e|e ≺ a} satisfying the prefix closed and strict consistent. We traverse these events in the order they

occur in [v], as follows, where e is the next such event: if e is not a read or an asynchronous event then

append it to τ1; if e is a read then to ensure the read consistency the value it read should be changed to

the value written by the last write event τ1 so far, and then append e to τ1; if e is a write event, and there

is a sequence ei ≺ · · · ≺ ej , where ei is an asynchronous event and ej is last event in τ1, and ej ≺ e, then

the asynchronous event may change its order with the read event on the same switch, we can insert event

in the sequence ei · · · ej · e before the related read event meanwhile keeping the MHB relations between

them and change the value of the read event to the value written by e. All the steps above preserve the

consistency of τ1 and satisfy the prefix closed and strict consistent characterizing feasible(τ), so we can

conclude τ1 ∈ feasible(τ). We can now extend τ1 with a and b similar as above, and thus we get that

τ1ab ∈ feasible(τ), so (a, b) is a race in τ .

Let us now prove the maximality, that is, that if (a, b) is a race in τ then Φ is satisfiable. Let

τ1ab ∈ feasible(τ) and let τ2 be the trace consists of the remaining events of τ , in the order which they

appear in τ . Although τ ′ = τ1abτ2 may be not τ -feasible, it still meet the MHB and asynchronous

nondeterminism consistency requirements. Let v be the valuation with [v] = τ ′. Then it is easy to know

v � Φmhb∧Φan∧Xb−Xa = 1. Since τ1ab is τ -feasible, prefix closedness ensures that [v]e is also τ -feasible

for all asynchronous event e; the strict consistent implies that [v]e↾read= τe↾read, so by the property above

and the definition of read consistency we conclude that if a is a read event then v � Φrc(a), otherwise if b

is a read event then v � Φrc(b), so v � Φ.

In this section, we describe our predictive analysis framework in detail, including the elementary

concepts, the consistency and feasible of the trace which is our framework’s base, and the constraint

encoding procedure. In last, we prove the soundness and maximality of our framework. Next, the

implementation of our framework will be presented.

4 Implementation

We implemented our predictive race analysis framework SDN-predict based on SDNRacer. The framework

was implemented with Python. SDN-predict consists of two phases: instrumentation and predictive race

analysis. During the instrumentation phase, SDN-predict instruments the STS which simulates a complete

network and several controllers. STS intrumentation is used to log the packets, messages and operations

in the switches and hosts. The logged traces are written into files. The controller instrumentation for

POX2), Floodlight3), ONOS4) wraps the event handlers for the messages received from switches, and links

the incoming messages received from switches with the corresponding outgoing messages sent to switches.

Then the controller instrumentation passes this logged information to STS helping to filter harmless race

conditions. We just used the instrumentaion policy in SDNRacer. During the predictive race analysis

phase, SDN-predict reads the events from a trace file, and encodes the constraints among the events in

the trace for each conflicting pair using the encoding rules described in Subsection 3.4.2. In the specified

implementation, the conflicting pair constraint Xb −Xa = 1 for each CP(a, b) is simplified by replacing

Xa with Xb in the constraints as in RVPredict5). Sometimes, the contraints among the events in the

trace form cycles denoting contradiction. The contraints are unsatisfiable if there is a contradiction. The

solver cannot report the race conditions in these traces. We first check whether there are cycles in the

2) POX Repo. https://github.com/noxrepo/pox.
3) Floodlight Repo. https://github.com/floodlight/floodlight.
4) ONOS Repo. https://github.com/opennetworkinglab/onos.
5) RVPredict. http://fsl.cs.illinois.edu/rvpredict/.

https://github.com/noxrepo/pox
https://github.com/floodlight/floodlight
https://github.com/opennetworkinglab/onos
http://fsl.cs.illinois.edu/rvpredict/
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contraints among the events, and then treat the events in the cycle as equivalent events. For example, if

there are constraints Xe1 < Xe2 , Xe2 < Xe3 and Xe3 < Xe1 , then these constraints form a cycle, we treat

these three events in the cycle as equivalent events, and construct formula Xe1 = Xe2 and Xe2 = Xe3 and

Xe3 = Xe1 . Later, SDN-predict uses constraint solver Z3 to solve the constraints. The default constraint

solving time and memory are set to 50 s and 6000 MB for each conflicting pair. If the solver returns

a solution, we report a race. Then the commutativity and time filters in [10] is used to filter out the

harmless race conditions. The value of δ used in time filter is set to 2 s which is the best case proved

in [10]. Each of the remaining race condition is separately stored in a dot file, in which a race graph gives

an event sequence leading to the race.

