• Supplementary File •

An efficient $i\mathcal{O}$ -based data integrity verification scheme for cloud storage

Lixue SUN^{1*}, Chunxiang XU^{1*}, Yuan ZHANG^{1,2} & Kefei CHEN³

¹Center for Cyber Security, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
²Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada; ³School of Science, Hangzhou Normal University, Hangzhou 310036, China

Appendix A Indistinguishability obfuscation

Definition 1 (Indistinguishability Obfuscation). Given a family of polynomial-size circuits $C = \{C_{\lambda}\}_{\lambda \in \mathbb{N}}$, an indistinguishability obfuscator for the circuit class $\{C_{\lambda}\}$ is defined as a uniform PPT machine $i\mathcal{O}$ that satisfies the following conditions: • (Preserving Functionality) For all security parameters $\lambda \in \mathbb{N}$, for all $C \in C_{\lambda}$, for all inputs x, we have that $\Pr[C'(x) = C(x) : C' \leftarrow i\mathcal{O}(\lambda, C)] = 1$.

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher $\mathcal{B} = (Samp, D)$, there exists a negligible function $negl(\cdot)$ such that the following holds: if for all security parameters $\lambda \in \mathbb{N}$, $\Pr[\forall x, C_0(x) = C_1(x) : (C_0; C_1; \sigma) \leftarrow Samp(1^{\lambda})] > 1 - negl(\lambda)$, then we have

$$|\Pr[D(\sigma, i\mathcal{O}(\lambda, C_0)) = 1 : (C_0; C_1; \sigma) \leftarrow Samp(1^{\lambda})] - \Pr[D(\sigma, i\mathcal{O}(\lambda, C_1)) = 1 : (C_0; C_1; \sigma) \leftarrow Samp(1^{\lambda})]| \leq negl(\lambda).$$

Appendix B Puncturable pseudorandom functions

A puncturable pseudorandom function (PRF) is evaluated at all bit strings of a certain length. It is defined by two PPT algorithms ($Eval_F$, $Puncture_F$) that satisfy the following conditions:

• (Functionality preserved under puncturing) For every PPT algorithm \mathcal{K} with input 1^{λ} outputs a set $S \subseteq \{0,1\}^n$, for all $x \in \{0,1\}^n \setminus S$, we have $\Pr[\mathsf{Eval}_F(K\{S\}, x) = F(K, x) : K \stackrel{\$}{\leftarrow} \mathcal{K}, K\{S\} \leftarrow \mathsf{Puncture}_F(K, S)] = 1$.

• (Pseudorandom at punctured points) For every pair of PPT algorithms $(\mathcal{A}_1, \mathcal{A}_2)$ such that $\mathcal{A}_1(1^{\lambda})$ outputs a set $S \subseteq \{0, 1\}^n$ and a state σ , consider an experiment where $K \stackrel{\$}{\leftarrow} \mathcal{K}, K\{S\} \leftarrow \mathsf{Puncture}_F(K, S)$. Let U_l denotes the uniform distribution over l bits. Then we have

$$\begin{aligned} |\Pr[\mathcal{A}_2(\sigma, K\{S\}, S, \mathsf{Eval}_F(K, S)) = 1] - \\ \Pr[\mathcal{A}_2(\sigma, K\{S\}, S, U_{m(\lambda) \cdot |S|} = 1]| \leq negl(\lambda) \end{aligned}$$

^{*} Corresponding author (email: sunlixue2007@sina.com (Lixue SUN), chxxu@uestc.edu.cn (Chunxiang XU))