5 Evaluation

In this section, we evaluate our predictive race analysis framework SDN-predict. Our evaluation aims to

answer the following research questions:

(1) Race detection capability. How many races can our framework detect in representative SDN

controllers, running different applications, on different network topologies? How many more races can it

detect than SDNRacer (the unique SDN race detector on flow tables in switches)?

(2) Scalability. How efficient is our framework? Can it scale to large applications?

All experiments were conducted on a machine with 16-core 3.20 GHz Intel i5 processor and 4 GB

memory under Ubuntu version 4.8.2. And we use SMT solver Z3 to solve the constraints. We discuss

our experimental results in detail as presented in Table 3.

SDN controllers. We run SDN-predict on three controllers: Floodlight version 0.91, POX EEL, and

ONOS version 1.2.2.

Applications. We select 5 applications including reactive and proactive applications in large networks

and run them on three different topologies.

The selected applications include:

(1) LearningSwitch. It is a reactive application which builds and maintains a dynamic MAC address

table for each switch. This table is a map between the MAC addresses and the physical port they can

be reached on. We run this application on POX and Floodlight [12, 13].

(2) Forwarding. The LearningSwitch applications work on each switch so they are inefficiently. Most

controllers include a forwarding application working on the whole network and building and maintain-

ing a MAC addresses table throughout the network. We run this application on POX, ONOS and

Floodlight [14–17].

(3) CircuitPusher. This is a proactive application which automatically installs paths between two

hosts. We run this application on Floodlight [18].

(4) FireWall. This application allows or drops host communication based on a given operator policy.

We run it on Floodlight [19].

(5) LoadBalancer. This application performs stateless load balancing among a set of replicas. When

the controller receives the packet to be forwarded to the hosts which are identified by their virtual IP

addresses, this application selects a host and installs the flow rules along the entire path. We run it on

Floodlight [20].

Topologies. We run each controller on three different topologies — Star, Mesh, BinaryTree. The Star

topology has one switch with two hosts connected. The Mesh topology has two switches with one host

connected to each. The BinaryTree topology comprises seven switches in the form of a binary tree with

each leaf switch connected to one host.

We used 30 traces collected from different applications, different controllers and different topologies

using STS to evaluate our framework and compare its race detection capability with SDNRacer. Each

trace gets from 200 simulation steps by STS. In each step, the host in the topology decided randomly

whether to send a packet to another randomly selected host. Since LoadBalancer only makes sense with
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Table 3 Reported races for different traces with applying time filter using δ = 2 sa)

Num. of events SDN-predict SDNRacer
App. Topology Controller

Total WR RD Races Comm. Time Remain. Races Comm. Time Remain.

Star
Pox EEL 193 7 42 309 255 74 10 294 218 66 10

Floodlight 314 7 70 511 227 236 48 494 223 227 44

Learning-
Mesh

Pox EEL 274 16 66 570 403 143 24 532 387 121 24

switch Floodlight 233 6 66 204 68 131 5 190 64 125 1

BinTree
Pox EEL 4033 487 663 64086 62571 1449 66 62066 61337 664 65

Floodlight 9230 1251 904 281380 274643 6076 661 275246 270207 4737 302

Star

Pox Angler 106 4 16 68 35 25 8 61 33 21 7

Pox EEL 145 8 19 180 135 35 10 109 84 24 1

Pox EEL Fx 184 8 29 260 195 53 12 189 145 42 2

ONOS 476 18 71 1431 1248 133 50 1336 1163 127 46

Floodlight 97 3 13 42 14 18 10 35 13 14 8

Mesh

Pox Angler 248 13 48 345 125 200 20 323 116 191 16

For-
Pox EEL 306 20 50 590 348 217 25 405 235 159 7

warding
Pox EEL Fx 303 16 51 464 348 97 19 276 206 62 8

ONOS 880 44 181 4444 4135 256 53 4059 3781 228 50

Floodlight 180 6 36 114 46 52 16 104 46 45 13

BinTree

Pox Angler 2106 286 359 20935 13397 7230 308 20447 13179 6988 280

Pox EEL 4362 504 453 51918 40203 11378 337 34385 27956 6201 228

Pox EEL Fx 4283 467 413 44297 42977 1199 121 12509 12238 242 29

ONOS 8031 1492 920 248521 244687 3472 362 236429 233578 2598 253

Floodlight 1886 203 323 12681 11856 554 271 12293 11766 317 210

Circuit-
Star Floodlight 218 25 41 1325 1052 230 43 1301 1040 218 43

pusher
Mesh Floodlight 327 42 74 1974 1597 311 66 1933 1581 287 65

BinTree Floodlight 1200 144 227 6298 5610 639 49 6156 5605 507 44

FireWall

Star Floodlight 190 3 36 111 37 65 9 104 35 62 7

Mesh Floodlight 221 6 48 150 58 76 16 139 56 69 14

BinTree Floodlight 841 52 170 1457 1093 278 86 1384 1090 228 66

Load-
Star4 Floodlight 3889 822 476 728703 709379 17086 2238 703864 685158 16492 2214

balancer
Mesh4 Floodlight 5475 1036 735 333483 327929 4796 758 319121 314091 4303 727

BinTree Floodlight 24612 6213 2163 4816843 4850370 64987 1486 4705379 4642118 62031 1230

Total races – 7187 – 6014

a) The numbers in bold are the final numbers of races detected by SDN-predict and SDNRacer.

more than two hosts, so two traces of the LoadBalancer are collected from the larger topology (Star4 and

Mesh4) which replaces two hosts with four.

As shown in Table 3, columns 4–6 report metrics of traces: total number of events (total), write events

(WR), and read events (RD). The traces cover a wide range of complexity. The number of events in the

traces ranges from 97 to 26612. The number of write events and read events ranges between 3 to 6213,

13 to 2163, respectively.

Race detection capability. The actual number of the races depends on the number of write and

read events which in turn depend on the controller running the application. For example, on the same

star topology, the LearningSwitch application running on Pox EEL generated 7 writes and 42 reads, but

lead to 7 writes and 70 reads when running on Floodlight. Many detected races are harmless. If we report

them to the developer, it will waste their time to fix these races, and may introduce real races. We used

the commutativity and time filters proposed in [10] to filter these harmless races. The number of races

after filtering is used to compare the race detection capability of SDN-predict and SDNRacer. Columns

7–10 present the metrics of races detected by SDN-predict: the total number of races (Race), races filtered

by commutativity check (Comm.), races filtered by timimg (time), final races (Remain.). Columns 11–14

present the metrics of races detected by SDNRacer, their meanings are the same as columns 7–10.
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Figure 6 (Color online) Race detection capability of the two detectors. LS: LearingSwitch, FO: Forwarding, CP: Circuit-

Pusher, FW: FireWall, LB: LoadBalancer, S: Star, M: Mesh, B: BinTree, PE: Pox EEL, F: Floodlight, PA: Pox Angler,

PEF: Pox EEL Fx, O: ONOS.

As the results shown in Figure 6, for every application, our framework is able to detect more or at

least the same number of races as SDNRacer. For the LearningSwitch application running by Pox EEL

on the star topology and the CircuitPusher application running by Floodlight on star topology, SDN-

predict detected the same number of races as SDNRacer. For the rest of the applications, SDN-predict

detected more races than SDNRacer, ranging from 1 to 359. In total, SDN-predict detected 1173 race

conditions that SDNRacer have not detected. For instance, for the LearningSwitch application running

by Floodlight on BinaryTree topology, SDN-predict detected 661 races, while SDNRacer detected 302

races. This demonstrates that our framework achieves a higher race detection capability. The reason

is that SDNRacer treats the conflicting events which do not exist paths between them (that is, no HB

relations) as races, while SDN-predict is able to use the constraint solver to get all permutations of

the events in the traces while satisfying the consistency requirements of trace, through reordering, the

conflicting events with HB relations in the original trace τ can be adjacent in the τ -feasible traces, so

they can be races detected by SDN-predict.

Next, we take a fragment of a trace in Floodlight FireWall StarTopology-steps200 to explain in detail

why SDN-predict can detect 9 races, nevertheless SDNRacer can only detect 7 of them. The fragment of

the trace is consisted of the following events: 127-133-136-141-139-146-150-152-155-161-164-170–168-176-

174-181-185-188-190-196-200-202-205-211-214-220-218-226-224-231-235-238-240-246-250-252-255-261-265

-267-273-277-280-282-285-291-295-298-300. In this trace, events 127, 155, 190, 205, 240, 255, 267, 285 and

300 are read events, events 168 and 218 are write events. SDN-predict get the MHB relations according

to the rules defined in Table 2. The MHB relations in the trace include: 127 ≺ 133, 133 ≺ 136, 136 ≺

141, 141 ≺ 139, 139 ≺ 146, 146 ≺ 150, 150 ≺ 152, 152 ≺ 155, 155 ≺ 161, 161 ≺ 164, 164 ≺ 170, 164

≺ 176, 170 ≺ 168, 176 ≺ 174, 174 ≺ 181, 181 ≺ 185, 188 ≺ 190, 190 ≺ 196, 196 ≺ 200, 200 ≺ 202,

202 ≺ 205, 205 ≺ 211, 211 ≺ 214, 214 ≺ 220, 214 ≺ 226, 220 ≺ 218, 226 ≺ 224, 231 ≺ 235, 238 ≺

240, 240 ≺ 246, 246 ≺ 250, 250 ≺ 252, 255 ≺ 261, 261 ≺ 277, 265 ≺ 267, 267 ≺ 273, 273 ≺ 280, 280

≺ 282, 282 ≺ 285, 285 ≺ 291, 291 ≺ 295, 298 ≺ 300. SDNRacer can get the same MHB relations from

the trace. After running SDNRacer and SDN-predict, SDNRacer detected the race conditions (190, 168),

(240, 168), (267, 168), (127, 218), (255, 218), (285, 218), (300, 218), SDN-predict can detect another two

race conditions (155, 168) and (205, 218). The 7 race conditions can be detected by SDNRacer because the

read-write pair in each race is unordered by MHB relation and other read-write pairs such as (255, 168)

are filtered by commutativity check. SDN-predict detected the 7 race conditions found by SDNRacer
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Figure 7 (Color online) Analysis time for traces from Table 3.

through reordering the events in the trace while keeping the consistency of the trace. For example, the

trace can be reordered as . . . 218-127 . . . because there is no MHB relation between event 218 and event

127. SDN-predict can detect other races in the same reordering and filtering procedure as detecting

(127, 218). For race conditions (155, 168) and (205, 218), these two event pairs can be ordered by MHB

relations, so SDNRacer cannot detect them. However, events 161 and 211 are asynchronous events, SDN-

predict can reorder them in the trace as long as the result trace is feasible. The feasible traces can be:

. . . 152-161-164-170-168-155 . . . and . . . 202-211-214-220-218-205 . . .. SDN-predict can detect these two

races by constraint solving.

Also, our framework is sound and maximal which is proved in last section. In the stage of constraints

construction, the constraints are constructed based on the HB graph which specifies the HB relation

between events. Many races reported initially by our framework are harmless. We use the commutativity

and time filters proposed in [10] to filter these harmless races. Commutativity filtering can filter the

harmless race if the two events are for non-overlapping flow entries of the flow table and the network

state is not affected if we change their order. In theory, SDN switches can take an unbounded amount of

time to perform an event. Time filtering can filter the harmless race if the distance between the two events

in the original trace exceeds the time window (for instance, if a read and a write event are separated

by 2 s, then they are unlikely interfere). The filter efficiency is evaluated in [10]. The filters can filter

more than 90% harmless races. Furthermore, the 1173 races detected by our framework but have not

detected by SDNRacer are confirmed by checking the race graphs. Note that any dynamic race detection

technique (including ours) is sensitive to the analysed trace. The results reported for different traces are

incomparable. Therefore, it is possible for our framework to miss some races reported in other studies

for the same application running by the same controller on the same topology, because the traces in our

experiments may be different from those used in other’s work.

Scalability. We analyse the symbolic complexity of our predictive analysis framework to illustrate its

scalability and limitation. The predictive analysis for race detection is divided into two phases: constraint

encoding and constraint solving. Assume the number of events in the trace is n, where the number of

read events is k and the number of write events is l. The constraint coding phase includes HB graph

building and constraint constructing. The time complexity of them are both O(n2). The time complexity

of constraint solving is O((k × l + l2) × n ×m), where m is the number of constraints. Thus, the total

time complexity of our predictive analysis framework is O(2n2 + (k × l+ l2)× n×m). The performance

of our framework largely depends on trace size (the number of events in trace), the number of conflicting

pairs (read and write events) in the traces, the number of constraints and the speed of the constraint

solver. Our framework shows good scalabitity in most cases. As shown in Figure 7, for two-thirds of

the cases SDN-predict can analyze the traces ranging from 1 s to a few minutes. In the remaining 1/3
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cases, SDN-predict needs 0.95 to 607 h to finish the trace analysis. Particularly LoadBalancer running by

Floodlight on BinaryTree topology takes the longest time to finish. The reason is that these cases have

a lot of conflicting pairs, making the generated constraints much more complex, and the traces contain

large number of events, leading to a number of reorderings. So our framework can perform well if the

trace size and the number of the conflicting pairs are not very large.

For all the applications, SDNRacer fininshed in few seconds or minutes which is faster than our frame-

work. This is because SDNRacer traverses the HB graph to check whether there exists a path for each

conflicting pair in the trace τ . However, our framework relys on SMT solving and explores all the

τ -feasible traces for each conflicting pair.

6 Related studies

SDN race detection. There is a lot of race detection work for SDN in the literature. SDNRacer [10]

is a representative approach in this direction and inspires our work. Both techniques aim at detecting

races between the SDN controller and the SDN swithes. SDNRacer uses the HB model to detect race

condition in trace τ , while our framework uses contraint solver to detect the races in all τ -feasible traces.

So our framework can find races cannot be detected by SDNRacer. And the HB-based dynamic analysis

technique may have false positives, while the races reported by our framework are all confirmed by

checking the race graphs. CONGUARD [4] is another HB model based race detector for SDN. The

objective of this framework is to detect the race conditions in the SDN controllers. However SDN-

predict is used to predictive analysis the race conditions between the controller and the switches, that is

races on flow tables. Attendre [21] identifies the race conditions and mitigates the ill effects of the race

conditions on verification of the SDN controller applications. This tool uses model checking to detect

several types of violation not including race conditions. Attendre and other verification tools [22, 23] for

SDN cannot tell the sequence of events leading to violations. Yet, SDN-predict can give the sequence

of events corresponding to the races. BigBug [24] is an approach for identifying the most representative

concurrency violations for which reported by the SDN concurrency analyzers. They cluster reported

violations and report the most representative violation for each cluster.

Static analysis. Static analysis is a kind of important technique for race detection in concurrenct

programs. Static analysis analyses the whole program without executing source code. It usually checks

whether the memory locations accessed concurrently are alias, local or protected by the same lock set

using the alias analysis, thread escape analysis and lockset analysis. Static analysis techniques for finding

concurrency bugs either sacrifice precision for performance, leading to many false positives. Another

method proposed by [25] employs a combination of static analysis approaches to reduce the pairs of

memory accesses potentiallly involved in a race. Ref. [26] combines the static analysis with bug pattern

to produce a low false positive rate. Several static analysis tools have been developed for detecting

concurrency bugs6)7)8).

Dynamic analysis. Dynamic analysis for race detection [27–30] needs to instrument the source code

and collect the execution information. It uses the lockset or the HB relations and its variations [31,32] or

both to detect the races in the execution trace. Dynamic analysis is precise but incomplete, for it cannot

cover all possible traces, and high overhead caused by instrumentation. Ref. [33] is based on binary

rewriting techniques to monitor every shared memory reference and to verify that consistent locking

behavior was observed. FastTrace [34] uses an adaptive representation for the happens-before relation to

detect the data race. RaceFuzzer [35] computes a set of pairs of statements that could potentially race

during a concurrent execution, then uses each element from the set to control the random scheduling of

the threads. Hybrid dynamic race detection [36] combines the lockset-based and HB-based approach. It

uses lockset-based method to get the initial race set, then uses HB-based race detection to detect races

6) FindBugs. http://findbugs.sourceforge.net/.
7) Jlint. http://jlint.sourceforge.net/.
8) jChord. http://code.google.com/p/jchord/.

http://findbugs.sourceforge.net/
http://jlint.sourceforge.net/
http://code.google.com/p/jchord/
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from this set to reduce the number of false positives by lockset analysis. There also several dynamic

analysis tools for race detection have been developed9)10)11)12).

Predictive analysis. Our framework belongs to the category of predictive analysis approach, which

generates valid trace reordering under certain constraints to find bugs undetected in original trace. Exist-

ing predictive analysis are originally used to detect the data race and atomicity violation for concurrency

program such as Java and C [6–9]. They encode the constraints according to the program structures, and

focus on detecting the concurrency issues on memory locations. As far as we know, it is the first time

to apply predictive analysis to SDN race detection. Our framework encodes the constraints based on the

events contained in the network devices, and aims to find the races on flow tables.

7 Conclusion

In this paper, we present a predictive analysis framework SDN-predict for race detection in SDNs. We

formulate the race detection as a constraint solving problem over a set of constraints. We encode the

constraints based on the order between the network events and their dependencies, and use a SMT solver

Z3 to find all real races in all valid reordering traces. We have conducted extensive experiments with our

framework and compared its race detection capability with SDNRacer. The results demonstrate that our

framework has higher race detection capability and is scalable in detecting races in large networks.
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